A Case for Fine Grained Traffic Engineering in Data Centers

Theophilus Benson*, Ashok Anand*, Aditya Akella*, Ming Zhang+

*University of Wisconsin, Madison
+Microsoft Research
Why are Data Centers Important?

- IM: low B/W, loose latency
- Multimedia: low B/W, strict latency
- Games: high B/W, strict latency
Outline

• Background
• Traffic Engineering in data centers
• Design goals for ideal TE
• MicroTE
• Conclusion
Options for TE in Data Centers?

• Current supported techniques
 – Equal Cost MultiPath (ECMP)
 – Spanning Tree Protocol (STP)

• Proposed (ECMP based)
 – Fat-Tree, VL2

• Other existing
 – TEXCP, COPE,…, OSPF link tuning
Properties of Data Center Traffic

- Flows are small and short-lived [Kandula et al., 2009]
- Traffic is bursty [Benson et al., 2009]
- Traffic is unpredictable at 100 secs [Maltz et al., 2009]
How do we evaluate TE?

• Data center traces
 – Cloud data center
 • Map-reduce app
 • ~1500 servers,
 • ~80 switches
 • 1 sec snapshots for 24 hours

• Simulator
 – Input:
 • Traffic matrix, Topology ,Traffic Engineering
 – Output:
 • link utilization
Draw Backs of Existing TE

- STP does not use multiple path
- ECMP does not adapt to burstiness
Draw Backs of Proposed TE

- Fat-Tree
 - Rehash flows
 - Local opt. != global opt.

- VL2
 - Coarse grained flow assignment

- VL2 & Fat-Tree do not adapt to burstiness
Draw Backs of Other Approaches

- TEXCP, COPE OSPF link tuning

- Unable to react fast enough (below 100 secs)
Design Requirements for TE

• Calculate paths & reconfigure network
 – Use all network paths
 – Use global view
 – Must react quickly

• How predictable is traffic?
Is Data Center Traffic Predictable?

• YES! 33% of traffic is predictable
How Long is Traffic Predictable?

• TE must react in under 2 seconds
MicroTE: Architecture

- Based on OpenFlow framework
- Global view:
 - created by network controller
- React to predictable traffic:
 - routing component tracks demand history
- All N/W paths:
 - routing component creates routes using all paths
Routing Component

- Step 1: Determine predictable traffic
- Step 2: Route along rarely utilized paths
 - Currently use LP
 - Faster Algorithm == future work
- Step 3: Set ECMP for other traffic
- Step 4: Return routes
Routing Component

New Global View

Determine Predictable ToRs

Calculate Network Routes for predictable traffic

Set ECMP for unpredictable traffic

Add Network View to History

Significant Change in Routes?

Yes

Return Calculated Routes

No

Return Nothing

Now: Use LP
Future: Use heuristic
Tradeoffs: Monitoring Component

- Switch based
 - Low complexity
 - High overhead

- End-host based
 - Low overhead
 - High complexity
Preliminary Evaluation

- Outperforms ECMP
- Slightly worse than optimal
Conclusion

• Study existing TE
 – Found them lacking (15-20%)

• Study data center traffic
 – Discovered traffic predictability (33% for 2 secs)

• Guidelines for ideal TE

• MicroTE
 – Implementation of ideal TE
 – Preliminary evaluation
Thank You

• Questions?