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Abstract

This paper describes a radical approach to aggressively
optimize an embedded Java virtual machine
interpretation in a portable way.  We call this technique
Semantically Enriched Code (sEc). The sEc technique
can improve the speed of a JVM by orders of
magnitude. The sEc technique adapts an embedded Java
virtual machine to the demands of a Java application by
automatically generating an enhanced virtual machine
for every application. The bytecode set of the virtual
machine is augmented with new application-specific
opcodes, enabling the application to achieve greater
performance. Aggressive static or offline optimizations
are done to ensure tight coupling between the Java
application, Java virtual machine and the underlying
hardware. sEc makes an embedded Java virtual
machine become a domain specific Java virtual
machine – a versatility not possible with the hardware.

KEY WORDS: embedded JVM, Java virtual machine,
optimization, Interpreter, performance, semantically
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1 Introduction

An entirely new breed of high-technology embedded
products, such as Personal Digital Assistants and E-
mail enabled cellular phones, have recently emerged.
Manufacturers are deploying embedded Java runtime
environments on these devices to enable portability and
interoperability with software components. Although
embedded processors are inferior in speed and code
density, performance expectations are still high. This
demand forces all the applications on the embedded
environment, including the Java runtime environment,
to be squeezed for performance.  Conventional wisdom
holds that the Java virtual machine in an embedded
Java runtime environment is a bottleneck. Added to
this, the rapid inclusion of new embedded appliances to
the market demands rapid availability of portable and

efficient embedded Java environments on these
platforms.

A striking characteristic of an embedded appliance is its
deployment for a dedicated or mission-specific purpose.
This implies that an application that runs on an
embedded environment is relatively static and does not
vary as much as on a generic computing environment.
This is an opportunity for optimizing the performance
of an embedded Java environment for the application.

This paper describes a radical approach to aggressively
optimize an embedded Java virtual machine
interpretation in a portable way.  We call this technique
Semantically Enriched Code (sEc). The sEc technique
can improve the speed of a JVM by orders of
magnitude. The sEc technique adapts an embedded Java
virtual machine to the demands of a Java application by
automatically generating an enhanced virtual machine
for every application. The instruction set of the virtual
machine is augmented with new application-specific
opcodes, enabling the application to achieve greater
performance. Aggressive static or offline optimizations
are done to ensure tight coupling between the Java
application, Java virtual machine, and the underlying
hardware. The sEc technique makes an embedded Java
virtual machine become a domain- specific Java virtual
machine.

A goal of the sEc technique is have neither a runtime
optimization overhead (as with just-in-time compilation
(JIT) or dynamic code generation), nor to perform
exhaustive optimization by ahead of time compilation,
thereby losing the dynamic loading capabilities of an
application. Our technique provides an intermediary
solution. To summarize, the sEc technique makes an
embedded Java virtual machine become a domain
specific Java virtual machine – a versatility that a
virtual machine enjoys over hardware processors.

Java[5], JVM[4] and JavaSoft are all trademarks of Sun
Microsystems. In the rest of the report, the words JVM,
application, Java runtime environment, unless
specifically stated otherwise, are assumed to be an
embedded JVM, embedded application, or embedded
Java runtime environment respectively. Section 2 gives
the genesis of the technique and section 3 gives an
overview. The full technique is detailed in section 4
followed by implementation and results in section 5.
Related work is presented in section 6 followed by
conclusion, section 7.
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2 The Genesis of sEc:

The sEc technique is motivated by the salient
characteristics exhibited by the three building blocks of
a Java application environment: the Java application,
the JVM , the target environment, and the two
couplings that exist between them as show in the
figure-1.   We now enumerate the characteristics of
these three building blocks.

Java Applications: First, due to their object-oriented
nature, applications are method-call intensive. Second,
garbage collection frees the program from memory
related problems like pointer chasing and dangling
pointers. Third, the dynamic behavior of the
applications can be characterized by the 80-20 rule of
thumb, i.e. 80 percent of the execution time is spent in
20 percent of the application.

Embedded Java Virtual Machine: First, the JVM is a
stack-based virtual machine (VM), where the stack is
emulated using a heap. The JVM operations are
dominated by stack operations. Second, the JVM byte
codes have high semantic content compared to the
target machine instructions. Third, the JVM is executed
on a real machine and the byte code of the application
is interpreted and spends 80% of its execution time in
the interpreter loop. Fourth, the JVM provides the
semantics of dynamic loading of classes as language
feature. This is manifested in the late binding  model
for runtime entities.

Embedded target environment: First, recent embedded
processors are register based RISC or CISC machines.
Second, an embedded environment is created for a
dedicated purpose, which implies applications are
relatively static. Third, to keep pace with a fast product
cycle environment, it must be both portable or
retargetable and efficient.

At the application execution time the above-mentioned
traits give rise to two couplings: the Java runtime

environment (JRE) and compilation couplings, as
shown by arrows in figure 1.  These couplings have the
following positive and negative characteristics.

2.1 JRE coupling: This coupling exists between a Java
application and the JVM at interpretation time and
hence is dynamic in nature. The previously mentioned
characteristics of a Java application are manifested by
Pointer-intensive and Call- intensive nature in this
coupling. Indirection of pointers has become the
fundamental unifying model of all Object-Oriented
runtime environments to support polymorphism and
runtime type-check systems [13][14][1], e.g. the
dispatch table mechanism used in the implementation
of the “invokevirtual” opcode. JVM sub-modules,
namely garbage collection and object management also
make this coupling pointer- intensive.  On the other
hand the high semantic content of JVM bytecode causes
the implementation of their JVM interpreter action to
introduces, on average, one or more function calls per
opcode. This makes the JRE coupling exhibit call-
intensive characteristics.

2.2 The Compilation coupling: This coupling is
between the JVM and the target environment and is
created during compilation of the JVM source and
therefore it is static. Treating a JVM as just another
program by the compiler has several disadvantages.
First, the JVM features mentioned above introduce
imprecise information to the compiler and thereby
greatly hamper the optimizations by the compiler. The
pointer-intensive characteristics of the JVM source
induce data dependencies, leading to imprecision in the
compiler analysis required to perform optimization
transformations on the JVM code. Second, the pointer-
intensive and call-intensive nature of the JVM also
introduces control dependencies and hampers inter-
procedural analysis. Modern target machines are more
efficient when jumping to a constant address than when
indirectly fetching an address from a table, such as a
dispatch-table, which stalls the instruction-issue and
execution pipeline for several cycles[8]. Third, the
compiler used to (cross) compile a JVM source is
ignorant of the JVM high level semantic constructs and
architecture, and therefore fails to exploit precise
information (e.g. the semantics of the stack operations)
to improve the efficacy of the optimization. Fourth, the
late binding model of the JVM also hampers
optimizations by deferring the binding to the runtime.
For example, the precise information about the binding
address of symbols and the branch targets will increase
the efficacy of optimizations of the JVM interpreter
action code.

The driving philosophies of the sEc technique are (1) to
make the application drive the semantic content of the
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Figure 2: Three phases of the sEc Technique.

sEc opcodes

JVM by creating new opcodes (sEc-opcodes), resulting
in an adaptive opcode set for JVM -- creating a domain
specific Java virtual machine, (2) to do offline
aggressive optimization for speed of the frequent case
or frequently executed traces, while exploiting
information on runtime constants and (3) to make
implementations of the stack-based JVM tightly
coupled to the real target (register-based) machines.

3 The sEc solution – an overview

This section gives an overview of the sEc technique,
with sections giving details. Functionally, the sEc
technique has three major phases namely, (a) sEc
detection, (b) sEc Code Generation and (c) sEc
embedding, as seen in figure 2.

(a)  sEc detection phase: The core of the JVM is the
interpreter module, which interprets the bytecodes
of the JVM. Interpretation is based on the
fundamental pattern of fetch-decode-execute and
loop back. This phase deduces the sEc-opcodes -
new JVM bytecodes - from the execution

semantics of the Java application. The new sEc-
opcodes are synthesized from the stream of an
application bytecodes using the application trace /
profile or the probabilistic expectations of the
execution. In our experiments, we use application
profile information.

(b)  sEc code generation: This phase takes the sEc-
opcodes as input and generates efficient ‘C’ native
code, which is smaller and faster than the
equivalent JVM ‘C’ action code for the bytcode
sequence represented by the sEc-opcode.  This
phase not only eliminates the per-opcode overhead
of interpreting the sEc-opcodes - fetching and
decoding each bytecode - but it also optimizes
based on the JVM semantic content of the sEc-
opcode.  A novel technique called sEc Symbolic

Execution is devised for sEc-opcode code
generation. The generated code will be the JVM
interpreter action for the sEc-opcode.

(c) The sEc Embedding makes the generic JVM aware
of the synthesized sEc-opcodes and embeds the



sEc-opcode appropriately in the place of the (Java)
bytecode sequence in the application. This can be
done either dynamically or statically, at runtime or
offline, respectively. Finally, the sEc embedded
application is executed using the sEc-aware JVM
on the target machine for faster execution of the
application.

4 The sEc Technique

This section details the design alternatives and phases
of the sEc technique. An sEc-opcode is defined as a
flow-sensitive maximal sequence of computation of
Java bytecodes with a candidate based on execution
speed using the properties of a dynamic execution. In
this definition the basic block (BB), extended basic
block and fragment (similar to the BB but with
backward branches allowed) in the application trace are
candidates for an sEc-opcode. Further more, the
definition of equality of sEc-opcodes is based on the
equality of the corresponding bytecode sequence.  sEc-
opcode equality is of the following types:

A. Exact match equality – The opcodes of the two
bytecode sequences match and corresponding
bytecodes have corresponding matching attributes.

B. Template match - This is similar to the exact match
equality above but matching corresponding
opcodes  alone will be sufficient for a match.

4.1 sEc Detection

This phase deduces effective sEc-opcodes that will
speedup the Java runtime of a given application from
the stream of the Java bytecodes. The sEc detection can
further be classified as (a) static sEc detection or (b)
dynamic sEc detection.

In static sEc detection the given application is parsed
for the most repetitive longest sequence of Java
bytecodes, and sEc-opcodes are selected from these
based on cost and control flow criteria. This method
fails to capture the dynamic semantics of the
application, as these patterns may not account for the
dominant dynamic behavior of the application. This
alternative is better suited for the bytecode compression
of the application than for sEc-opcodes synthesis.

Dynamic sEc detection uses the profile of an
application generated using representative input as the
best approximation of the dynamic semantics of the
application. Finding the optimal sequences of bytecode
to select as an sEc-opcode with respect to speed and
space criteria is combinatorially difficult [12]. Hence,
the following heuristics based on greedy and non-
greedy approaches are used.

A. Greedily select the bytecode sequence which
captures the longest repetitive computational
sequence of the dynamic bytecodes stream. The
disadvantage of this method is that it is insensitive
to control flow into the sequence. The overhead of
guaranteeing correctness in sequences with
multiple branch-targets in sEc-opcode, and Java’s
precise exceptions  cut   into the anticipated gain.

B. Non-greedy bytecode sequence selection will
deduce the sEc-opcode bytecode sequence under
structural constraints like control and data flow.
The structural constraints could be the basic block,
extended basic block or fragment. These
constraints improve the efficacy of sEc-opcode
optimization compared to multiple branch targets
in the sEc-opcode.

4.2 sEc optimization and code generation:

This phase maps the bytecode sequence in the sEc-
opcode onto optimized portable native ‘C’ code for the
target machine. This code is the JVM interpreter action
code for the sEc-opcode. A unique technique called sEc
Symbolic execution – an integrated optimizer and code
generator - optimizes the sEc-opcode with respect to the
JVM semantic domain as well as the target architecture
semantic domain, and generates the JVM action code in
‘C’.  This optimization is effective not only because
bytecode dispatch overhead is eliminated for the
bytecode in the sEc-opcode, but also because stack
operands are folded, redundant local variable accesses
are eliminated, and more precise information is
available for the offline ‘C’ compiler optimizer. The
resulting ‘C’ code undergoes further optimization –
optimization with respect to the target architecture
semantics - by a global optimizing compiler like
GCC[10]. This yields efficient sEc-opcode execution
resulting in higher coupling of a JVM to the underlying
target machine semantics in the resulting sEc-aware
JVM.

4.2.1 sEc-opcode optimization:
 Since the stack based JVM opcodes are emulated over
the register-based target machine instructions, the sEc
technique allows the optimization of sEc-opcode as
listed below.

1. Virtual Machine architecture dependent
optimizations: These optimization techniques are
dependent on the virtual machine architecture and
its emulation aspects. In summary these
optimizations provide efficient storage and access
for the sEc-opcode operands and local variables.



� Java stack access operands are subsumed: Within
the context of an sEc-opcode, stack operand access
is intrinsically subsumed by the efficient ‘C’ code,
eliminating store and load operations on the Java
stack frame.

� Elimination of redundant Java Local Variable
Accesses: Accesses to the redundant local variable
on the Java frame are eliminated by reusing the
value in the generated ‘C’ code. This optimization
keeps track of read-after-read data dependencies
with respect to the JVM architecture across the
Java bytecodes that are within the sEc-opcode, and
propagates the value.

� Elimination of JVM operand stack manipulation
operations: Our studies have shown that using
dynamic instruction distributions, 40% of the
instructions are related to moving the data between
the Java operand stack and local variables,
duplicating values on the stack, and constants. For
example, consider the bytecodes pop, pop2, dup,
dup2, dup_x1, dup2_x1, dup_x1, dup_x2, and
swap. This technique keeps track of the stack state
in the sEc-opcode and propagates the value to the
target operation, thus eliminating the respective
bytecode action or the need to generate ‘C’ code to
perform the operation.

� Java bytecode is semantically rich: Within an sEc-
opcode, the Java bytecode semantics can be treated
as composed of fine-grained sub-operations or
predicates. These can be the class, method and
field attribute checks. For example,
isNativeMethod (method) is a predicate in the
bytcode “invokestatic”. Runtime checks like
exception checks (null value check, array boundary
check etc. are also handled). This optimization
eliminates these redundant sub-operations within
the sEc-opcode. We note here that a common sub-
expression in the sEc-opcode is not necessarily
possible so in the underlying compiler for the
target machine (i.e. pointer aliasing problems arise
because of emulating  the JVM stack using the
heap memory)

2. Virtual Machine architecture independent
optimizations: These optimizations are
independent of the VM architecture and its
implementation, but are limited to the  semantic
domain of the virtual machine architecture. Some
examples of these are common sub-expression
elimination within the bytecode sequence of the
sEc-opcode, deducing polymorphic call points as
monomorphic call points (method-pointers are
compile time constants) and so on.

3. Virtual Machine Runtime Bindings: The late
binding or dynamic loading feature of the Java VM

gives rise to new kinds of optimization
opportunities based on  runtime constants after the
late binding process within an sEc-opcode. We
term this novel optimization technique sEc-
rewriting. sEc-rewriting is the dynamic self-
redirection of the sEc-opcode to an efficient
runtime implementation based on runtime
constants and bindings.  In case of the JVM, the
real machine address bound to symbolic
information, (e.g. field or branch offset), is
constant after it is resolved, or bound, at runtime.
Similarly, some predicate or attribute checks
outcomes are constant once resolved. The sEc-
opcode is aggressively optimized offline for this
specialized runtime variant. During sEc-opcode
interpretation, the call-point in the method code is
rewritten to jump to the specialized implementation
in the very first interpretation, taking runtime
values as parameters. Every sEc-opcode potentially
has a specialized sEc-rewriting opcode variant, and
the virtual machine developer has the option of
fine-grained control to select them.

4. Target architecture dependent and independent
optimizations: These optimizations are in the
purview of the underlying real machine semantics
or architecture[7]. In the case of RISC
architectures, optimizations dependent on the
register architecture, like instruction selection,
instruction scheduling, register allocation and
register assignment are target architecture
dependent optimizations. On the other hand,
optimizations independent of the register based
architecture but constrained by the semantics of the
underlying register architecture are termed target
architecture independent optimizations. Common
sub-expression elimination, copy propagation, and
loop invariant code motion, are but a few from the
cornucopia of possible optimizations[7]. The sEc
technique depends on a global optimizing compiler
like GCC to do the optimizations under this
category, but provides more precise information to
aid the global optimizations.

4.2.2   sEc Code Generation
The sEc code generator’s aim is to generate efficient
retargetable ‘C’ code for the sEc-opcodes. Clearly, a
naive sEc code generator could just concatenate the
corresponding JVM interpreter action code of all the
individual bytecodes in the given sEc-opcode.  This
could be visualized as interpreter switch unrolling for
the respective sEc-opcode, which only eliminates the
per-bytecode dispatch overhead. However our code
generation technique - sEc Symbolic execution -
exploits the optimization techniques explained above.
The sEc code generation has to abide by structural



sEc Local Var TablesE-opcode
sequence

Symbol
created

sEc Symbolic state
1 2 3 4 5

Code Generated in
‘C’

Prologue
//well formed sEc-opcode, no code generated

// No code generated

ALOAD_1 O1 O1 O1 O1 =  JLV(1)
ILOAD_3 O2 O1,O2 O2 O2 =  JLV(3)
IALOAD O3 O3 O3 =  Macr(O1, O2)
ALOAD_2 O4 O3,O4 O4 O4 =  JLV(2)
ILOAD_3 O5 O3,O4,O5 O5 O5 = O2
IALOAD O6 O3,O6 O6 = Macr(O4, O5)
IMUL O7 O7 O7 = O3 * O6
ILOAD 5 O8 O7,O8 O8 O8 = f(JLV(1))
IADD O9 O9 O9 = f(O7,O8))
ISTORE 5 O9D // No code generated
IINC 3 1 O5D O5D = f(O5,1)

Epilogue

//No stack  update
//consolidated JVM pc update

JLV(3) = O5
JLV(5) = O9
PC = PC + 15

JVM_word *Ptr_lvp    =   Jvm_stack_base + lvp // Pointer to current Java invocation Frame //
#define JLV(x) *(Ptr_lvp + x) // Reference to Java Local Variable on a Java Frame
Macr( O1, O2) // Macro to fetch O2th element for O1 array object

// O1 and O2 are macro parameter.

Figure 3: Illustration of  sEc Symbolic Execution on the sEc-opcode

constraints that the Java bytecode guarantees, namely,
(a) Stack Invariance of Java Bytecode: each bytecode
must only be executed with the appropriate type and
number of arguments on the operand stack or in local
variables, regardless of the execution path that leads to
its invocation, and (b) Variant data type of Java stack
frame: At different execution points of the same
method, the local variable slot in a Java invocation
frame can hold different data types.

4.2.3  sEc Symbolic Execution
This section defines some terms and explains the code
generation constraints and sEc symbolic execution in
detail. During the symbolic execution, the bytecodes
logically making up the sEc-opcode sequence are
symbolically interpreted for the purpose of integrated
code generation across the sEc-opcode and optimization
within the sEc-opcode.  This process has knowledge of
the JVM stack as well as the target machine
architecture, and therefore yields better optimization
results.  This results in faster execution of the sEc-
opcode when interpreted by the sEc-aware Java virtual
machine. The following are the essential issues handled
in the process:

1. ‘C’ local variable allocation of the Java operand
and local variable[s] under the sEc code generation
constraints enumerated earlier.

2. tracking the state of the JVM to eliminate or
subsume sub-actions of the bytecode.

3. ordering the sub-operations like type check, null
check etc.

4. ensuring the state of JVM is consistent when
control flows into and out of sEc-opcodes.

4.2.4   An example of the sEc Symbolic Execution
Consider the bytecode of the source statement, sum =
a[i] * b[i] + sum, represented as a sEc-opcode. The
corresponding sequence of bytecodes is  [ALOAD_1,
ILOAD_3,IALOAD, ALOAD_2, ILOAD_3, IALOAD, IMUL,
ILOAD #5 IADD, ISTORE #5, IINC 3 1]. The snap shot of the
trace of the sEc symbolic execution is shown in figure
3. In this particular sEc-opcode, there is no ‘C’ code
generated for epilogue because the sEc opcode has all
the stack operands of the bytecode within the sEc-
opcode (well-formed sEc-opcode). We note the
following points about the example:

1. The suffix of O’s is maintained by the sEc code
generator.  The string-symbol is generated and
pushed on to the symbol stack  (Column 3).



SEC_hook
 [Dot, loopit, ()V  < offset:31,
NUM_INS:9, SIZE:12>

SEC_hook
[Dot, loopit, ()V <offset:54,
NUM_INS:11, SIZE:15>

Begin Basic Block
ALOAD_1
ILOAD_3
ALOAD_2
ILOAD_3
BIPUSH
DUP_X2
IASTORE
IASTORE
IINC
End Basic Block

Begin Basic Block
ALOAD_1
ILOAD_3
IALOAD
ALOAD_2
ILOAD_3
IALOAD
IMUL
ILOAD
IADD
ISTORE
IINC
End Basic Block

[1800000]:  Bytecode Hit
Count sEc opcode:
sEcopcode_235

[2200000]: Bytecode Hit Count
sEc opcode: sEcopcode_236

    Figure 4: Bytecode sequence of the sEc-opcodes.

2. Although there is a scope to replace O3 by O1 for
the “iaload” bytecode, the translator generates the
new symbol O3, since replacing O3 by O1 will not
add to the ability of the code generator to perform
optimizations. However, the GCC compiler easily
optimizes the code by eliminating O3.

3. The JLV(n) is a macro which accesses the nth  Java
local variable from the current Java frame.

4.  For certain bytecodes in the sEc-opcode, a new
symbol is created with an appropriate suffix and
pushed on to the symbolic stack, as shown in
figure-3.

5. Every local variable load and store is tracked for
redundant usage by using the symbolic local
variable table, as shown in the figure.  A write to a
local variable is tracked using the dirty status in the
local variable status.

6. Redundant access to the Java local variable 3 is
subsumed by reusing the symbol O2

7. The bytecode  “Istore 5” does not cause any code
to be generated because it is subsumed by the
symbolic transformation in the symbolic local
variable table.

8. At end of the sEc-opcode – the epilogue – the JVM
runtime locals that are dirty will be written back.

4.3  The sEc Embedding

The sEc embedding is a process that embeds the sEc-
opcode into the Java application and modifies the
generic JVM with the new sEc-opcode interpreter
action. This phase is divided into 2 parts (a.) modifying
the JVM and (b.) embedding the sEc-opcode into the
Java application. The sEc embedding can be performed
offline or online.

4.3.1 The JVM modification:
 The JVM interpreter loop is modified to detect and
execute the new sEc-opcode. In the offline model,
modifications related to the JVM source (mainly the
interpreter) is done in the host environment of the
embedded target and cross built to get the sEc aware
JVM. In the online model, a generic JVM is modified to
have a stub, whose function is to automatically load the
new sEc-opcode when the main interpreter loop traps
for the new sEc-opcode. The disadvantage of the later
method is the need to dynamically load of module in
the runtime environment.

 4.3.2 Embedding the sEc-opcode into the Java
application:
The new sEc-opcode is embedded into the given Java
application by modifying the method code attributes.
This process can be performed either offline or online.
The sEc detection phase gives the sEc-hook
information, which has the location of the new sEc-
opcode – class, method and offset - and the size of the
replaced bytecode sequence. In the offline model, all of
the class methods are rewritten with the new sEc-
opcode by bytecode rewriting tools [16]. In the online
model, the Java bytecode sequence of the new sEc-
opcode is replaced at the runtime of the application
using a special class loader.  The special class loader
will track the first call of methods to be sEc-opcode
embedded – using sEc-hook information – and the
method code attributes of the method are rewritten with
the corresponding sEc-opcode. Thereafter execution
resumes the normal path of interpretation. The sEc-
hook will help the special class loader to pinpoint the
method, location and size of the bytecode stream to be
rewritten with the corresponding sEc-opcode.

5 Implementation and results

This section gives some preliminary results of the sEc
technique. An in-house research JVM [1] was used for
the sEc technique and the instrumentation. The host
environment was HP-UX 10.20 and the embedded
target environment is an NS486 based custom
embedded board. The GCC compiler was used for cross
compilation.



Dynamic sEc detection with non-greedy heuristics and
the BB structural constraint - bytecode patterns are
limited to basic blocks - was applied to the benchmarks
below. Further selection of the bytecode sequence for
the sEc-opcode was based on the BHC metric
(Bytecode Hit Count) a product of the execution
frequency of the BB and the number of the bytecode in
the BB. The JVM is instrumented to obtain the BHC
and sEc-hook information for every BB.

Fine grained space and speed tradeoff of the JVM:
The Benchmarks ECM (Embedded Caffine Mark) and
Jlex (Java lexical analyzer) were used to study the
effect of the sEc-opcode on the dynamic semantics of
applications and their impact on the speed and space of
the applications. Measurements of these are given
below. The cumulative BHC chart of ECM shows 6%
of BBs accounts for 99.97% of the total BHC for ECM.

This amounts to 34 BBs and the probable sEc-opcodes
for the ECM application. Similarly, 2.5% of BBs cover
98% of the BHC in Jlex. This amounts to 40 BBs and
these are the most probable candidates for sEc-opcodes.
A similar graph of JVM code size for every addition of
a sEcopcode can be done. This gives the embedded
JVM developer the flexibility to do a fine-grained
quantitative tradeoff between the application speed and
the target space constraints. We note that the number of
extended BBs and the fragments that account for the
most execution time will be less than the number of
BBs using the basic-block structural criteria.

JVM Speedup – Some performance results:
The dot product benchmark was used for the study of
the speedup of the JVM. The application was subjected
to sEc-detection as detailed earlier. We only considered
the two basic block bytecode sequences shown in figure
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4 as sEc-opcodes, namely sEc-opcode_235 and sEc-
opcode_236 – these sequences had the highest BHC.
The sEc-opcode_235 and sEc-opcode_236 are
subjected to the sEc code generation algorithm - sEc
symbolic execution – performed manually with the
JVM dependent optimizations. The resulting 'C' code
was used to augment the generic JVM.

The JVM was modified offline to be aware of the new
sEc-opcodes. The action ‘C’ code, was embedded into
the JVM interpreter loop and JVM specific changes
were made to recognize the new sEc-opcodes.  Then,
the JVM was built using the GCC compiler with
highest level of optimization enabled.

Online sEc-opcode embedding was adopted to replace
the sequence of bytecode comprising the sEc-opcode
with the sEc-opcode proper. A new class loader was
introduced into the JVM to read the sEc-hook
information and track all of the loaded classes for
embedding the sEc-opcodes at the sEc-hook specified
locations. This modification resulted in a speedup of
300%. We note that only 2 sEc-opcodes were
considered for experimentation purposes. Also the
bytecode sequences in the sEc-opcodes are less rich in
semantics compared to semantically rich opcodes like
those for object management and method invocation etc
(which would enable more scope to optimize).

6 Related Work

Optimizing a Java application for speed has become an
active research area. Broadly, this research can be
classified as follows:

Interpreter Techniques: Bringing traditional compiler
techniques to the runtime environment will not be a
viable solution for resource constrained embedded Java
deployment. Studies have been done to improve
interpreter techniques as in [19][20]. All of these
approaches exploit a variation of threading to improve
the per-opcode overhead by removing the opcode
dispatch overhead. The sEc technique is a portable,
static-optimization interpreter technique. To the best of
our knowledge, the sEc technique is the first JVM
interpreter optimizing technique of its kind.  Compared
to the above interpreter techniques, the sEc technique
not only removes the per-opcode overhead in the sEc-
opcode but also does aggressive optimization in the sEc
code generation phase. Unique to the sEc technique, it
divides the sEc-opcode optimizations between Java
virtual machine dependent and independent
optimizations, and JVM runtime binding optimizations
and the target machine dependent and independent
optimizations. These phases optimize the sEc-opcode

by knowing the semantics of the JVM bytecode in the
sEc-opcode. They also improve the efficacy of state-of-
the-art target optimizations by feeding precise
information to the optimizer, resulting in an efficient
coupling of the sEc-opcode to the target machine.
Along with these optimizations, the sEc-rewriting
technique can switch the sEc-opcode to a more efficient
implementation after runtime binding – exploiting
runtime binding constants.

BrouHaHa[19], Objective Caml and Interpretation of
C[12] are some implementations that make use of
“macro” opcodes similar in concept to sEc-opcodes The
sEc approach differs from these in the following ways:

(1) The sEc-opcode is produced offline by taking into
account the dynamic characteristic, control flow
and data flow of the embedded Java application.

(2)  The cost of dispatch for a RISC-like opcode set is
relatively greater (compared to the cost of
executing the bytecode) than it is for Java
bytecode. On the other hand the Java bytecode is
semantically rich – most of the bytecodes can be
decomposed into sub-operations and optimized.
This demands a complex analysis to optimize sEc-
opcodes and is done offline instead of at runtime.

(3) The sEc-opcode optimization exploits runtime
binding constants as discussed in the sEc-rewriting
section.

 Superoperators[12] for ANSI C interpreters are a
technique for specializing a bytecoded C interpreter
according to the program that it is to execute.
Superoperators make use of an lcc tree-based IR to
synthesize superoperators. The sEc-opcode differs with
respect to superoperators as follows. The semantic
content of the lcc IR is very much the same as real
machine instructions [9] – it consists of expression trees
over a simple 109-operator language – hence folding of
instruction using tree pattern[11] matching works every
well. On the other hand, lcc’s tree structure limits the
effectiveness of this system. Putting it in another way,
the lcc IR is the sequence of trees at the semantic level
of the target machine.  In contrast, the Java bytecodes
are semantically rich– each bytecode is composed of
many sub-operations - because of the high level of
abstraction. The larger the sEc-opcode context, the
more JVM dependent and independent optimization can
be done – e.g. elimination of stack operands, redundant
local variable access, elimination of redundant sub-
operation in sEc-code bytecode sequence like method
attribute check, null value check etc. After the JVM
related optimizations,  target machine optimizations are
done by a compiler like GCC (-o). In fact gcc’s RTL,
(Register Transfer Language [10], the intermediate
form used for most of the optimizations and for code



generation in GCC can be considered as a counterpart
of the lcc IR. The Superoperator technique is integrated
into the lcc compilation and uses the lcc backend,
which does not do advanced global optimization.

Just In Time compilation (JIT): The principle of the
JIT compilation is, in general, to dynamically compile a
method to native code – after some threshold number of
calls to the method has occurred - pausing the
application execution. Extensions and refinements of
the JIT principle have spun-off many techniques under
the following constraints:

1. Generating efficient native code: Optimized native
code is generated on the fly by adapting traditional
optimization techniques to run-time code
generation.

2. Efficient code generation techniques: Optimize the
JIT techniques themselves for size and speed,
executing efficient code generation and register
allocation algorithms. Some of recent studies in
this area are Hotspot[6] CACAO[34][35] from
DEC, Jalapeno[28] (now called the “Jikes RVM”)
from IBM, Annotated JVM[31] and Hybrid JIT [3]

Native Java Compilers: Unlike with JIT compilers Java
source and binary (classes) are statically compiled to
native code. This method does not have constraint 2 of
JITs stated above, and hence better native code can be
generated by employing state-of-art optimizations.
Generally these methods disallow dynamic class
loading. Toba[29], Harissa[30] and commercial
products like TowerJ and Cygnus (GNU) Java native
compiler fall into this category.

7 Conclusions

Semantically enriching the Java bytecode using the sEc
technique is an innovative JVM optimization technique.
The sEc Technique avoids the problem of efficiently
integrating traditional compilation phases into the Java
runtime environment, which is a widespread problem
for JIT techniques.

We have presented an abstract model for a portable way
of determining the sEc-opcodes and an efficient code
generation. The sEc-opcode optimization is classified
into a 5-phase process, a JVM dependent, JVM
independent, sEc-rewriting, target dependent and target
independent. This model shows that a traditional
compilation optimization problem exists with equal
complexity in the JVM dependent and independent
optimization phases of sEc-opcodes. The five phases of
the optimization make the sEc-opcode implementation

efficient by tightly coupling it to the target machine.
This has shown that more than opcode dispatch
optimization can be achieved by employing JVM
independent and dependent optimizations, sEc-
rewriting and the aggressive target machine related
optimizations.

We have shown in our preliminary exploration of the
implementation that the sEc technique can increase the
speed of JVM interpretation by orders of magnitude for
some embedded Java applications. The sEc technique
employs ‘C’ as its intermediate language, and hence is
portable to many embedded platforms, which reduces
porting and retargeting cost and time. We believe that
the speedup gain from the sEc technique in its
aggressive form will be comparable to the JIT
technique. We have also shown that the sEc technique
provides fine-grained tradeoff of speed and space in an
embedded JVM. More information about the sEc
Technique can be found in the Hewlett-Packard
laboratories Technical Report[2].

As next steps, we intend to evaluate quantitatively the
different optimizations discussed in this paper. We also
want to apply the sEc technique to dynamically loaded
modules by ‘probabilistic based sEc-opcode deduction’
for statically determinable dynamic classes. We are also
interested in quantitatively evaluating the foot print
overhead of sEc-technique.
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