EUROPA: Efficient User-Mode Packet Forwarding in Network Virtualization

Yong Liao, Dong Yin, Lixin Gao Univ. of Massachusetts, Amherst

Network Virtualization Platform

- Concurrent virtual networks running in the same substrate
 - VINI, Trellis, VRouter
 - NP, NetFPGA
- Requirements for such a platform
 - Flexibility & isolation
 - Performance

- Blue virtualized network

Achieving the Design Goal

- Flexibility and isolation
 - User mode virtual router
- High-performance is challenging
 - Slow forwarding in VM
 - Overhead of running in user mode
- Solution
 - Efficient forwarding in user mode VM

Causes of Slow User Mode Forwarding

Overhead

- Copying packets between kernel and user space
- Invoking system calls

Quantify the Overhead

2.66G CPU

System call	Send packet	Receive packet
CPU cycles	3,000	3,400

Copying 64-byte packet

Memory copy	Copy to user	Copy from user
CPU cycles	160	140

- Overall overhead
 - -6,700 cycles per packet
 - No more than 400kpps in a 2.66G CPU

Avoiding the Overhead

- Packet copying
 - Sharing buffer between kernel and user space virtual routers
- System calls
 - Kernel and user space virtual routers asynchronously access packet buffer
 - A "state" flag for each packet as mutex

Related Work in Improving I/O Performance

- Zero-copying schemes
 - Widely studied in OS community
 - Have not applied to virtual routers
- Polling for packets
 - Waiting for packets is expensive
 - Example: Click polling mode

Europa Architecture

- Slicing server into VMs (OpenVZ)
 - VR data plane running in VM
- Shared packet pools (mmap mechanism)

One for each VR

- Europa kernel
 - One module serving for all VRs

Europa Kernel Module

- Receiving packet
 - Classifying
 - Moving to VR's pool
 - Writing index in rx ring
 - Changing packet state
- Sending packet
 - Reading index in VR's tx ring
 - Polling packet state
 - Sending out via NIC

Europa Virtual Router

- Receiving packet
 - Reading index from VR's rx ring, polling packet state
- Processing packet
 - "In-place" processing
- Sending packet
 - Writing an index into VR's tx ring, changing packet state

Prototyping Implementation

- Hardware
 - Workstation PC with: 2.66G Core2 Duo CPU, 4G memory, Intel E1000 Gbit NIC
- Virtualization: OpenVZ
- Kernel module
 - Kernel Click: interact with NIC, classify packets, copy packets to VM's shared buffer
 - Multi-threaded Click
- User module
 - User Click: process packet in an in-place manner

Evaluation: UDP Experiments

Forwarding 64-byte UDP packets

- (a) small forwarding table
- (b) large forwarding table
- Europa matches kernel Click

Evaluation: TCP Experiments

TCP throughput

Scalability of Europa

Multiple VRs concurrent forwarding

- More VRs, slower aggregate speed
 - Multi-core CPU

Pool Size vs. Forwarding Performance

Two concurrent VRs

Speed is not sensitive to buffer size

Conclusion and Future Work

- Poor performance of conventional user mode packet processing
- Flexibility benefits of processing packet in user mode
- Europa achieves both flexibility and performance goal in virtual network
- Adaptive polling packets as future work

Packet Forwarding in Europa

