Task Superscalar: Using Processors as Functional Units

Yoav Etsion Alex Ramirez Rosa M. Badia Eduard Ayguade
Jesus Labarta Mateo Valero

HotPar, June 2010
Parallel Programming is Hard

- A few key problems of parallel programming:
 1. Exposing operations that can execute in parallel
 2. Managing data synchronization
 3. Managing data transfers

- None of these exist in sequential programming…

- …but they do exist in processors executing sequential programs
Sequential Program, Parallel Execution Engine

- Out-of-Order pipelines automatically manage a parallel substrate
 - A *heterogeneous* parallel substrate (FP, ALU, BR…)
- Yet, the input instruction stream is sequential *[Tomasulo’67][Patt’85]*

- The obvious questions:
 1. *How do out-of-order processors manage parallelism?*
 2. *Why can’t ILP out-of-order pipelines scale?*
 3. *Can we apply the same principles to tasks?*
 4. *Can task pipelines scale?*
Outline

- Recap: How do OoO processors uncover parallelism?
- The StarSs programming model
- A high-level view of the task superscalar pipeline
- Can a task pipeline scale?
- Conclusions and Future Work
How Do Out-of-Order Processors Do it?

- **Exposing parallelism**
 - Register renaming tables map consumers to producers
 - Observing an instruction window to find independent instructions

- **Data synchronization**
 - Data transfers act as synchronization tokens
 - Dataflow scheduling prevents data conflicts

- **Data transfers**
 - Broadcasts tagged data

- Input is a sequential stream: complexities are hidden from programmer
Can We Scale Out-of-Order Processors?

- Building a large instruction window is difficult
 (Latency related)
- Timing constraints require a global clock
- Broadcast does not scale, but latency cannot tolerate switched networks
- Broadcasting tags yields a large associative lookup in the reservation stations
- Utilizing a large instruction window
 - Control path speculation is a real problem, as most in-flight instructions are speculated
 (Not latency related!)
 - Most available parallelism used to overcome the memory wall, not exploit parallel resource
 (Back to latency…)
- But what happens if we operate on tasks rather than instructions?
Outline

• Recap: How do OoO processors uncover parallelism?

• **The StarSs programming model: Tasks as abstract instructions**

• High-level view of the task superscalar pipeline

• Can a task pipeline scale?

• Conclusions and Future Work
The StarSs Programming Model

- Tasks as the basic work unit
- Operational flow: a *master* thread spawns tasks, which are dispatched to multiple *worker* processors (aka the functional units)
- Runtime system dynamically resolves dependencies, construct the task graph, and schedules tasks
- Programmers annotate the directionality of operands
 - *input*, *output*, or *inout*
- Operands can consist of memory regions, not only scalar values
 - Further extends the pipeline capabilities
- Shameless plug: StarSs versions for SMPs and the Cell are freely available
The StarSs Programming Model

- Simple annotations
- All effects on shared state are explicitly expressed
- Kernels can be compiled for different processors

Intuitively Annotated Kernel Functions

```c
#pragma css task input(a, b) inout(c)
void sgemm_t(float a[M][M],
             float b[M][M],
             float c[M][M]);

#pragma css task inout(a)
void spotrf_t(float a[M][M]);

#pragma css task input(a) inout(b)
void strsm_t(float a[M][M],
             float b[M][M]);

#pragma css task input(a) inout(b)
void ssyrk_t(float a[M][M],
             float b[M][M]);
```

Example: Cholesky Decomposition
The StarSs Programming Model

- Code is seemingly sequential, and executes on the *master* thread
- Invoking kernel functions generates tasks, which are sent to the runtime
- s2s filter injects necessary code
- Runtime dynamically constructs the task dependency graph
- Easier to debug, since execution is similar to sequential execution

```c
for (int j = 0; j<N; j++) {
    for (int k = 0; k<j; k++)
        for (int i = j+1; i<N; i++)
            sgemm_t(A[i][k],
                    A[j][k], A[i][j]);
    for (int i = 0; i<j; i++)
        ssyrk_t(A[j][i], A[j][j]);
    spotrf_t(A[j][j]);
    for (int i = j+1; i<N; i++)
        strsm_t(A[j][j], A[i][j]);
}
```

Seemingly Sequential Code

Example: Cholesky Decomposition
The StarSs Programming Model

- It is not feasible to have a programmer express such a graph...

- Out-of-order execution

- No loop level barriers (a-la OpenMP) Facilitates distant parallelism

- Tasks 6 and 23 execute in parallel

- Availability of data dependencies supports relaxed memory models

- DAG consistency [Blumofe’96]

- Bulk consistency [Torrellas’09]
So Why Move to Hardware?

• Problem: software runtime does not scale beyond 32-64 processors
• Software decode rate is 700ns - 2.5us per task
• Difference is between Intel Xeon and Cell PPU
• Scaling therefore implies much longer tasks
• Longer tasks imply larger datasets that do not fit in the cache
• Hardware offers inherent parallelism
 • Vertical: pipelining
 • Horizontal: distributing load over multiple units
Outline

• Recap: How do OoO processors uncover parallelism?

• The StarSs programming model: Tasks as abstract instructions

• A high-level view of the task superscalar pipeline

• Can a task pipeline scale?

• Conclusions and Future Work
Task Superscalar: a high-level view

- Master processors send tasks to the pipeline
- Object versioning table (OVTs) are used to map data consumers and producers
 - Combination of a register file and a renaming table
- Task dependency graph is stored in multiplexed reservation stations
- Heterogeneous backend
 - GPUs become equivalent to a vector unit found in many processors
Result: Uncovering Large Amounts of Parallelism

- The figure shows the number of ready tasks throughout the execution.
- Parallelism can be found even in complex dependency structures.
- Cholesky, H264, Jacobi.
Outline

• Recap: How do OoO processors uncover parallelism?
• The StarSs programming model: Tasks as abstract instructions
• A high-level view of the task superscalar pipeline
• Can a task pipeline scale?
• Conclusions and Future Work
Overcoming the limitations of ILP pipelines

- **Task window timing**
 - No need for a global clock – we can afford crossing clock domains

- **Building a large pipeline**
 - Multiplex reservation stations into a single structure
 - Relaxed timing constraints on decodes facilitates the creation of explicit graph edges
 - Eliminates the need for associative MRS lookups
 - We estimate storing tens-of-thousands of in-flight tasks
Overcoming the limitations of ILP pipelines

• Utilizing a large window
 • Tasks are non-speculative
 • We can afford to wait for branches to be resolved

• Overcoming the memory wall
 • Explicit data dependency graph facilitates data scheduling
 • Overlap computation with communications
 • Schedule work to exploit locality
 • Already done on the Cell B.E. version of StarSs
 • StarSs runtime tolerates memory latencies of thousands of cycles
Outline

- Recap: How do OoO processors uncover parallelism?
- The StarSs programming model: Tasks as abstract instructions
- A high-level view of the task superscalar pipeline
- Can a task pipeline scale?
- Conclusions and Future Work
Conclusions

• Dynamically scheduled out-of-order pipelines are very effective in managing parallelism
 • The mechanism is effective, but limited by timing constraints
• Task-based dataflow programming models uncover runtime parallelism
 • Utilize an intuitive task abstraction
 • Intel RapidMind [McCool’06], Sequoia [Fatahalian’06], OoOJava [Jenista’10]
• Combine the two: **Task Superscalar**
 • A task-level out-of-order pipeline using cores as functional units
 • We are currently implementing a task superscalar simulator
• Execution engine for high-level models: *Ct, CnC, MapReduce*
Future Work

- Explore locality-based scheduling algorithms
- HW/SW scheduling interface
- Scheduling for a heterogeneous backend
 - Automatic grouping of tasks to GPU warps
- Combining both dynamic and static dependency analysis
- Explore the effectiveness of known out-of-order optimizations
 - Lazy renaming already shown to work in StarSs
Thank You
Related Work

- **Thread-Level Speculation (TLS)**
 - Multiscalar [Sohi’95], Trace Procs. [Rotenberg’97], Hydra [Hammond’98]

- **Dataflow**
 - Intermittent work in the 1970s, 1980s, 1990s
 - [Dennis, Watson, Arvind, Culler, Papadopoulos, …]
 - TRIPS [Sankaralingam’06], WaveScalar [Swanson’03]

- **Other task-level dataflow models**
 - CellSs [Bellens’06], RapidMind [McCool’06],
 Sequoia [Fatahalian’06], OoOJava [Jenista’10]

- **Hardware support for Tasks**
 - Carbon [Kumar’07], ADM [Sanchez’10], MLCA [Karim’04]