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Abstract

Using market mechanisms for resource allocation in dis-
tributed systems is not a new idea, nor is it one that
has caught on in practice or with a large body of com-
puter science research. Yet, projects that use mar-
kets for distributed resource allocation recur every few
years [1, 2, 3], and a new generation of research is
exploring market-based resource allocation mechanisms
[4, 5, 6, 7, 8] for distributed environments such as Planet-
lab, Netbed, and computational grids.

This paper has three goals. The first goal is to ex-
plore why markets can be appropriate to use for allo-
cation, when simpler allocation mechanisms exist. The
second goal is to demonstrate why a new look at mar-
kets for allocation could be timely, and not a re-hash of
previous research. The third goal is to point out some of
the thorny problems inherent in market deployment and
to suggest action items both for market designers and for
the greater research community. We are optimistic about
the power of market design, but we also believe that key
challenges exist for a markets/systems integration that
must be overcome for market-based computer resource
allocation systems to succeed.

1 Is there a Problem?

During the past decade, we have witnessed the emer-
gence of systems that are owned, deployed, and used by
multiple self-interested stakeholders. Consider the dif-
ferences between traditional distributed systems and cur-
rent distributed environments, such as Planetlab, Netbed,
and computational grids. Current environments have the
following properties:

Many resources, many users, and more complicated
needs. Multiple self-interested parties can simulate-
nously supply and consume sets of resources (e.g., ma-
chine time, bandwidth). Users can demand large sets of

disparately controlled resources, creating a large com-
binatorial allocation problem not easily solved by tech-
niques like social pairwise agreements.

Resource demand exceeds resource supply. Previ-
ous work has graphically demonstrated this problem on
Planetlab, where the machine load is many times the sys-
tem capacity [9]. Scientific computing (grid) users ex-
pect this to be a problem as they deploy experimental
testbeds [10].

No job selection by committee. The scale and design
goals of these systems preclude an administrative body
to handle resource allocation.

Incentives and external constraints limit supply. Po-
litical, financial, and geographic limitations prevent ad-
ditional hardware deployments to solve all cases of re-
source contention. Unlike commercial servers that have
a financial incentive to support their peak user load, re-
source providers in shared environments usually have lit-
tle incentive to add resources to the shared system.

Testbed-sensitive experimentation. In some shared
environments (e.g., Planetlab), the network itself is the
target of research. A tragedy of the commons [11] can
develop where overlapping usage consumes resources to
the point of disutility and users are unable to run certain
class of measurement experiments accurately or at all.

Computer systems have reached the point where the
goal of distributed resource allocation is no longer to
maximize utilization; instead, when demand exceeds
supply and not all needs can be met, one needs a
policy for making resource allocation decisions. Re-
searchers (Planetlab central, Grid planners, etc.) have



started to consider more intelligent ways of allocating re-
sources than simple best effort, or randomized allocation
schemes.

These methods can involve a social policy for resource
distribution. A policy is simply a set of rules for allo-
cation when resource demand exceeds resource supply.
One candidate policy is to seek efficient usage, which di-
rects a mechanism to allocate resources to the set of users
who have the highest utility for the use of the resources.
Other social policies exist, such as those that favor small
experiments, or favor underrepresented stakeholders, or
(if money is involved) seek maximal revenue generation.
One can also implement a mixture of policies to meet a
complex social goal.

Past deployments of distributed system schedulers
(e.g. Condor [12]) focused on maximizing utilization,
and were not designed to support complex social pol-
icy. Today’s schedulers must take full utilization as the
common case and focus on solving the resulting resource
contention problems.

In this paper, we explore the idea of using market-
based mechanisms to address resource allocation prob-
lems in distributed systems. In Sections 2 and 3 we
explore how markets may be a useful (and perhaps re-
quired) tool in this research and why they warrant new
consideration by systems researchers. However, there
are special challenges that arise when markets are used
for computational resource allocation. These challenges,
presented in Section 4, could prove overwhelming de-
pending on the response from the systems community
and our collective ability to address these concerns.

We feel that now is a critical time for the systems com-
munity to consider the various resource allocation capa-
bilities that should be supported in next-generation dis-
tributed systems, before an uninformed decision or sim-
ple necessity leads to a less desirable, de facto standard.

2 The Role of Markets

If one is interested in performing policy-directed
resource allocation, one should consider allocation
schemes that are based around a market.

A market is a way for buyers and sellers to exchange
goods. Applied to computer resource allocation, the
traded goods could be the right to use a certain amount
of system resources on a set of machines. When de-
mand exceeds supply, markets provide a goal-oriented
way of allocating resources among competing interests
while meeting some social goal. One natural goal is
to maximize overall “happiness” or utility of the users.
When users have complex needs, achieving this goal is
not easy for either the individual users and for the system
tasked with making the allocation decision. We will re-
turn to these issues in Section 4, but for now we consider

the advantages of markets for computational resource al-
location.

Deploying a computational market for resource alloca-
tion in the systems domain can benefit two research con-
stituencies. The first constituency, which will be ignored
for the rest of this paper, are the experimental economists
and economically-minded computer scientists. Rarely
are economists actually given the opportunity to deploy a
market or a whole economy, let alone several for compar-
ison. Computational mechanism design [13] is an emerg-
ing topic partly because the results apply to many differ-
ent domains, and there is some merit in asking systems
researchers to be research subjects as they attempt to use
some market mechanism for their own work.

But systems researchers (the second constituency) are
much more interested in knowing if these proposed mar-
ket allocation projects and their system offspring solve
real problems in distributed resource allocation. There
are many programmatic alternatives to markets in re-
source allocation. These include simple first come-first
served allocation, reservation systems, and more elabo-
rate systems such as automated voting schemes or other
devices. Unlike these simpler ideas, market-based sys-
tems can naturally address the new-world system char-
acteristics described in Section 1. Namely, market-based
systems can:

Provide a “socially optimal” project director to re-
solve overdemand. Unlike simpler mechanisms, mar-
kets can support a rich set of social goals, such as finding
an efficient allocation decision. The most natural way to
reach an efficient decision is to require users to quantify
their perceived benefit of winning their resource request.
A market encourages participants to use resources wisely
and tries to make an overall usage decision to maximize
overall value.

Provide incentives for growth. Markets are often used
along with a currency that can be used to express value
and acts as a medium of exchange.1 If a currency is open
and can be used to acquire a multitude of goods and ser-
vices, then this currency can be used to incent resource
providers to expand their services. In contrast, a closed
currency can incent growth only if the receiver of the cur-
rency has some use for its receipt. One can use currency
to create a medium to allow a market’s “invisible hand”

1Currency is a natural means toward easy valuation expression, but
there are other allocation algorithms that do not require currency. An
example are the matching algorithms that link Medical Interns and Res-
idents in the United States [14]. In this setting, medical students and
residency programs bid on each other using a prioritization scheme,
and these bids are resolved with a winner determination algorithm. At
first blush, a matching market does not seem appropriate to systems
resource allocation problems, where sellers have no preference of who
uses their resources.



to reward those who provide useful resources to the net-
work. Markets provide a vetted set of payment rules that
can be used to transfer currency between buyers and sell-
ers.

Provide a vocabulary to describe complex resource
bundles. In any system, be it administrative or market-
based, users need a mechanism to express their resource
holdings and desires. Markets, which have been used for
decades to capture difficult resource allocation problems
(e.g. energy markets, wireless spectrum auctions, airline
landing slot exchanges), can also be used to capture the
intricacies of systems problems. Bidding languages have
been studied for their tradeoffs between expressivity and
compactness [15], and existing languages can be directly
applied to computer resources.

Link Cross-Testbed experimentation. Multiple
closed distributed systems that run in parallel can offer
unique resources such as access to specific scientific
equipment. One can imagine a physics researcher will-
ing to provide access to their Beowulf cluster [16] but
wishing to consume resources produced by data collec-
tors at a CERN [17] on a completely separate network.
Linked market-based mechanisms could be used to
quantify the value of the cluster time sold in one network
and the value of a CERN resource purchased in another
network in a manner similar to how real economies are
linked through a a currency exchange. Ongoing research
into exchange mechanisms for computational systems
could make this vision feasible [7].

3 Not Déjà Vu All Over Again

The idea of using markets and pricing computer re-
sources is quite old. Pricing policies received consid-
erable attention at the dawn of modern multi-user time
sharing systems. Papers in the late 1960’s were dedi-
cated to automated pricing policies for computer time
[18, 19, 20]. As research, this work was short-lived.
The complexity of these schemes relative to their benefit,
combined with the environment of time-shared systems
(mostly cooperative, mostly controlled by a single en-
tity) quickly made pricing for shared resource allocation
a low priority. Shared resource allocation remained a hot
topic in operating systems, but the goal in this research
was maximizing utilization through clever scheduling. In
contrast, schedulers that promote social goals such as ef-
ficient usage have not been as widely investigated.

This said, there have been past systems that take a mar-
ket approach to resource allocation [1, 2]. How, then,
will new research into markets for distributed resource
allocation be any different? We believe that a number of

developments make the timing right to revisit the ques-
tion of whether market-based models are both appropri-
ate and, more importantly, required for emerging compu-
tational environments. New research can take advantage
of the following developments:

Pressing demand. Past market-based systems never
saw real field testing, and contention was often artifi-
cially generated. Today, a deployed market system could
have immediate usage and solve real resource conflicts.
Real usage data will help researchers calibrate and eval-
uate their market-based resource schedulers. Previous
mechanism designs were not able to take advantage of
user feedback to drive the mechanism design process.

Improved operating system infrastructure. Past sys-
tems had to deal with limitations in infrastructure, such
as a lack of user authentication or kernel-supported re-
source isolation. Today, systems research has produced
tools like BSD Jails, Xen, and Linux CKRM [21, 22],
which are already in use to provide resource isolation,
can be adopted to enforce allocation decisions.

Expressive market design. Previous work used bid-
ding languages that have been artificially limited in their
expressive power. During the past decade, tremendous
advances have been made in the theory and practice of
expressive market design. Current mechanisms can sup-
port combinatorial bidding, which more naturally cap-
tures resource needs. For instance, modern bidding lan-
guages can easily represent any logical combination of
goods, such as AND, OR, XOR, and CHOOSE. This ex-
pressive power did not exist in previous mechanism de-
ployments.

Scalable mechanisms. Solving large resource con-
tention problems has traditionally been computationally
expensive. Fortunately, significant advances have been
made in the theory of solving large-scale mixed-integer
optimization problems, which is an underlying technol-
ogy well-suited to implementing market problems. This
theory is now reflected in off-the-shelf solvers such as
CPLEX. Significant breakthroughs have arisen from the
use of cutting plane techniques, branch-and-cut, and pre-
processing to achieve efficient solving.

4 Markets/Systems Integration Challenges

Despite our general optimism, the ultimate success of a
deployed mechanism is measured in usage, and usage
depends on a number of factors typically overlooked by
computer science researchers. Ease of use may trump
mechanism features. People may be willing to accept



the limitations of simpler systems (eg: first-come first-
served, or randomized allocation) if market-based sys-
tems are seen as too complex, or if they fail in other ways,
even if accepting a simpler system means ignoring some
of the characteristics described in Section 1.

In this section, we articulate the roadblocks that must
be addressed to make a market/systems integration suc-
cessful. In our opinion, these challenges are not in the
market details. Rather, we think that the biggest chal-
lenges to their adoption in systems will come from under-
standing, supporting, and using these mechanisms. After
presenting each challenge, we consider action items for
the general systems community, as well as for systems
market designers where appropriate. In our view, a mar-
kets/systems integration could fail if these challenges are
not overcome:

Allocation Policy Must be Explicit. One of the un-
comfortable realities of a market is that it forces user
communities to confront their social allocation rules.
Do people want allocative efficiency? Do people want
testbeds to be self-sustaining through policies that imply
taxation? Do people want to favor jobs from underrepre-
sented users? Other real-world uses of markets have had
definite mandates. As an example, after years of running
a lottery to allocate wireless spectrum, the U.S. Congress
wised up to the resulting allocation inefficiency (not to
mention the possibilities of revenue generation with the
government as the initial sole seller), and mandated that
the F.C.C. to employ an efficient allocation mechanism.
This was a clear social choice, and necessarily meant the
F.C.C. used a market.

Community Action Items: There is no general mandate
in the systems community for the social goal of an allo-
cation scheme. If the systems community cares about
simpler goals than efficiency or revenue generation, than
systems market designers should not be trying to develop
auction mechanisms. Where should this mandate come
from? HotOS participants? Planetlab Central? Grid
users?

Dividing Up Resources as a Seller. Unlike many other
markets, there are complex and not commonly under-
stood systems interactions between computer resources,
complicating the allocation decision. Consider a sys-
tem that allocates three hard resources, CPU, memory,
and disk: An allocation of memory is meaningless un-
less there is some small CPU associated with the allo-
cation. If virtual memory is involved, it is likely that
disk also needs to be allocated, but that the effects of
swapping will dominate the time required to run the ex-
periment. Either these associations are explicit, in which
case minimum resource bundles must be purchased, or

there are side effects that constrain the allocation based
on the characteristic of winning bids.

Systems Market Designer Action Items: While the
tools (like CKRM [22]) for partitioning resources are be-
ing developed, they still have a long way to go to capture
pertinent resources and even trivial resource interactions.

Predicting Needs as a Buyer. It is difficult to describe
precisely the level of resources required to run an ex-
periment or job. Depending on the inputs to a program,
the ideal level of resource consumption can vary dramat-
ically.

Moreover, there is a tangible penalty for misestimating
resource need, since these bids are made in advance of
when the resources will actually be available. In order to
match enough buyers with sellers, current market-based
resource allocation schemes batch allocations into blocks
of time. The time scale of this batch system can be min-
utes or days ahead of when the resources will actually
be made available. This means that users must predict
their resource needs in advance. A resource underbid
will prove unsatisfying if won, while a resource over-
bid (with the same value) is less likely to win because of
competition from more efficient users. Requiring users
to predict their resource need is new user behavior, and
this forecasting problem can be difficult.

Community Action Items: The general systems com-
munity should think more about building tools to help
users estimate their resource needs. Perhaps users in
a shared environment will have access to a best-effort
staging ground where they will be able to gauge their re-
source usage. One can imagine future research tools (ei-
ther modeling or analysis) that attempt to capture the re-
source profile of a wide-area application. Such tools are
an open area for ongoing and future research [10]. Sys-
tems Market Designer Action Items: While there is on-
going research into online market mechanisms—making
an allocation decision before seeing all bid activity—
designers should develop markets that are less rigid in
their clearing time frames, while still meeting social
goals.

Valuing Resources. Utility maximizing market mech-
anisms are only as accurate as the values that users as-
sign their bids (on goods that they possess, and goods
that they would like to acquire). But what is a user’s true
value on four hours of CPU time, a week before a major
conference deadline? (Any situation where demand ex-
ceeds supply will lead to unhappy users; a variation of
this question exists in any resource allocation scenario.)
Ultimately, the requirement of the market is that users
place a value on their resource needs and holdings. There
are several problems with calculating this value in com-
putational systems. We label these as problems with a



well-defined currency, and in calculating and expressing
valuation:

Well-Defined Currency. Almost all previously de-
ployed computational markets have used a virtual cur-
rencies instead of real cash. The low barrier to utiliza-
tion and low stakes in case of deployment error make
simple closed virtual currencies attractive to developers.
In these scenarios, it is all too easy to skip the monetary
policy considerations that make currencies work.

For all of their bootstrapping advantages, virtual cur-
rencies require initial thought and ongoing care to func-
tion properly. Virtual currencies often suffer from a lack
of liquidity, making it difficult to convert into or out of
the virtual currency. As a result, these ersatz currencies
are quite limited; certain users might be willing to sell re-
sources for Euros, but not for un-exchangable Woozies.
Furthermore, virtual currencies can suffer from starva-
tion, as heavy consumers run out of currency to spend,
depletion as users leave the system or hoard currency re-
ducing the total amount of currency available to others,
and inflation as users are added to the system with an
initial credit. Previous research attempts to address the
faults of virtual currency systems with monetary policies
and administrative measures (e.g., [23]), but for a virtual
currency to work, it must be expressive and appreciated
by users.2

We believe that the success of a computational re-
source exchange will be tied to a well-defined currency.
Rather than attempting to create such a currency, one
could turn to real money as the medium for exchange.
One reason to use a real currency is that it may in-
crease resource contribution and ease maintenance of
distributed environments. Using Netbed or Planetlab as
an example, many entities are passive, light users, and
may not see the value of maintaining their portion of
the network beyond their initial required contribution.
Whereas these users may not respond to an allocation
of a closed virtual currency, they may respond to real
money. Using a real currency could help increase partici-
pation in a distributed system – since supply and demand
set the price of contributed resources, the network has
a way of rewarding those who provide useful offerings
to the network. Using a real currency also might pro-
vide a lower barrier to entry for new users and create a
self-sustaining shared environment: rather than charging
new organizations a fixed usage fee, or relying on exter-
nal grant money for support, one can imagine transaction

2One interesting note is that the new breed of multi-player online
games often have a virtual in-game currency component. Operators
of these online games either openly support the exchange of their cur-
rency into other real currencies [24], or attempt to keep their currency
closed, effectively incenting players to open these closed currencies by
spawning parallel side exchange markets [25].

fees that support the development of the testbed.
We believe that there is no technical reason that pre-

vents one from using real currencies on shared environ-
ments. There are numerous political and fairness con-
cerns with this idea. Researchers don’t like the idea
of having a resource request denied because other re-
searchers could pay more money. (We do observe that
the existing research grant process potentially creates
this sort of situation.) But in a world where demand ex-
ceeds supply, and one has chosen to resolve this problem
efficiently, one needs some understood way of expressing
valuation differences. Perhaps using a real currency is a
wacky idea (that works for every other market) whose
time has come?

Community Action Items: If efficiency is an important
social goal, then we see valuation questions as a big chal-
lenge for the systems community. We wonder if users
would be willing to try something novel (which is old
hat to every other use of markets) and pay for their bids
with real currency. While there are issues with this idea,
it does force people to put money where their valuations
are. Systems Market Designer Action Items: We would
like to see a careful construction of a virtual currency
system, or alternatively, a careful construction of an ar-
gument as to why these systems do not work. We feel
that a well-defined currency is a major stumbling block
to market adoption in systems.

Calculating and Expressing Valuation. It can be dif-
ficult for a user to accurately value their ideal resource
bundles. There needs to be a simple and effective way
for people to express their resource need and calculate
its value. To stress this point, imagine a market inter-
face that asked the user for their valuation, one ques-
tion at a time, over the entire space of good combina-
tions. This painful approach would require the user to
think about their valuation for a whole slew of bundles,
a time-consuming and sometimes difficult task. An area
of market design that has received almost no attention
for computer resources is in the user interface between
the users and the mechanism. The bidding interface is
the most public face of a market mechanism, and in our
opinion it is this interface that has the greatest effect on
user perception (and acceptance) of the mechanism as a
useful tool.

Community Action Items: Be willing to give feedback
to designers on how well a language/interface is at cap-
turing your resource desires. Be willing to suffer through
some bad research designs. Systems Market Designer
Action Items: Improving price guidance and addressing



valuation complexity are currently active research areas
in mechanism design, and this effort will likely continue.

5 Conclusion and Challenges

We feel that the time is right to explore market-based
resource allocation mechanisms, but we also see a num-
ber of challenges that may hinder their applicability to
systems. While there has been a general call for bet-
ter resource allocation, it is not clear to us that systems
researchers will be willing to accept the implications of
mechanisms to achieve certain social goals. These mar-
ket designs need to be debated, and if deemed valuable,
deployed and evaluated “in the wild”.
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