Retroactive Detection of Malware with Applications to Mobile Platforms

Markus Jakobsson Karl-Anders Johansson
FatSkunk
Market forecast for mobile

• More smartphones than PCs in 2-3 years
 – Dominant platforms targeted
• 4G will fuel apps and mobile Internet use
 – M-commerce, M-voting, Parental Control, ...
• Phones are *personal*, have rich data
 – Social use makes users more vulnerable
• Power limitations stymie Anti Virus products
 – Power consumption increases with # threats
• Likely big threats:
 – Bluetooth viruses, (piracy) trojans, social malware
Trends: Faster, stealthier, smarter

kits, recompilers, polymorphism
malware often installs AV (limit competition)
produced by organized crime
Contrast: What the consumer wants

Undo
What makes this challenging

1. Malware masquerades and deceives
2. Malware will not allow itself be erased
3. Malware can catch interrupts
4. Malware can edit system calls/responses
5. *Malware is bad, will not cooperate*
Main principles

• To block detection, malware must be active.
• To be active, malware needs to be in RAM.
• RAM is faster than flash and radio.
1. Swap out all programs (malware may refuse)

Contact markus@fatskunk.com for more details incl. improvements.
1. Swap out all programs (malware may refuse)
2. Overwrite all “free” RAM pseudo-random content (malware refuses again)

Contact markus@fatskunk.com for more details incl. improvements.
1. Swap out all programs (malware may refuse)
2. Overwrite all “free” RAM pseudo-random content (malware refuses again)

Contact markus@fatskunk.com for more details incl. improvements.
1. Swap out all programs (malware may refuse)
2. Overwrite all “free” RAM pseudo-random content (malware refuses again)
3. Compute keyed digest of all RAM (access order unknown a priori)

Contact markus@fatskunk.com for more details incl. improvements.
1. Swap out all programs (malware may refuse)
2. Overwrite all “free” RAM pseudo-random content (malware refuses again)
3. Compute keyed digest of all RAM (access order unknown a priori)

Contact markus@fatskunk.com for more details incl. improvements.
1. Swap out all programs (malware may refuse)
2. Overwrite all “free” RAM pseudo-random content (malware refuses again)
3. Compute keyed digest of all RAM (access order unknown a priori)

Contact markus@fatskunk.com for more details incl. improvements.

External verifier provides this
1. Swap out all programs (malware may refuse)
2. Overwrite all “free” RAM pseudo-random content (malware refuses again)
3. Compute keyed digest of all RAM (access order unknown a priori)

External verifier will time this (and check result of computation)

Contact markus@fatskunk.com for more details incl. improvements.
Adversary wants to replace the legitimate monolith kernel F with a function F' s.t. $F'(x) = F(x)$ for all x, running in same amount of time, where F and F' do not hand over control to the same processes at the end of their execution.

Active malware agent can:
1. Send to flash (incurs delays)
2. Recompute contents (ow!)
3. Get external help (latency)
4. Do all correctly, then cause hand-over to wrong process
5. Agree to die / get detected

1-4 will fail

Contact markus@fatskunk.com for more details incl. improvements.
Some details

• Only requirement: know amount/type hardware
• Full use of caching (instruction + data)
• Strategy to maximize penalty for flash access
• Two adversarial models: external attacker or no
• SIM card can be used as low-latency timer

Contact markus@fatskunk.com for more details incl. improvements.
Some stats

- Variant implemented - takes <3s on 256MB, 600 MHz Android board
- Speedup for multi-core
- Detects *all* active malware – retroactively
- Provable security – no heuristics
- Suitable for mobile platforms
- Can be combined with a “secure rsync”

Contact markus@fatskunk.com for more details incl. improvements.