
Peer-to-Peer Bargaining
in Container-Based Datacenters

Yuan Feng, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{yfeng, bli}@eecg.toronto.edu

Bo Li
Department of Computer Science

Hong Kong University of Science and Technology
bli@cs.ust.hk

Abstract—In container-based datacenters, failure-prone com-
ponents are sealed in pre-packaged shipping containers, and
component failures over time reduce the availability of re-
sources. From the perspective of services, application instances
can usually be migrated across the boundary of containers as
virtual machines (VMs). In such an environment, it would be
sometimes beneficial to migrate application instances to take
better advantage of available resources. In this paper, we first
point out that application placement strategies that are singularly
focused on the efficiency of resource usage may not be beneficial,
especially when resources are over-provisioned in container-based
data centers. We believe that application instances should be
placed based on the Buffet principle, using resources in an
aggressive fashion. Once failures occur, application instances
can be migrated across containers, by allowing containers to
bargain with each other in a peer-to-peer fashion, treating
application instances with different resource requirements as
“commodities” in a Nash bargaining game. We show that the
ratio of utilizing resources can improved by establishing such
local Nash bargaining games, where two containers bargain and
trade VMs with each other to increase their own utilities. With
simulation, we verify the effectiveness of the proposed bargaining
games.

I. INTRODUCTION

One of the design objectives of container-based (modular)
datacenters is the management of complexity and cost of
deployment. Still, a basic configuration of the Sun MD S20
modular datacenter, for example, is quoted at $559, 000 [1],
which represents only a fraction of the total cost of ownership.
As a consequence, it is important to achieve a high level of re-
source utilization, when it comes to computational, bandwidth,
and storage resources. Unfortunately, utilization in operational
datacenters can be remarkably low, even only 10% [2].

Recent success in virtualization technologies provides pos-
sible solutions to improve resource utilization. Such tech-
nologies encourage datacenters be transformed from existing
rigid IT configurations to a more agile infrastructure [3].
Server virtualization techniques, such as VMware and Xen,
facilitate application instances to be packaged inside virtual
machines (VMs). These VMs can then be migrated from one
server to another without any downtime to the application
running within. In addition to virtualizing computational and
bandwidth resources, storage virtualization techniques, such as
the IBM SAN Volume Controller and Sun ZFS, are able to
virtualize storage space into virtual disks (Vdisks), which can
be easily migrated from one storage subsystem to another.

As live migration of application and storage instances
become feasible by using virtualization, existing work (e.g.,

Singh et al. [4]) has proposed centralized algorithms to
manage a load-balanced cluster of servers by migrating VMs
across server boundaries. By migrating VMs off overloaded
servers or storage nodes, called “hotspots,” to under-utilized
servers, performance degradation or premature failures due
to overload can be avoided or mitigated. Such centralized
load management and VM migration is triggered by overload
situations in hotspots, and migration is performed across the
boundary of individual servers.

In this paper, we argue that such fine-grained centralized
micromanagement to alleviate hotspots represents a step to-
wards the right direction, but is still too microscopic to be
realistic in modern container-based, or modular, datacenters.
In container-based datacenters, we believe that computational,
bandwidth and storage resources are abundantly available, but
component failures over time are the norm, rather than the
exception [5]. This is due to the fact that, once such server-
packed shipping containers are sealed and operational, it is
very difficult to repair or replace their components individu-
ally. Though the reliability and maintainability of resources
are theoretically described by MTBF or MTTF, failures in
different resource dimensions in distinct containers may follow
their own degradation distributions.

In this paper, we advocate the application of the Buffet prin-
ciple [6] when it comes to launching application instances to
utilize abundant resources in container-based datacenters. The
Buffet principle stipulates that, rather than carefully optimizing
resource usage for efficiency, one can launch as many applica-
tion instances as needed to utilize all available resources in an
aggressive manner, as long as the marginal benefit outweighs
the marginal costs. While the Buffet principle fits well in the
unique characteristics of container-based datacenters, are we
able to handle a reduction of resource availability over time
due to component failures, if nearly all resources are being
utilized?

Live migration of VMs comes to our rescue again, but
at a much coarser granularity. We argue that VMs should
be migrated across the boundary of containers, rather than
servers, and only when it is necessary to do so due to a lack
of resources (caused by failures). In this paper, we propose that
containers should be treated as peers, and bargain with each
other in a peer-to-peer fashion in a local trading market, with
VMs traded as “commodities.” Such bargaining games should
only be triggered when there exists a resource deficiency, and
should terminate when the utilization ratio of resources is



2

relatively balanced. Such a design is simple and realistic to
be implemented, and takes place in an autonomic and self-
organized manner, precisely as any other bargaining trading
markets.

The remainder of this paper is organized as follows. In
Sec. II, we briefly introduce the Buffet principle and the
VM placement strategy. After showing the benefits of redis-
tributing VMs across different containers, Sec. III describes
the decentralized VM migration algorithm based on the Nash
Bargaining Solution. In Sec. IV, we show the effectiveness of
the proposed VM migration algorithm. We conclude this paper
in Sec. V.

II. APPLYING THE BUFFET PRINCIPLE

Modern applications hosted by container-based datacenters
are highly diverse in their resource requirements. For example,
video streaming encoders requires substantial CPU compu-
tational resources; while one-click online hosting services
have a huge appetite for storage space. Generally, to ensure
efficiency, the number of application instances, in virtual
machines (VMs), is determined within the context of the
application. For example, the default number of replicas in
Google File System is 3 [7], while alternative email services
may require as many as 15 replicas.

After the number of application instances is determined,
each of these instances is then deployed according to certain
load balancing considerations. The design objective of these
strategies is the efficiency of utilizing resources, which attempt
to find the “sweet spot” of operation, such that the performance
per unit of resource consumed is maximized.

However, a singular focus on efficiency may lead to the
under-utilization of resources. Since application demands vary
quickly over time, it is difficult to predict such demands
accurately. To guarantee service quality during peak hours,
container-based datacenters routinely over-provision resource
availability. If resources provisioned in a datacenter has the
ability to support 5 instances of 100 different applications, yet
only 3 instances of these applications are deployed within, the
strategy unnecessarily wastes resources even when they are
readily available.

We believe that this is a classic example where the Buffet
principle [6] should be applied. The Buffet principle argues
that resources should be utilized as long as the marginal cost
is lower than the marginal benefit. In the context of designing
a strategy to determine how many application instances should
be placed in each container, we may simply let each container
accommodate as many application instances as it can to
saturate nearly all of its available resources, with respect to
either bandwidth, CPU, or storage space. The Buffet principle
is a natural fit in this context for the following reasons:

. Low marginal costs. Once provisioned during design,
resources in a container would be wasted if not utilized. This
implies that the marginal cost of using such resources is
exceedingly low. Though performance gains beyond the sweet
spot may not be substantial, the marginal benefits — such as
improved resilience to failures if more replicas are maintained

— may still outweigh the marginal costs. With a container
costing millions to acquire and hundreds of kilowatts of power
to keep up, leaving resources unused may not rational.

. Simple design. Based on the Buffet principle, there is no
need to design elaborate schemes to determine the number
of application instances (as VMs) to be deployed in each
container. The maximum number of VMs is deployed to utilize
all available resources.

. Enhanced resilience. With the service demand fluctuating
quickly and the network changing dynamically, the “sweet
spot” is hard to be determined accurately. When experiencing
a bursty increase of requests within one application, containers
who hold this application currently may be overloaded, leading
to performance degradation. Instead of setting a stringent limit
on resource usage, a greedy consumption of resources may
improve the resilience of the entire datacenter to unanticipated
circumstances.

III. THE VM MIGRATION ALGORITHM

In this section, we propose a distributed VM migration
algorithm based on Nash Bargaining Solution to alleviate re-
source under-utilization incurred by failures. To minimize the
transmission overhead by migrating, the algorithm responds
“lazily” and “locally.”

A. The Benefits of VM Migration

As component failures start to occur over time, and as
availability of resources in one dimension (e.g., bandwidth)
may decrease substantially, it is often the case that such
reduced availability makes it harder to fully utilize resources in
other dimensions (e.g., storage and CPU). For example, with
BCube [8], the failure of an aggregator in one container will
cause a decrease of its upload bandwidth; then, the reduced
bandwidth may degrade the access to this container’s storage
and CPU computing resources.

Taking full advantage of the virtualization technology, we
may migrate VMs to an alternative container, to achieve a
higher level of resource utilization in the system. The follow-
ing example illustrates potential benefits by such migrating.

Consider a datacenter which has two containers and two
applications. Each of the applications is provided by a cor-
responding VM: VM1 and VM2, respectively. The available
resources of containers at the beginning and resources required
to handle one request in a VM are summarized in Table I.

TABLE I
AVAILABLE RESOURCES FOR EACH CONTAINER AND REQUIRED

RESOURCES FOR EACH VM

Resources Container 1/2 VM1 VM2

CPU (MIPS) 6 3 1
Storage Space (GB) 6 3 3
Bandwidth (Mbps) 6 1 3

Initially VMs are placed as shown in Fig. 1 (a), according to
the application placement strategy we discussed in Sec. II. A
container’s resource utilization ratio is defined as the geometric
mean of its utilization ratios in three resource dimensions,



3

storage space, bandwidth and CPU. In this datacenter, the
average resource utilization ratio is about 76%.

Then as time goes by, Container 1 loses some computing
resources, which has only 3 MIPS left, and Container 2 loses
some bandwidth, with 3 Mbps left. If no VM migration is
involved, requests for Application 1 and 2 directed to the same
container can not be satisfied at the same time, which leads
to the average resource utilization ratio decreasing to around
44%. Nevertheless, with VM migration, we can shift VM2 in
Container 1 and VM1 in Container 2, as shown in Fig. 1 (b).
In such scenario, the VM, which requires more resource in one
dimension, is fit into the container that holds more available
resource in that dimension. Then, requests directed to the
same container for both Application 1 and 2 can be satisfied
simultaneously, so that the average resource utilization ratio
can be increased to 87%.

Container 1 Container 2

(b) With VM migration(a) Without VM migration

Container 1 Container 2

VM1 VM2 VM1 VM2 VM2 VM2 VM1 VM1

Fig. 1. The different application fit with and without VM migration.

From this example, we can see that by allowing VM
migration across different containers, the datacenter is not only
able to gain higher resource utilization with limited system-
wide resources, but also gives a more satisfactory performance
as it can handle more requests at the same time.

B. The VM Migration Algorithm Based on Nash Bargaining
Solution

1) System Model and Algorithm Trigger: Before introduc-
ing the VM migration algorithm, we first present the system
model. Let N denote the set of containers in a datacenter. For
every container i ∈ N , it is associated with a current available
storage space of Ci(t), in Gigabytes; a bandwidth of Ui(t),
in Mbps; and a CPU computing capability of Pi(t), capturing
the amount of processing power it has, in MIPS. Let the set
of application instances provided by the datacenter be denoted
by M. For any k ∈ M, VMk requires a certain amount of
storage space sk, bandwidth of rk, and computing resource of
clk to handle one request. Ik

i (t) is a binary variable indicating
if VMk is provided by container i or not at time t. And
Dk

i (t) represents the number of requests for VMk directed
to container i at time t.

Instead of responding to the failures eagerly or regularly,
our VM migration algorithm responses lazily, i.e., it is only
operated when the imbalance of resource utilization ratios in
different dimensions alters over a certain threshold. To be pre-
cise, at time t, the utilization ratios in storage, bandwidth, and
computing resources of each container i can be represented as

follows:

rs
i (t) =

∑
k∈M Ik

i (t)skDk
i (t)

Ci(t)
≤ 1

rb
i (t) =

∑
k∈M Ik

i (t)rkDk
i (t)

Ui(t)
≤ 1

rc
i (t) =

∑
k∈M Ik

i (t)clkDk
i (t)

Pi(t)
≤ 1,

where inequalities are the resource constraints that resources
utilized by all application instances stored on one container can
not exceeds its available resources. Let σr

i (t) be the standard
deviation of rs

i (t), rb
i (t) and rc

i (t). When a container i’s σr
i (t)

exceeds the pre-defined threshold σthreshold, this container
will “trigger” the VM migration algorithm at time t.

2) The Relaxed Nash Bargaining Solution: To be practical
and auto-managed, the VM migration algorithm is done in a
peer-to-peer fashion. We envision the existence of a bargaining
trading market. VMs are considered as “commodities” in this
market. Peers, containers who own the commodities, evaluate
the utility of each commodity in the market, then try to bargain
with each other and exchange their commodities to increase
their own utilities.

Our VM migration algorithm is based on the Nash Bar-
gaining Solution, which is a Pareto efficient solution to a
two-player bargaining game. In such a game, two individuals
have the opportunity to collaborate for mutual benefit in
more than one way. By assuming that I) two individuals are
highly rational, II) each can accurately compare its desire for
various things, III) they are equal in bargaining skill, and IV)
each has full knowledge of the tastes and preferences of the
other, Nash proposed a solution which should satisfy certain
axioms [9]. Let u be the utility function for Player 1, and v the
utility function for Player 2. Under these conditions, rational
agents will choose what is known as the Nash bargaining
solution. Namely, they will seek to maximize |u(x) − u(d)|
and |v(y) − v(d)|, where u(d) and v(d) are the status quo
utilities (i.e., the utility obtained if one decides not to bargain
with the other player).

In the datacenter trading market, there are multiple con-
tainers, i.e., possible players. The trigger peer will choose
the corresponding player according to the following Player
Selection Principle: when a container triggers the VM mi-
gration algorithm, it first checks out the dimension in which
its resource utilization ratio is the highest; and then chooses
the container with the lowest resource utilization ratio in this
dimension to bargain with.

The rationale behind is when σr
i (t) > σthreshold, dimension

with the highest ri becomes the “bottleneck” of fully utilizing
resources in other dimensions. Application instances require
high resource usage in the bottleneck dimension should be
moved out to achieve a more balanced resource utilization
in all dimensions. Reasonably, the ideal destination of these
VMs should be a container with relatively sufficient available
resources in the bottleneck dimension.

The Nash Bargaining Solution tries to find the optimal
ownerships of the two players’ commodities, so that both



4

players’ utilities can be maximized. Since a player’s utility
here is the sum of all self-evaluated VMs’ utilities stored in this
container, getting the optimal solution may require extensive
VM transmissions, which causes heavy transmission overhead.
Seeing that the objective here is to find a feasible solution,
we relax the Pareto optimality property of Nash Bargaining
Solution, making the solution practical and cost effective in
datacenters.

Specifically, both players evaluate each VM according to
their own information. For player i, the utility of VMk is
computed as:

V k
i (t) = ωs

i (t)
skDk

i (t)
Ci(t)

+ ωb
i (t)

rkDk
i (t)

Ui(t)
+ ωc

i (t)
clkDk

i (t)
Pi(t)

.

(1)
where ωs

i (t), ωb
i (t) and ωc

i (t) are the weights given to re-
sources in different dimensions according to the player i’s
current resource usage states, and they are constrained by
ωs

i (t) + ωb
i (t) + ωc

i (t) = 1. As we discussed before, resource
usage in the bottleneck dimension should be given less value.
For simplicity, we define the weights to be inversely propor-
tional to the resource utilization ratio in the corresponding
dimension, as:

ωs
i (t) =

1
rs

i
(t)

sum 1
r
(t)

, ωb
i (t) =

1
rb

i
(t)

sum 1
r
(t)

, ωc
i (t) =

1
rc

i
(t)

sum 1
r
(t)

,

where sum 1
r
(t) = 1

rs
i
(t) + 1

rb
i
(t)

+ 1
rc

i
(t) .

The bargain process is based on the players’ own evalua-
tion of VMs. Whenever comes a “win-win” situation within
resource constraints, i.e. the exchange of commodities leads
to an increase of both players’ utilities:

u(i)− u(d) =
∑

k∈M′
i

V k
i (t)−

∑
k∈Mi

V k
i (t) > 0 AND

v(j)− v(d) =
∑

k∈M′
j

V k
j (t)−

∑
k∈Mj

V k
j (t) > 0,

the trade is done. Mi and Mj are the owned VM sets of
player i and j before commodities exchange, and M′

i and M′
j

are the owned VM sets of player i and j after commodities
exchange. Once the standard deviation σr of the trigger peer
falls below the threshold, the market is closed, which means
the VM migration algorithm is terminated. The VM migration
algorithm is summarized as Algorithm 1.

3) Implementation Issues: Towards a practical implemen-
tation, we briefly discuss the implementation concerns here.

. Lazy Response: Though migrating VMs have potential
benefits to improve resource utilization ratio, it does not
come without substantial upfront costs of bandwidth. An
example orchestration of live VM and storage migration on the
testbed through HARMONY shows the transaction throughput
drops around 11.9% during VM migration [4]. Application
performance may be affected severely by these live migrations,
which requires avoiding the migration activities as much as
possible. As a consequence, our VM migration algorithm re-
sponses lazily, i.e., it only starts when triggered and terminates
immediately when the utilization ratio is tolerable.

Algorithm 1 The VM Migration Algorithm.
1: Wait until a container i’s σr

i (t) > σthreshold. Container i
is the trigger peer.

2: According to the Player Selection Principle, the trigger
peer chooses another player j in the Bargaining game.

3: while σr
i (t) > σthreshold do

4: Player i and j compute the utilities of VMk,∀k ∈ M
according to Eqn. (1), and bargain with each other.

5: if u(i) − u(d) > 0 and v(j) − v(d) > 0 when
commodities exchange of k1 and k2 happens, then

6: Player i and j trade with commodities k1 and k2.
7: end if
8: end while

. Prioritization to Traffic: To further reduce the affection of
migration traffic to the productive work, prioritization can be
adopted. The VM migration traffic gets lower priority. They
can be deferring to other tasks, e.g., background transfer of
TCP Nice or be restricted to opportunistic usage, i.e., VM
traffic occurs only when the resource is idle [6].

. Algorithm Termination: In reality, it is possible that not
a single win-win situation happens between two players. It
is also possible that through several exchanging between two
players, the standard deviation of resource utilization ratios
of the trigger peer is still over the threshold. To ensure the
stability, a limit on the number of bargain round can be
added to the algorithm. When the number of bargain round
is achieved, the algorithm is forced to be terminated. Then the
trigger peer chooses the second proper player according to the
Player Selection Principle in the next execution period.

IV. EXPERIMENTAL EVALUATION

We dedicate this section to investigations of how the pro-
posed VM migration algorithm performs in practical scenarios.
The results validate that our VM migration algorithm increases
resource utilization successfully in container-based datacen-
ters.

The evaluation of the proposed VM migration algorithm
is based on its implementation in an event-driven simulator
using C++. We simulate in a system with 20 containers and
100 VMs. Every container has the same 2000 storage, 2000
Mbps bandwidth and 2000 MIPS CPU computing resource
capacities. For every container, resource in each dimension fail
at times according to a Poisson distribution, the mean of which
follows a normal distribution of N(30, 10) among containers.
The amount of resource failures of each container at every
time follows a uniform distribution of U(1, 50). Different
resources required by individual VMs are generated according
to a normal distribution of N(25, 10), with restriction of
range between 1 and 100. We set σthreshold, the threshold
of standard deviation of resource utilization ratios to trigger
the VM migration algorithm, to be 0.1.

Since our objective is to increase resource utilization ratio,
the main performance metric in this simulation is the standard
deviation of resource utilization ratios, which reflects the



5

0 20 40 60 80 1000.04

0.06

0.08

0.1

0.12

0.14

Index

St
d.

 D
ev

. o
f P

la
ye

r 1

 

 
Before
After

Fig. 2. Standard deviation of re-
source utilization ratios of Player 1
(trigger peer).

0 20 40 60 80 1000

0.05

0.1

0.15

0.2

0.25

Index

St
d.

 D
ev

. o
f P

la
ye

r 2

 

 
Before
After

Fig. 3. Standard deviation of re-
source utilization ratios of Player 2.

0 20 40 60 80 1000

0.05

0.1

0.15

0.2

Index

Av
er

ag
e 

of
 S

td
. D

ev
. o

f T
wo

 P
la

ye
rs

 

 
Before
After

Fig. 4. The average of standard de-
viation of resource utilization ratios
of two players.

0 20 40 60 80 100

100

101

102

Index

Ba
rg

ai
ni

ng
 O

ve
rh

ea
d

 

 

Successful Bargains
Total Tried Bargains

Fig. 5. The communication and
transmission overhead of bargain.

balanced level of resource usage in different dimensions.
Besides, we also show the bargaining overhead from the
implementation point of view. We collect 100 samples by
running the VM migration algorithm.

A. Overall Performance of the VM Migration Algorithm

First, we would like to show the overall performance of
the VM migration algorithm. From Fig. 2, we can observe
that the standard deviation of resource utilization ratios of the
trigger peer is successfully decreased below the threshold after
running the algorithm. This shows the effectiveness of the
VM migration algorithm to lessen the pressure of resource
under-utilization put by imbalance usage among different
dimensions.

It is critical to point out that there are some cases that the
standard deviation of Player 2 appears higher than without
running the VM migration algorithm, which is indicated in
Fig. 3. The reason is that by improving the trigger peer’s
performance, sometimes it is required to sacrifice the other
container’s performance a little bit, so that the overall perfor-
mance is improved. As shown in Fig. 4, the average of the
standard deviation of resource utilization ratios is improved
evidently.

B. Bargaining Overhead

To investigate the communication and transmission over-
head incurred by bargain, we show how many tried bargaining
rounds and actual trades are needed to lower the resource
utilization ratios of all the containers to a tolerable balanced
situation. As shown in Fig. 5, in most cases the algorithm
terminates within dozens of bargain rounds, which implies
the communication overhead is acceptable. It also reveals that
in 80% of all the samples only 1 trade is needed. While
sometimes it may require 2− 3 successful trades between the
two players, at most this number will not exceed 5, which
suggests that the transmission overhead is pretty satisfying.

V. CONCLUDING REMARKS AND FURTHER WORK

Our focus in this paper is to fully utilize resources in
container-based datacenters via VM migration. Before describ-
ing the VM migration algorithm, we propose a new application
placement strategy based on Buffet principle, which advocates
to use the resources aggressively. In contrast to having a

centralized controller, we present the VM migration algorithm
in a peer-to-peer fashion regulated by bargaining behaviors
between containers. Relying on the inherent self-organized
manner of bargaining games, the proposed VM migration
algorithm is effective, with low management complexity. Re-
source utilization ratio can be increased locally by bargaining
behaviors between two peers to increase their own utilities.
As shown by experiment results, the proposed VM migration
algorithm enjoys substantial improvement with respect to the
resource utilization ratio.

We believe that this work represents the first step towards
raising resource utilization ratios in container-based datacen-
ters. There are many other interesting topics worth discussing.
For example, what is the best routing maps for VMs to “maxi-
mize” resource utilization ratios; how much is the performance
gap between our bargaining solution and the optimal one, and
so on. For the proposed VM migration algorithm, adopting
trading strategies in some multiplayer bargaining games rather
than the two-player bargaining game might obtain higher
resource utilization. We defer these investigations to our future
work.

REFERENCES

[1] [Online]. Available: http://searchdatacenter.techtarget.com/sDefinition/0,
,sid80 gci1306761,00.html

[2] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The Cost of
a Cloud: Research Problems in Data Center Networks,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, 2009.

[3] M. Korupolu, A. Singh, and B. Bamba, “Coupled Placement in Modern
Data Centers,” in Proc. IEEE International Symposium on Parallel &
Distributed Processing (IPDPS), 2009, pp. 1–12.

[4] A. Singh, M. Korupolu, and D. Mohapatra, “Server-Storage Virtual-
ization: Integration and Load Balancing in Data Centers,” in Proc. of
ACM/IEEE Conference on Supercomputing (SC), 2008, pp. 1–12.

[5] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 4,
pp. 51–62, 2009.

[6] R. R. Ratul Mahajan, Jitendra Padhye and B. Zill, “Eat All You Can in
an All-You-Can-Eat Buffet: A Case for Aggressive Resource usage,” in
Proc. 7th ACM Workshop on Hot Topics in Networks (Hotnets), 2008.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 29–43, 2003.

[8] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “BCube: A High Performance, Server-centric Network Architecture
for Modular Data Centers,” in Proc. ACM SIGCOMM, 2009, pp. 63–74.

[9] J. Nash, “The Bargaining Problem,” Econometrica, vol. 18, no. 2, pp.
155–162, 1950.


