Strange Bedfellows: Community Identification in BitTorrent

David Choffnes

Jordi Duch, Dean Malmgren, Roger Guimerà, Fabián Bustamante, Luís A. Nunes Amaral Northwestern University

http://aqualab.cs.northwestern.edu

Privacy in P2P Systems

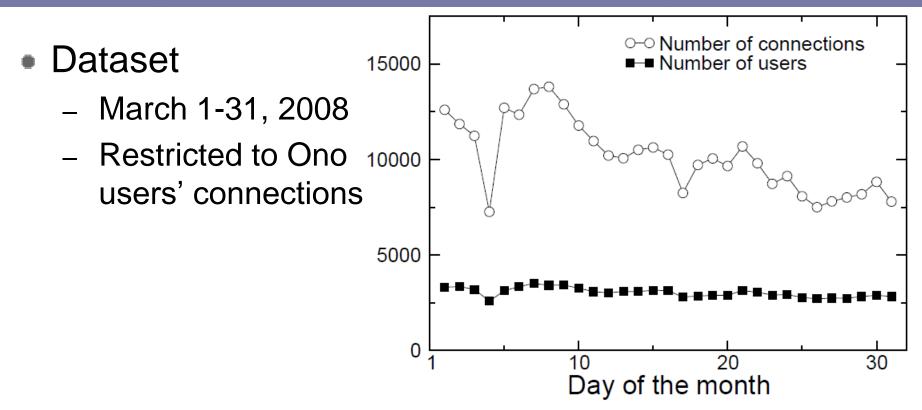
- Privacy increasingly important, elusive goal
 - As connectivity improves, privacy declines
 - Affects Web browsing, social networks, P2P systems...

- Existing attacks
 - Snoop connections to reveal content
 - Infiltrate system with rogue clients to pollute or spy
 - Interfere with targeted connections

Privacy in Swarming Systems

- In P2P swarming, attacks can involve identifying
 - Content that users download
 - Content that users share
 - Who they share it with
- Available countermeasures
 - Encrypt connections
 - Decentralize swarm membership identification
 - Darknets, networks of trust

Are the connections themselves a threat to privacy?


Evaluating Privacy in P2P Systems

- Goal for this work
 - Determine how much information is revealed by connection patterns in swarming P2P system
- Simple enough in theory, but...
 - Connections require *simultaneous*, shared interest in content
 - Intimately tied to user behavior, difficult to model
 - Spread of P2P makes empirical connection data difficult to gather
- Ono dataset for connection traces
 - Currently installed by nearly 1,000,000 BitTorrent users
 - Gathers per-connection data (but no info for content)

Connection Patterns in BitTorrent

- Is there (global) structure to BT connections?
 - Reasons for
 - People share interest for a variety of content
 - Regularity in time-of-day usage
 - Reasons against
 - Random connections in BitTorrent
 - Difference in transfer rates
 - Selfish behavior (download and depart)
 - Geographic spread of users (time zones)
- Examine structure through graph representation
 - BT hosts are nodes, connections are edges
 - Popular approach: identifying communities in the graph

Building a BitTorrent Network Graph

- Graph representation
 - Build weekly graphs (account for weekly patterns)
 - Each edge assigned weight according to number of days connected during the week

Communities in BitTorrent

• Do these user connections reveal communities?

- Can be solved by maximizing modularity

$$\mathcal{M}(\mathcal{P}) = \frac{1}{2L} \sum_{ij} \left[w_{ij} - \frac{s_i s_j}{2L} \right] \delta_{m_i m_j}$$

Given a connection between nodes i and j, how much of their total connection strength is it?

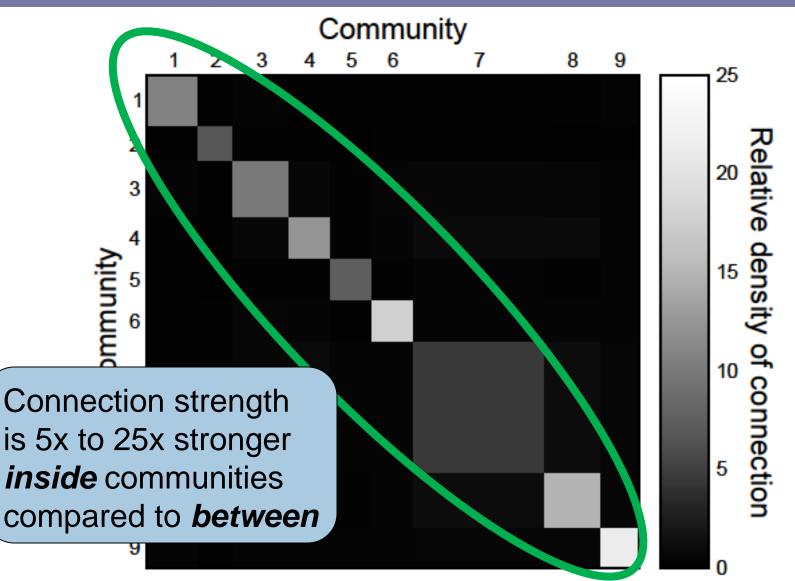
Communities in BitTorrent

• Do these user connections reveal communities?

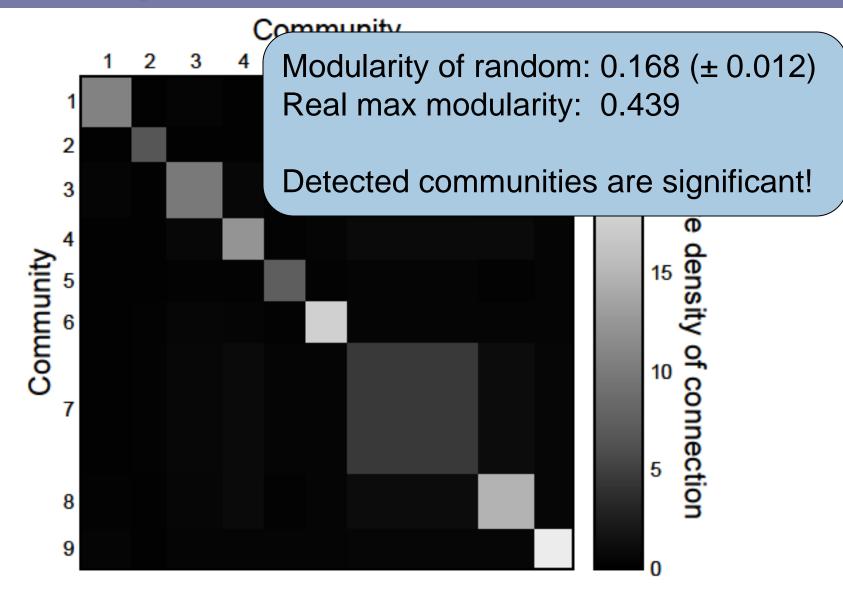
- Can be solved by maximizing modularity

$$\mathcal{M}(\mathcal{P}) = \frac{1}{2L} \sum_{ij} \left[w_{ij} - \frac{s_i s_j}{2L} \right] \delta_{m_i m_j}$$

Only count those in the same community


Communities in BitTorrent

- Do these user connections reveal communities?
 - Can be solved by maximizing modularity


$$\mathcal{M}(\mathcal{P}) = \frac{1}{2L} \sum_{ij} \left[w_{ij} - \frac{s_i s_j}{2L} \right] \delta_{m_i m_j}$$

- Determines amount of connection weight *within* communities as opposed to *between* them
- Challenges
 - NP-hard problem
 - Many heuristic techniques
- Extremal optimization
 - Good trade-off between speed and accuracy $O(N^2 \ln N)$
 - Nearly identical to other randomized approaches

Community Identification Results

Community Identification Results

Why Do Communities Matter?

- General advantages to communities
 - Allows optimizations based on structure
 - Social networks: Suggest friends
 - Web browsing: Target advertising
 - P2P file-sharing systems: Infer content interest

\$\$

- Risks of communities in P2P systems
 - Copyright enforcement
 - Censorship
 - Guilt by association

Why Do Communities Matter?

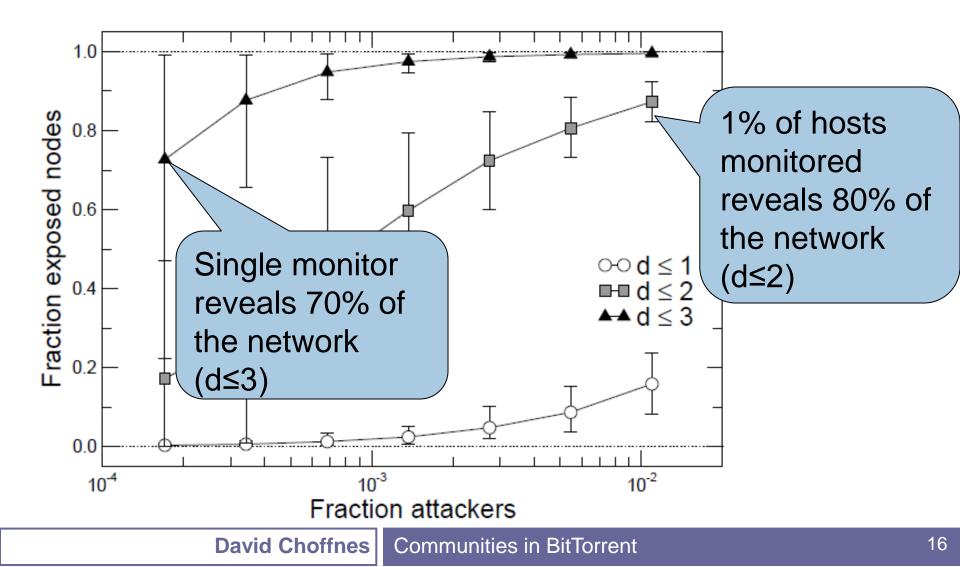
- Communities for guilt by association
 - Small numbers of hosts predict behavior of entire group
 - Not a legal definition, per se
 - Facilitates surveillance, e.g.
- Real world example (McCarthy era)
 - Alder v. Board of Education of New York (1952)
 - US law was **upheld**, dissenting opinion:

"The present law proceeds on a principle repugnant to our society — guilt by association.[...] Teachers are under constant surveillance...; their utterances are watched for clues to dangerous thoughts."

- Justice William O. Douglas

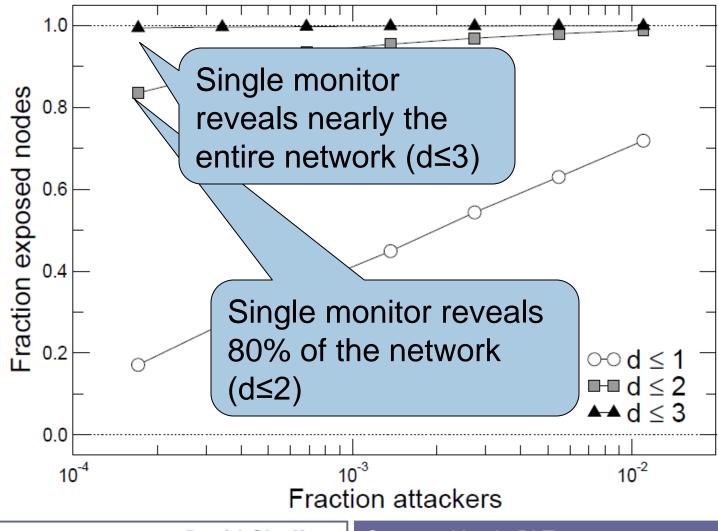
Guilt by association

- Guilt by association in BitTorrent
 - 1. Identify a community
 - 2. Identify the content shared by a single member
 - 3. Infer that all members of the community are doing the same *without monitoring them directly*


Can this be used to efficiently monitor BT?

Discovering the Connection Graph

- Approaches to building connection graph
 - Trackers: The swarm is the community
 - Difficult with trackerless torrents
 - Limited to per-torrent view
 - Does not reveal connection information
 - Peer Exchange (PEX)
 - Reveals peers' connections to a third party
 - Direct observation
- Evaluate the worst-case scenario for attacker
 - Use only PEX and direct observation
 - Vary number of monitoring hosts (rogue clients)
 - Vary peers being monitored (random/most connected)


Discovering the Connection Graph

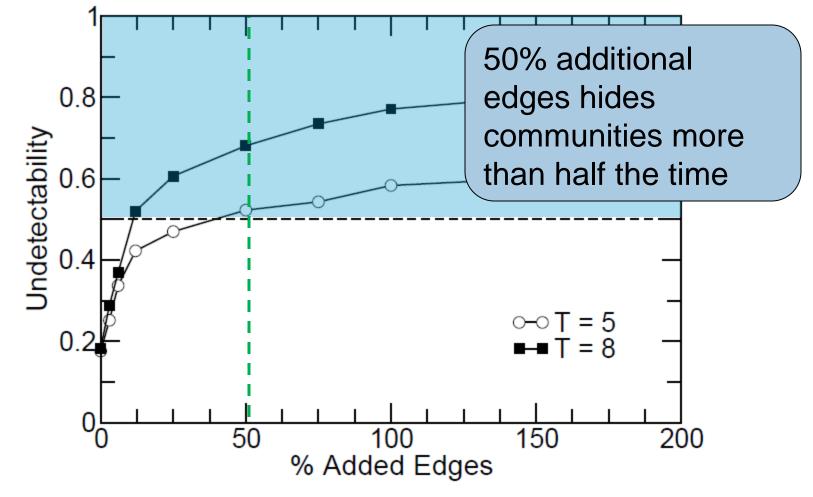
Randomly select peers to monitor

Discovering the Connection Graph

Select the most connected peers to monitor

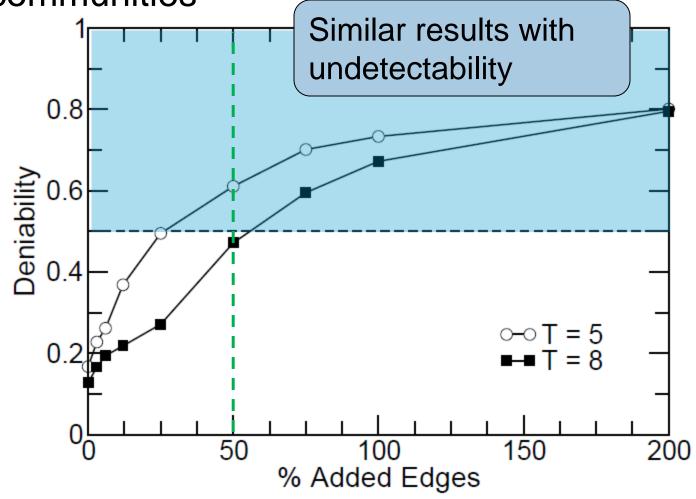
David Choffnes Communities in BitTorrent

Identifying Communities with Partial Graphs


- Monitoring reveals most (but not all) of the network
 - What can be inferred from these partial views?
 - How reliable are these inferences?
- Reliable community inferences
 - Determine probability that node is classified in *partial network* given that it is in the *full network*
 - Run extremal optimization R times
 - How many times (τ) do communities overlap?
- Results (partial)
 - $-\tau$ =8, 0.01% monitored, d ≤ 3: correct 85% of the time
 - $-\tau$ =8, 1% monitored, d ≤ 2: correct 86% of the time

Disrupting Community Identification

- Key assumptions for guilt by association
 - Connections == shared interest
 - Strong communities (relatively low noise in graph)
- To preserve privacy, attack the assumptions
 - Add random connections
 - Number proportional to real ones
- How well does this work?
 - Undetectability: How well it hides communities
 - Deniability: How many detected communities are wrong


Undetectability

 Percent of time nodes not classified into communities

Deniability

Percent of time nodes *incorrectly* classified into communities

David Choffnes Communities in BitTorrent

Conclusion

- Communities in BitTorrent
 - Strong communities naturally form
 - Can be exploited using guilt by association
 - Permits lightweight monitoring of BitTorrent
- Disrupting community identification
 - Proposed and evaluated potential solution
 - Adding random edges effectively mitigates threat

SwarmScreen

- Is this really practical?
 - Where do you get random connections?
 - How much overhead is this?
- SwarmScreen
 - Use real torrents selected at random
 - Cover traffic contributes to real BT swarms
 - Users can control privacy/performance overhead
- Deployed for Vuze BitTorrent client
 - Come see the demo after the talk