

The "Platform as a Service" Model for Networking

Eric Keller, Jennifer Rexford
Princeton University

INM/WREN 2010

Hosted Infrastructures

- Shift towards hosted and shared infrastructures
 - Cloud computing

- Benefits:
 - Dynamically scale up/down
 - Cost benefits

Hosted Network Infrastructure

- Poised to happen for networking
- Similar benefits
- Additional driver: in-network inaccessibility

Old News

- I'm not the first to believe this
- Large body of research in Network Virtualization
 - Run multiple virtual networks concurrently on a shared infrastructure

That's the Wrong Approach

- Instead... abstraction should be a platform
 - Customers can focus on their application/service
- "Single Router Platform"

What's the problem with network virtualization?

Undesirable Business Model (for infrastructure provider)

End Users

Applications

Builds application which uses in-network functionality (e.g., Virtual Worlds provider using a multi-cast service)

Service Providers Leases slices of virtualized routers to create network Runs custom software/protocols/configurations (e.g., a multi-cast or reliable connectivity)

Infrastructure Providers

Owns and maintains physical routers/links

Undesirable Business Model (for infrastructure provider)

Lea

Rui

(e.c)

End Users

Applications

Service Providers

Infrastructure Providers

Builds application which uses in-network functionality

(e.g. Vintual Warlelan revident vainare moulti-acet compiles)

Commodity Service

(unappealing to traditional ISPs)

Owns and maintains physical routers/links

Difficult to Manage (for application providers)

- Same as managing physical network
 - Traffic engineering
 - Configuring a distributed collection of routers
 - Deal with failure
 - Managing resources to meet demand

Yes, but won't service providers deal with that?

Limited Market Opportunity (for service providers)

- Applications just want some control
 - Either service provider provides it or develop themselves
- Services must be general to have a large market
 - Are there really that many generic services?
- Don't count on infrastructure providers
 - That's today's model

If not network virtualization, then what?

Cloud Computing Landscape

- Infrastructure as a Service (laaS)
 - -e.g., Amazon EC2, Rackspace Cloud
 - Abstraction is managing set of virtual machines
 - Freedom: run any software you want
 - Effort: manage redundancy, all software
- Platform as a Service (PaaS)
 - -e.g., Google App Engine, Heroku
 - Write application using libraries and without worrying about actual servers
 - Freedom: tied to specific platform capabilities
 - Effort: apps scale automatically, build on the platform
- (And everything in between)

Key Differences(why laaS makes sense for computing)

- Compute:
 - Legacy applications
 - Workflow used to writing applications on servers
- Network:
 - Limited developer community
 - Not the end application

Goal

Platform enabling in-network functionality, without having to manage a network

The Router Platform (PaaS)

- Present customers (application developers) with platform
 - Decoupled from physical infrastructure
 - Customers can focus on their application/service
 - Infrastructure owner has freedom in managing the infrastructure

The Single Router Abstraction

- Router abstraction covers functionality, doesn't bother with physical infrastructure
 - Router more than just routing
- Note: this is preliminary thinking

Interactive Program

- Customer provides executable script (rather than static configuration file)
 - Initialization routine
 - Dynamic modification to configuration
 - Driven by events (control message, event notification)

Routing

- Specify sessions with neighboring routers
 - Customer's routers or infrastructure provider's neighbors
- Know what links are available
 - Interface to query, metrics, callback when change

Data Plane

- Direct configuration of data plane functions
 - Setting up multi-cast groups, access control lists, etc.

General-Purpose Processing

- As name suggest, can be anything
- Can be written by customer as well

Customer Controlled Routing

ISP chooses one route, no choice to customers

Customer: Configure Router in ISP

Cloud Computing

laaS offerings give you servers and connectivity

Customer: configure middlebox (firewall, load balancer), VPN, route selection

Gaming/Live Video Streaming

Limited ability to setup multi-cast, perform update aggregation

Customer: configure router to manage multi-cast group, add custom software

Gaming/Live Video Streaming

Limited ability to setup multi-cast, perform update aggregation

Customer: configure router to manage multi-cast group, add custom software

Challenge: The Physical Reality

Challenge: The Physical Reality

Physical Infrastructure is Distributed

Challenge: The Physical Reality

- Physical Infrastructure is Distributed
- Physical Infrastructure is Shared

Distributed Router Workload

- Network virtualization specify exact topology
- Single router platform specify work to be done

- Leeway to distribute this workload
 - Some tied to physical router (e.g., BGP session)
 - Some can be replicated (for latency or to handle work)
 - Configure "inter-processor communication"

Dynamically Adjust Distribution

- Estimates are used to choose how to distribute
- Monitor the routers
 - -CPU, update freq., traffic
- Re-distribute workload as necessary
 - -e.g., migrate BGP session
 - -e.g., add replicated instances
 - -Comes at cost

Shared Infrastructure

- Virtualization is part of solution
- Routing sessions can be shared
 - Tag message, process it, send out based on tag

Conclusion

- Shift towards hosted and shared infrastructure
 - Can help management of private infrastructures
- Worth exploring an alternate to the laaS model
- Some challenges in the single router platform

Questions?

Contact info:

ekeller@princeton.edu

http://www.princeton.edu/~ekeller