Beyond the Best: Real-Time Non-Invasive Collection of BGP Messages

Stefano Vissicchio
Luca Vergantini

Luca Cittadini
Valerio Mezzapesa

Maurizio Pizzonia
Maria Luisa Papagni

Dipartimento di Informatica e Automazione, Universita degli Studi Roma Tre, Rome, Italy
{vissicch,ratm,pizzonia,verganti,mezzapes,papagni} @dia.uniroma3.it

Abstract

Interdomain routing in the Internet has a large impact
on network traffic and related economic issues. For this
reason, BGP monitoring attracts both academic and in-
dustrial research interest. The most common solution for
collecting BGP routing data is to establish BGP peerings
between border routers and a route collector.

The downside of this approach is that it only allows
us to trace changes of routes selected as best by routers:
this drawback hinders a wide range of analyses that need
access to all BGP messages received by border routers.

In this paper, we present an effective technique en-
abling fast, non-invasive and scalable collection of all
BGP messages received by border routers. By selectively
cloning BGP traffic and sending it to a remote monitor,
we are able to collect BGP messages without establishing
additional BGP peerings. Our technique does not require
any new feature to be implemented by routers and we ex-
perimentally show that our approach incurs a negligible
processing overhead at the border routers. Our prototype
implementation is able to process and archive all BGP
messages in near real-time on commodity hardware.

1 Introduction

The Internet provides connectivity among a great num-
ber of Internet Service Providers (ISPs) that exchange
routing information via the Border Gateway Protocol
(BGP) [21]. For inter-domain traffic, BGP has the fi-
nal say on routing decisions and BGP messages received
from neighboring ISPs can have a dramatic impact on the
service actually provided by an ISP.

BGP monitoring enables ISPs to perform business-
critical activities like troubleshooting and anomaly de-
tection [18, 22]. Recently, it has been shown that BGP
data can be exploited for business intelligence [14], traf-
fic engineering [5], root cause analysis [8, 12], oscillation
detection [10, 13], routing table analysis [16] and agree-
ment compliance verification [11].

Despite such a rich set of potential applications, cur-
rent BGP monitoring practices are quite limited: very of-
ten, they employ open source BGP daemon implementa-
tions to establish extra BGP peerings with border routers.
The daemon acts as a route collector, in the sense that
it collects information received via those extra peerings,
dumps it in some format, and stores it for future analy-
ses. For example, this is the approach adopted by Route-
Views [20] to collect BGP data for the Internet commu-
nity. Such a practice has two major drawbacks: (i) it is
only able to collect those routes that have been selected
as best by the routers that peer with the collector; and
(ii) it is only able to collect BGP messages after ingress
policy application, which can modify the messages.

Unfortunately, these drawbacks prevent exploiting the
monitoring system for interesting applications like fine
tuning of ingress policies, verification of Service Level
Agreements and analysis of what-if scenarios [9]. Re-
cently, the BGP Monitoring Protocol [23] has been pro-
posed to overcome those limitations, but it is still exper-
imental and requires software support on the routers.

In this paper we present a practical approach en-
abling real-time, non-invasive and scalable collection of
all BGP messages received by BGP border routers. For
this purpose, we exploit a usually overlooked feature that
allows a router to selectively clone IP packets and send
them to a remote collector. We make use of such a fea-
ture to copy every incoming TCP segment belonging to
BGP sessions. After possibly reordering out-of-order
segments, our collector parses the BGP messages and
stores them in the standard MRT format [6].

By means of experimental evaluation on one of the
cheapest commercial routers targeted to ISPs, we show
that deploying our solution negligibly affects the perfor-
mance of border routers with respect to traffic forward-
ing throughput, packet latency and router CPU usage.
We show that our prototype implementation can monitor
hundreds of BGP routers on commodity hardware. We
also check the accuracy of the collected data. Finally, by

comparing our approach to existing solutions, we show
that our solution better fulfills the requirements we iden-
tify for an ideal monitoring system.

We also believe that the same approach can be adopted
to monitor other signaling protocols. In this light, we
consider this paper as a first step towards a centralized
monitoring solution for the whole control plane.

The rest of this paper is organized as follows. In Sec-
tion 2, we define the requirements we mandate for an
ideal BGP monitoring system. In Section 3, we de-
scribe our proposal for a BGP monitoring system, out-
lining its architecture and discussing the most relevant
components. Then, based on the requirements defined
in Section 2, we evaluate our technique (Section 4) and
we compare it with existing solutions (Section 5). We
conclude in Section 6.

2 Requirements for a BGP Monitor

In this section, we describe a set of requirements that a
BGP monitoring system should ideally fulfill.

Collection of non-best routes updates. BGP routers
select a single best route among a set of candidates. Al-
though non-best routes have no impact on where packets
are forwarded, keeping track of them allows an ISP to
better engineer its traffic and analyze what-if scenarios.

Policy independent data collection. An ideal col-
lection system should reconstruct the original BGP mes-
sages as sent by neighboring ISPs, without being affected
by the locally configured policies. This allows ISPs to
decouple BGP data from BGP policies, so that policy
changes cannot affect the consistency of historical data.

Real-time data collection. A BGP monitoring system
should be able to collect data in real-time, or at least in
near real-time. That is, a BGP update should be available
for applicative analysis within few seconds.

Low impact on router resources. A typical con-
straint on management systems is to have a small im-
pact in terms of extra resource demand (e.g., CPU usage,
throughput and bandwidth) on the network infrastruc-
ture. This is especially true for BGP monitoring, given
that BGP border routers typically have to forward huge
amounts of traffic.

Cost-efficient deployment. To be realistically de-
ployable in large networks, the monitoring system should
be able to handle hundreds of border routers employing
few machines equipped with commodity hardware.

3 Proposed Architecture

In this section we propose an architecture for a BGP
monitoring system that aims at satisfying all the require-
ments listed in Section 2. The main idea is to mandate

Clone incoming
BGP packets and
send them to the
Route Collector

eBGP peerings \ \

m/_‘ (== BR1

Cloned BGP'

prlvate
eBGP peermg l
CIonea"~ Trafﬁc S/
BGP Traffic ‘
Decode packets
and reconstruct Route
BGP sessions Collector

Figure 1: A deployment scenario of the proposed moni-
toring system.

border routers to capture all the incoming TCP segments
belonging to BGP sessions with eBGP peers and forward
them to a remote route collector. The route collector is
responsible for reassembling the TCP segments, decod-
ing BGP messages and storing them in MRT format [6].
We show that this technique can be implemented using
a feature commonly available on routers together with
ad-hoc software employed on the collector side.

Fig. 1 depicts the architecture of our solution in a typ-
ical deployment scenario. In this example, ISP A con-
figures its border routers BR1 and BR2 to clone BGP
packets and send copies to a remote Route Collector.
Since packet cloning is performed before applying local
policies, the route collector will receive BGP messages
exactly as they are sent by eBGP peers. This feature al-
lows ISP A to monitor what routes are announced by its
peers B, C, and D. Of course, this approach supports
private peerings between ISPs as well as peerings at pub-
lic Internet exchange points (IXPs).

Fig. 1 highlights the role of the two main architectural
components: the border router (BR) and the route collec-
tor (RC). We now provide details on each component.

3.1 Border Routers: Cloning BGP Traffic

The majority of ISP-targeted commercial routers pro-
vides the feature to clone IP packets and send copies to a
remote machine. This is mostly used for copying traffic
to Intrusion Detection Systems [3]. Leading vendors also
provide filtering capabilities that allow operators to spec-
ify which packets must be cloned. To maintain a vendor-
independent terminology, we will refer to this feature
as Selective Packet Cloning (SPC). An SPC-enabled BR
copies the packets received from user-specified source
interfaces and matching an optional filter to another in-
terface, which we call destination interface.

Depending on the capabilities of the device, a destina-

RITE Configuration Steps
Step 1 - Define a filter to select BGP traffic

7201 (config) #access—-1list 100 permit
tcp any any eq bgp

Step 2 - Define a destination interface
7201 (config) #ip traffic-export profile myPr

7201 (config-rite) #interface vlanl
7201 (config-rite) #incoming access-list 100
mac-address <addr>

Step 3 - Select one or more source interfaces
7201 (config) #interface ge0/0
7201 (config-if) #ip traffic-export apply myPr

Figure 2: Steps for configuring SPC on Cisco routers.

tion interface can be either a physical interface (e.g., an
Ethernet interface), a VLAN interface (via 802.1q encap-
sulation), or a tunnel interface (e.g., [P-in-IP encapsula-
tion or Generic Routing Encapsulation).

We now briefly describe the SPC feature as imple-
mented in Cisco and Juniper devices. The cheapest
Cisco devices targeted to ISPs (e.g., Cisco 7200 and 7300
routers) provide the Router IP Traffic Export (RITE) fea-
ture [3]. A RITE-enabled router can select packets re-
ceived on certain interfaces applying IP- and TCP-based
filters, and forward cloned packets over a VLAN in-
terface. More expensive Cisco routers (i.e., 7600 se-
ries or greater) support the Encapsulated Remote SPAN
(ERSPAN) feature [1], which provides a superset of the
functionalities offered by RITE, e.g., the possibility to
forward cloned traffic over a tunnel. Both RITE and
ERSPAN can be used to implement the SPC feature on
Cisco devices. Juniper’s SPC support is called Port Mir-
roring [2]. Traffic received via user-specified ingress in-
terfaces can be cloned and forwarded over a VLAN or a
tunnel (IP-in-IP or GRE) interface.

Enabling SPC feature on BRs requires a very small
amount of extra configuration. For example, Fig. 2
shows how to configure RITE on Cisco routers. Steps 1
and 2 only need to be performed once, while Step 3 has
to be repeated for each of the BR’s interfaces used for
eBGP peerings.

3.2 Route Collector: Receiving, Recon-
structing, and Storing BGP messages

Cloned TCP segments are sent from BRs to the RC
which decodes and stores BGP messages. The RC per-
forms the following activities.

Packet reception. The RC receives cloned packets
and buffers them for further elaboration.

TCP stream reconstruction. Since the RC does not
establish a TCP session with the BR, cloned TCP seg-
ments might arrive out of sequence. Therefore, for each

ISP's
BGP router isco 7201
@ = | |
7 —
Medium i v\ Route Collector
Sized ISP
Legend EEEEEEEN Traffic
Generator

Test traffic flow
Test traffic flow (opposite direction)
Real world updates over iBGP peerings
—_— Cloned TCP segments over a VLAN

Figure 3: Testbed topology.

eBGP peering the RC needs to reorder packets to extract
the TCP stream. Duplicated segments are discarded. To
keep resource consumption at the BR as low as possible,
the RC silently ignores lost cloned TCP segments, if any.

BGP message decoding. The reconstructed TCP
stream is analyzed to decode BGP messages and infer
BGP session state changes.

BGP message storing. BGP messages and inferred
state changes are stored (e.g., in MRT format [6]).

We developed a prototype RC that is based on the
standard t cpdump utility for receiving cloned packets.
We used nice to schedule the receiving process with
high priority, and then send the received packets to a
Perl script that is able to perform TCP stream reconstruc-
tion in pipeline. Finally, another Perl script takes the re-
constructed stream in input and writes BGP messages in
MRT format on a file.

4 Evaluation

In this section, we evaluate performance, accuracy and
scalability of the proposed monitoring system.

In all the experiments we ran, we found that no cloned
packet was dropped and BGP messages were always
correctly reconstructed and stored on disk. Hence, we
focus on the performance degradation at the BRs and on
the scalability of the RC component.

We evaluate the router load in terms of frame loss
(throughput), average CPU usage, and average packet la-
tency. In our experiments, we used a Cisco 7201 router,
referred to as device-under-test (DUT) in the following.
The router is equipped with four Gigabit Ethernet ports,
1 Gigabyte of RAM, and a 1.67 GHz Motorola Freescale
7448 processor. We chose the Cisco 7201 because it is
considered one of the cheapest router targeted to ISPs.

4.1 Performance of Border Routers

The network topology for our tests on BRs is depicted
in Fig. 3. The DUT was connected to a traffic gener-

ator (a SmartBits 600B) using two interfaces. We use
the traffic generator for stressing the router with high
amounts of traffic (200 bidirectional IP flows) that the
router handles using routes learned via BGP (using third-
party next-hop).

On the third interface of the router, we set up five iBGP
peerings, each providing a real-world update stream from
a medium sized ISP announcing the full routing table
(about 310, 000 prefixes). Namely, we interposed BGP
daemons between DUT and the ISP, in order to amplify
the original stream five times, as shown in Fig. 3.

We configured SPC such that incoming traffic belong-
ing to the BGP peering was cloned on the fourth interface
of the router over a VLAN. A packet sniffer was attached
to the same VLAN and acted as a RC.

In this setting, the router was able to route packets with
a negligible frame loss (less than 0.01%) for traffic up to
60% of the maximum packet rate obtainable on a full-
duplex Gigabit Ethernet. Higher packet rates resulted in
many more dropped frames. For this reason, we do not
report results of tests made for higher packet rates.

We measured packet loss, average CPU usage and av-
erage latency at increasing packet rates. We ran tests both
with SPC enabled and disabled and compared the results.

Fig. 4 reports the results of our tests. The y-axis shows
the difference (in percentage) between the performance
of the router when SPC is enabled with respect to when
it is disabled. The x-axis represents packet rate. It is easy
to see that activating the SPC feature essentially has no
impact on the frame loss and on the average latency. The
worst latency we recorded was 375 pseconds with SPC
enabled and 301 pseconds with SPC disabled.

Differences for CPU load are small and highly depen-
dant on the presence of BGP bursts. Anyway, activating
SPC never affected CPU load for more than 2%.

We also ran a 5 minutes experiment sending traffic at
a constant packet rate (45% of the maximum packet rate)
while tearing down and bringing up the five iBGP peer-
ings every minute, in order to generate huge BGP update
bursts. Even under this extremely heavy load, the router
dropped less than 0.005% of packets. More details can
be found in [9].

4.2 Performance of the Collector Software

To assess the amount of resources required on the RC
side, we captured five BGP sessions during the initial full
table transfer (nearly 1.5 million prefix updates, 37,157
TCP segments, most of them of the maximum length).
We separately measured the processing time needed for
receiving the packets, reconstructing the TCP stream, de-
coding BGP messages and storing them in MRT format
on commodity hardware (a laptop equipped with a dual-
core 2.6 GHz CPU and 4G of RAM). We stress that

4%

T T
o frame loss —+—
o average latency -
9D 3% - average CPU usage —*—
Y

3

o 2% ¥

=}

©

£

§ W %

<

o

g 0% ek

L) S

° N

I3 "

e -1% Koo

[

£

£

g 2% |

[

o

3%
20% 25% 30% 35% 40% 45% 50% 55% 60%
Packet rate (% of maximum packet rate)

Figure 4: Performance degradation induced by SPC.

summing the measures we obtained in this experiment
provides an upper bound on the performance that can be
achieved by a RC, since processing times can be greatly
enhanced by enabling pipelining and parallel processing.

We re-played the capture file with tcpreplay us-
ing the topspeed option on a 100Mbit ethernet link con-
nected to our prototypical RC. Actual throughput was
about 80Mbit/sec, much higher than the throughput of
regular BGP sessions. Re-playing the capture file with
tcpreplay took 3.38 seconds, while originally the
BGP sessions lasted more than 2 minutes. A regular BGP
session can reach such a high speed just sporadically.
Even in this extreme experiment, we were able to capture
all the packets with t cpdump and store them to an out-
put file. TCP stream reconstruction from the output file
took 2.6 seconds, while BGP session decoding and stor-
age in MRT format took 1.7 seconds. Overall, a single
prefix update was processed in less than 5.23 pseconds
on average. Given that real world BGP sessions exhibit
an average of less than 100 prefix updates per second, our
prototype implementation can handle hundreds of BRs
on commodity hardware. Of course, multiple RCs can
be installed in the same network. However, given the
performance of our prototype, we expect that even tier-1
ISPs need one or few collectors.

5 Related Work

Two naive approaches for BGP monitoring can be en-
abling debug option on router devices and installing op-
tical taps and ad-hoc filtering boxes near each BR. How-
ever, debugging output stream “might render the system
unusable” [4]. On the other hand, installing an optical
tap and a dedicated filtering box for each optical fiber of
each BR would be too expensive.

Existing approaches can be broadly classified in two
categories: those employing some kind of route col-

lectors to which BGP messages are pushed by border
routers, and those adopting separate protocols to pull
BGP information from the routers.

The typical architecture of a BGP monitoring sys-
tem belonging to the first category essentially consists
in a route collector, deployed inside the network, that
is configured to maintain iBGP peerings with every BR.
Quagga [17], OpenBGPd [7] and PyRT [19] are probably
the most famous and widespread tools to set up a route
collector this way.

BGP monitoring systems based on separate manage-
ment protocols are designed to pull information from
routers. In particular, SNMP has a number of MIB ob-
jects that are dedicated to BGP monitoring activities [15].
Often, operators pull information by screen scraping,
i.e., using software that connects to the device, e.g., via
Telnet or SSH, issues a specific command, e.g., show
ip bgp, and collects the output.

Recently, a new ad-hoc protocol has been proposed in
the IETF (the BGP Monitoring Protocol, or BMP) [23]:
it is based on the idea of sending received BGP messages
via a TCP connection with a monitoring station.

5.1 Comparison with Related Work

Table 1 summarizes the main differences between our ap-
proach and existing solutions. In the following, we dis-
cuss them in more detail.

Collection of Non-Best Routes Since Quagga, Open-
BGPd, and PyRT rely on an iBGP peering, updates for
routes that the BR does not select as best routes will
never be collected at the RC. Non-best routes can be
collected by screen scraping (e.g., via show ip bgp
queries), and there exist SNMP managed objects for ev-
ery route received. BMP and the solution we present
in this paper are currently the only way to continuously
monitor non-best routes.

Policy Independent Data Collection Quagga, Pyrt,
and OpenBGPd can only monitor routes selected as best,
and they are forced to collect BGP messages after ingress
policy application. On the contrary, polling-based mech-
anisms typically provide a way to gather BGP messages
as they are before BGP filters are applied (see [15] for
SNMP based mechanisms). Both BMP and our approach
also allow an ISP to collect policy independent data.

Real-Time Collection Solutions that employ addi-
tional iBGP peerings, such as Quagga, OpenBGPd and
PyRT, are, in principle, capable of collecting BGP mes-
sages in real time. However, if messages are dumped
periodically, additional delay is introduced before data
are available for an application to analyze. For example,
Quagga can dump BGP data not faster than one file per
minute. Real-time is of course unfeasible with SNMP
and other polling-based mechanisms: their usage is re-

stricted to periodic snapshots of BGP routes received by
BRs. The current BMP specification asserts that BMP
messages “are not real time replicated messages received
from a peer” [23]. Section 4 shows that our approach can
collect data in near real-time.

Low Impact on Router Resources Handling an iBGP
peering is a lightweight task for a BR, hence solutions
based on Quagga, OpenBGPd, or PyRT do not put stress
on routers. On the other hand, polling-based solutions
employing SNMP or screen scraping heavily affect the
performance at the BR, since it must process the whole
BGP table and send a snapshot to the monitor. Our exper-
imental tests show that our approach affects the perfor-
mance of the BR only minimally, see Section 4. We ex-
pect that also BMP has a low impact on router resources
in most of the cases. See Section 5.2 for a more detailed
comparison between BMP and our solution.

Cost efficient deployment Since Quagga and Open-
BGPd emulate a real router, CPU cycles and memory are
wasted at the route collector for activities that are use-
less to a BGP monitoring system, e.g., performing the
best route selection process. This makes them unable
to handle a large number of peers providing a full Inter-
net routing table. PyRT is not affected by this problem
since it only implements a minimal set of features, disre-
garding activities that are not relevant to the monitoring
system. Since SNMP and screen scraping have no real-
time constraint, a single monitor could be able to handle
hundreds of BRs. The performance study in Section 4.2
ensures that our approach and, reasonably, also BMP can
handle hundreds of BRs on a single RC.

5.2 Comparison with BMP

Section 5.1 highlights that only our approach and BMP
can reasonably be used in a monitoring system which
aims at satisfying all the requirements listed in Section 2.
However, BMP is not yet standardized and, currently,
only JunOS versions later than 9.5 support BMP.

The main technical difference between BMP and our
approach is that BMP relies on TCP while our solution
forwards packets from BRs to the RC over IP tunnels
or VLAN. Our solution is based on enabling SPC at the
BRs and does not need any additional daemon to be run.
SPC involves only switching capabilities (either software
or hardware) which are usually highly optimized. On
the contrary, BMP is not implementable using switching
mechanisms, must rely on conventional TCP implemen-
tation, and usually requires an additional daemon.

Adopting TCP, BMP guarantees reliable delivery of
copied BGP messages to the collector. However, it is
not clear what the router resource consumption would
be under extreme circumstances, e.g., when the RC tries
to slow down the BR by shrinking the TCP congestion

Quagga, OpenBGPd | PyRT SNMP BMP SPC
collection of non-best routes no no yes yes yes
policy independent data collection | no no yes yes yes
real-time data collection no no no almost yes
impact on router resources very low very low heavy very low very low
cost efficient deployment no yes yes yes yes

Table 1: Comparison between our solution and related work with respect to the requirements defined in Section 2.

window. Our proposal does not mandate the router to
maintain any state. Observe that RCs can easily check
whether some TCP segments are missing by analyzing
sequence numbers of cloned traffic.

Essentially, our approach pushes as much complexity
as possible to the collector. The benefits are twofold: on
one hand, a simpler router-side component results in pre-
cious resource savings; on the other hand, our solution is
easy to extend to monitor other control-plane protocols
than just BGP without requiring changes on routers.

6 Conclusions

We envision that enhanced BGP monitoring techniques
can allow ISPs to make better high-level economic
decisions about peerings and commercial agreements.
Within this context, ISPs could offer and buy new con-
nectivity services with Service Level Agreements that
involve BGP updates. To support the above scenario,
as well as better troubleshooting and other business in-
telligence analysis, we propose and evaluate an innova-
tive technique for real-time collection of all BGP mes-
sages sent by BGP peers. Through experiments, we show
that our approach accurately records the BGP updates re-
ceived, it is easy to configure on current routers, it is scal-
able, and it has a negligible impact on the performance of
the monitored border routers. As future work, we plan to
extend this approach to monitor other signaling protocols
and to deploy our solution in real networks.

Acknowledgements

We are especially grateful to the anonymous reviewers
for constructive and insightful comments. This work is
partially supported by the Italian Ministry of Research,
Grant number RBIPO6BZWS, FIRB project “Advanced
tracking system in intermodal freight transportation” and
under Project “ALGODEEP: Sfide algoritmiche per elab-
orazioni data-intensive su piattaforme di calcolo emer-
genti”, MIUR PRIN.

References

[1] Configuring local span, remote span (rspan), and encapsulated
rspan (erspan). Cisco Systems, Inc. Official Cisco ERSPAN doc-

(2]

[3]

(4]

(3]

(6]
(71
(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]
[21]

[22]

[23]

umentation.

Configuring port mirroring. Juniper Networks, Inc. Official Ju-
niper Port Mirroring Documentation.

Router ip traffic export packet capture enhancements. Cisco Sys-
tems, Inc. Official Cisco RITE documentation.

Using debug commands on cisco ios xr software. Cisco Systems,
Inc. Official Cisco IOS XR documentation.

BALON, S., AND LEDUC, G. Combined intra- and inter-domain
traffic engineering using hot-potato aware link weights optimiza-
tion. In Proc. SIGMETRICS (2008).

BLUNK, L., KARIR, M., AND LABOVITZ, C. MRT routing in-
formation export format. Internet-Draft, 2009.

BRAUER, H., AND JEKER, C. OpenBGPd. www.openbgpd.org.

CAMPISANO, A., CITTADINI, L., DI BATTISTA, G., REFICE,
T., AND SASSO, C. Tracking back the root cause of a path change
in interdomain routing. In Proc. NOMS (2008).

CITTADINI, L., MEZZAPESA, V., PAPAGNI, M., PIZZONIA,
M., VERGANTINI, L., AND VISSICCHIO, S. Beyond the best:
Real-time non-invasive collection of bgp messages. Tech. Rep.
RTDIA165-2010, Roma Tre Univ., 2010.

CITTADINI, L., RIMONDINI, M., COREA, M., AND DI BAT-
TISTA, G. On the feasibility of static analysis for BGP conver-
gence. In Proc. IM (2009).

FEAMSTER, N., MAO, Z. M., AND REXFORD, J. BorderGuard:
detecting cold potatoes from peers. In Proc. IMC (2004).
FELDMANN, A., MAENNEL, O., MAO, Z. M., BERGER, A.,
AND MAGGS, B. Locating Internet Routing Instabilities. In Proc.
SIGCOMM (2004).

FLAVEL, A., ROUGHAN, M., BEAN, N., AND SHAIKH, A.
Where’s Waldo? Practical Searches for Stability in iBGP. In
Proc. ICNP (2008).

GAO, L. On inferring autonomous system relationships in the
internet. IEEE/ACM Trans. Netw. 9, 6 (2001).

HAAS, J., AND HARES, S. Definitions of managed objects for
BGP-4. RFC 4273, 2006.

HUSTON, G. Analyzing the internet’s BGP routing table. The
Internet Protocol Journal 4, 1 (2001).

K. ISHIGURO AND ET AL. Quagga. www.quagga.net.

MAL J., YUAN, L., AND CHUAH, C.-N. Detecting BGP anoma-
lies with wavelet. In Proc. NOMS (2008).

MORTIER, R. PyRT. research.sprintlabs.com/pyrt.
OREGON ROUTEVIEWS PROJECT. www.routeviews.org.
REKHTER, Y., LI, T., AND HARES, S. A Border Gateway Pro-
tocol 4 (BGP-4). RFC 4271, 2006.

ROUGHAN, M., GRIFFIN, T., MAO, Z. M., GREENBERG, A.,
AND FREEMAN, B. IP forwarding anomalies and improving their
detection using multiple data sources. In Proc. SIGCOMM work-
shop on Network troubleshooting (2004).

SCUDDER, J., FERNANDO, R., AND STUART, S. BGP monitor-
ing protocol. Internet-Draft, 2009.

