Verifying remote computations using PCPs

Srinath Setty, Andrew Blumberg, and Michael Walfish
UT Austin
Can we build this?

Client \rightarrow \text{Computation} \rightarrow F(x) \rightarrow Server

\text{output} \leftarrow y
Can we build this?

- Check if y equals $F(x)$ without re-executing
Can we build this?

- Check if \(y \) equals \(F(x) \) without re-executing
- Unconditional: no assumptions
Why should we build this?

- Offloading computations to the cloud
- Outsourcing computations to volunteer machines (Enigma@home, Einstein@home, ...)

How can we solve this problem in principle?

- Probabilistically checkable proofs (PCPs) and argument systems [Arora et al. JACM, 1998]
How can we solve this problem in principle?

- Probabilistically checkable proofs (PCPs) and argument systems [Arora et al. JACM, 1998]

- PCP theorem: server proves that $y = F(x)$ and client validates without re-executing
We have a conflict

• PCPs are mind-blowing
We have a conflict

• PCPs are mind-blowing

• But the costs are also mind-blowing
We have a conflict

• PCPs are mind-blowing

• But the costs are also mind-blowing
 ‣ For polynomial evaluation (700 variables), the server takes 10^5 years!
We have a conflict

- PCPs are mind-blowing
- But the costs are also mind-blowing
 - For polynomial evaluation (700 variables), the server takes 10^5 years!
- Our research program: try to make PCPs practical
Rest of this talk:

- Overview of PCPs
- Our refinements
PCPs from 200,000 feet

Client \[\rightarrow F(x) \rightarrow \text{Server} \]

\[\text{Server} \leftarrow y \]

F(x) \downarrow Boolean circuit
PCPs from 200,000 feet

Client \(\leftrightarrow \) Server

\[F(x) \]

\[y \]

\[F(x) \]

Boolean circuit

Proof
PCPs from 200,000 feet

Client \rightarrow Server

Proof

Client \leftarrow Server

y

F(x)

F(x)

Proof

Boolean circuit
PCPs from 200,000 feet

Client → Server

F(x) → y

Proof

Random locations

Boolean circuit

Proof
PCPs from 200,000 feet

Client -> Proof

Server <- Proof

Random locations

Chosen values

F(x)

Proof

Boolean circuit

Proof
PCPs from 200,000 feet

- Client
 - Random locations
 - Chosen values
 - Tests
 - Accept/Reject

- Server
 - Proof
 - Boolean circuit
 - Proof

F(x)
Our attempt to make PCPs practical

• Build on the work that introduces interaction [Kilian CRYPTO’95, Ishai et al. CC’07]

• Use a higher-level abstraction to represent computations
 ‣ Reduces cost by 8 orders of magnitude

• Apply a divide-and-conquer technique
 ‣ Reduces cost by 2 orders of magnitude
We build on an interactive variant of PCPs

[Ishai et al. CC’07]

• The server proof is a generating function
• The server responds to queries by evaluating the function
• The client binds the server to its function using cryptographic commitment
Can we use a higher-level abstraction?

- Use arithmetic circuits instead of Boolean circuits
- Savings:
 - 8 orders of magnitude at the server
 - 4 orders of magnitude at the client
Can we apply a divide-and-conquer strategy?

- Decompose the computation into parallel pieces
- The client batch-verifies the computation
- Saves two orders of magnitude in costs
Examples that we implemented

- Polynomial evaluation
- Matrix multiplication
- Fast Fourier Transform (FFT)
- Image filtering with convolution matrices

Example savings

For polynomial evaluation with 700 variables

<table>
<thead>
<tr>
<th></th>
<th>Interactive baseline</th>
<th>Post-refinements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server’s work</td>
<td>130,000 years</td>
<td>11.5 hours</td>
</tr>
<tr>
<td>Client’s work</td>
<td>940 sec</td>
<td>94 msec</td>
</tr>
</tbody>
</table>

(Local execution time: 164 msec)

→ The scheme is near-practical
Summary

- Our refinements reduce costs by over 10 orders of magnitude
- More refinements are required to make the scheme fully practical
- Upshot: PCP-based verified computation can be a systems problem