Causeway: Operating System Support For Controlling And Andyzing The
Execution Of Distributed Programs

Anupam Chanda, Khaled EImeleegy, and Alan L. Cox
Department of Computer Science
Rice University, Houston, Texas 77005, USA
{anupant, kdi aa, al c}@s.rice. edu

Willy Zwaenepoel
School of Computer and Communication Sciences
EPFL, Lausanne, Switzerland
wi | ly. zwaenepoel @pfl.ch

Abstract event handler (in an event-driven program), whether ex-
) ) ) ecuting in user or kernel mode. Application execution is

In this paper we introduce Causeway, operating SySperformed by one or more actors. An actor may commu-
tem support facilitating the development of meta- hicate with other actors during an execution. A channelis
applications, like priority scheduling and performance jefined as the means of communication between two (or
debugging, that control and analyze the execution of diSpyqre) actors. Metadata is arbitrary data that is distinct
tributed programs. Meta-applications use Causeway 19, application data but is propagated alongside appli-
injectand access metadata on application execution pathsion data through the execution paths of the distributed
to implement their specific goals. Causeway has tWo,oqram. Causeway interfaces can be called from both
components: (1).|nterfaces to inject and access metadajg application and the operating system. Causeway au-
and (2) mechanisms to automate propagation of metgymatically propagates metadata between actors across

data. Using Causeway we could rapidly implement acpannels without the need for any application modifica-
distributed priority scheduling system where priority of a 45,

task is injected and propagated as metadata, and accessed

to implement global priority scheduling. This required METADATA
writing only about 150 lines of code on top of Causeway.
With this system we demonstrate global priority schedul- —
ing on an implementation of the TPC-W benchmark. DATA
WRITE READ
CHANNEL

1 Introduction
In this paper we introduce Causeway, operating sys- \CTORS/

tem support facilitating the development oheta-

applications that control and analyze the execution Figure 1: Propagation of Metadata Between Two Actors
of distributed programs.  Priority scheduling and Across a Channel

performance debugging are examples of such meta-

applications. A meta-application can span across the At an abstract level, Causeway works as follows.
application and the operating system (kernel and li-Metadata is associated with an actor when that actor per-
braries). Meta-applications use Causeway to inject andorms injection. Later, when the actor writes application
accesgnetadataon application execution paths to im- data to a channel, its metadata is associated with the ap-
plement their specific goals, e.g., scheduling or debugplication data written. On a subsequent read from the
ging. Causeway performs automatic propagation of inchannel by either the same or a different actor, the meta-
jected metadata along application execution paths erdata is propagated to the actor performing the read. Fig-
abling the meta-application to access metadata from anyure 1 illustrates the concept of propagation of metadata
where along those paths. between two actors across a channel.

Causeway has two components: (1) interfacesfor The complete set of channel types are: (1) sockets, (2)
tors to inject and access metadata and (2) mechanismgipes, (3) files, and (4) shared memory. Causeway prop-
to automate propagation of metadata to and from actoragates metadata along a channel on read and write opera-
acroschannels An actor is an execution context; it can tions by an actor. Some of these channel types are visible
be a process, a thread (in a multithreaded program) or ato the operating system (kernel and libraries) while oth-



ers are not. Pipes, sockets and files are system visibl@terprocess communication to implement security poli-
whereas shared memory is not. Further, some channeles, Causeway extends this mechanism to propagate ar-
types are persistent, e.g., files, while others, like share8itrary types of metadata across different kinds of chan-
memory, are short-lived. Causeway currently propagaterels for a variety of meta-applications. The work closest
metadata across socket and pipe channels. As ongoirtig Causeway is SDI [9] which also provides metadata or
work we are adding support in Causeway for file andcontext propagating mechanism for multitiered servers.
shared memory channels. Causeway differs from SDI in two aspects: first, Cause-
There are quite a few challenges in the design ofway propagatesthe value of the metadata across channels
Causeway. First, when metadata is propagated to an aénd not its reference as in SDI, and, second, we want
tor, a decision needs to be made about what to do with thto extend Causeway to handle shared memory channels.
existing metadata on the actor. It is possible that the inShared memory channels occur frequently in many pro-
coming metadata pertains to a new request to the systergrams, e.g., Apache and MySQL which are used exten-
in this case the incoming metadata needs to be assigneively to build distributed applications.
to the actor which loses its existing metadata. Alterna- Several examples of meta-applications appear in liter-
tively, the incoming metadata may be associated with theture; they have generally been built from scratch. Aguil-
same request as being currently executed by the actor beta et al. [1] infer causal paths from message traces to
carry a different value: in this case some composition ofilocate nodes causing performance bottlenecks. The use
the incoming metadata and the existing metadata needsf request tagging has been utilized to determine faults
to be applied to the actor. Second, on aread on a channeh Internet services [4]. The resulting Pinpoint system
different pieces of data may be associated with differentises instrumentation of the J2EE platform to pass on re-
metadata. Again, a decision is required about what metaguest identifiers among the different components of the
data to propagate to the actor. Finally, handling channelsystem. These meta-applications, and many more, can
invisible to the system, e.g., shared memory, is a chalbe implemented on top of Causeway.
lenge in itself. We address these issues in Sections 4 Magpie [3, 5] represents a different approach to the
and 6. analysis of distributed programs. Magpie logs events,
We have implemented Causeway in the FreeBSDand extracts events belonging to a particular request exe-
operating system kernel, thei bpt hr ead and the cution by performing temporal joins over this log. These
| 'i bevent [8] libraries. Causeway, thus, achieves au-joins are based on application-specific schemas, which
tomatic propagation of metadata without the need for apmay require considerable expertise and knowledge about
plication modification. the application. Magpie can measure per-request re-
Using Causeway we could rapidly implement a dis-source utilization in a distributed program. Magpie and
tributed priority scheduling system where priority of a request identification using Causeway present an inter-
task is injected and propagated as metadata, and accessz=ting set of tradeoffs. Magpie does not require kernel or
to implement global priority scheduling. This required library modifications, and leverages event logging facil-
writing only about 150 lines of code on top of Causeway.ities already present in Windows. In contrast, Causeway
With this system we demonstrate global priority schedul-accepts the premise of such modifications, and as a result
ing on an implementation of the TPC-W [10] benchmarkavoids the need for detailed knowledge about the appli-
used as a test distributed program. This distributed proeation.
gram includes a Web server, an application server and a Traditionally, there have been two approaches to writ-
database, all running on different machines. Each requestg such meta-applications: a log-based approach and a
for service is assigned a priority. This priority is then metadata-passing approach. In a log-based approach, a
passed as metadata which folloals actors performing log is maintained to record events triggered as requests
the execution for this request in the Web server, appli-are executed. Logs on the different components of the
cation server and the database. No modification of thgystem are later merged and analyzed. Magpie utilizes
TPC-W benchmark, other than selective injection of pri-this approach. Metadata-passing approach propagates
ority, was required. metadata along the request execution paths of a sys-
Causeway is not the first system to advocate the proptem; the propagated metadata is accessed by the meta-
agation of metadata along request execution paths iapplication. For example, Pinpoint passes request iden-
distributed systems. Earlier work in Domain and Typetifiers along request execution paths and utilizes them
Enforcement (DTE) in Unix systems [2] and Stateful to identify faulty components in the system. A meta-
Distributed Interposition (SDI) [9] employ metadata or application using the metadata-passing approach can af-
context propagating mechanisms similar to Causewayfect the execution of requests in an online manner; how-
While DTE propagates the type of data written by a send-ever, a log-based approach cannot achieve the same be-
ing process and the domain of the sending process fatause although collection of log is online, its processing



lags the execution of requests by a positive delay. Causesome individual components are unaware about the pres-
way adopts the metadata-passing approach and providesice of metadata or ignore it. Consider a 3-tier system,
operating system support for the common aspects ofvhere the middle tier application is unaware of metadata.
meta-applications that can be built using this approach. The front and the back-end tiers may still, however, need

With Causeway users can implement tasks like priori0 access metadata. In this scenario, operating system
ity scheduling and performance debugging of distributedsupport for automatic metadata propagation is required
programs. Such users are different from the class of opin the middle tier even though the middle tier application
erating systems developers and application developer§ay remain ignorant to metadata.

Meta-application developers use the interfaces exported One may implement this framework support into mid-
by Causeway to implement the desired meta-applicatiodllewares. This approach will work when all compo-
requiring little knowledge of the application or the op- nents of the application are built using such middlewares.
erating system. By separating development of metaHowever, this approach is not sufficient for all cases
applications from applications, Causeway parallels theand kernel modifications may be required. For exam-
concept of Aspect-Oriented Programming [7] which al- ple, our implementation of the TPC-W benchmark con-
lows developers to dynamically modify static application sists of the Apache (version 1) web server. Apache is a
to achieve secondary goals without modifying the origi- process-based web server, and thus the distributed prior-
nal static model. ity scheduling system may need to change the priorities

The rest of this paper is organized as follows. We jus-0f Apache processes. This may only be attained by ker-
tify the need for a framework like Causeway in Section 2.nel modifications. Hence, we argue that kernel modifi-
We give a detailed specification of metadata in Section 3¢ations are a necessary feature of the framework support
Section 4 presents an overview of Causeway’s desigrfor meta-applications.

We give demonstration of Causeway'’s use in Section 5.
Ongoing and future work is outlined in Section 6. We 3 Metadata

conclude in Section 7. Metadata in Causeway is a five-tuple(afentifier, type,

value, propagation bit mask, merge routine identifier)

2 Need for a Framework On injection, a metadata object is created and assigned
In this section we motivate why the operating system@n immutable, system-wide unique identifier. Type and

should support metadata injection, access, and propag&alue are self-explanatpry. Mgta-appllcatlons can.defln.e
tion. In other words, we answer the question — “why "W metadata types, if required. The propagation bit

not build the support into applications”. mask contains a flag per channel type signifying whether

First, we note that the use of metadata is significantlythls metadata object is propagat_ed across chann_el_s of

different than the (application) data. Hence, from a soft-tha_t type or not. _The merge r_outlne identifier spe_C|f|es
; ; ; : r¥Vh|ch merge routineshould be invoked, when required.

A merge routine takes two or more metadata objects as

input and combines them to produce a single metadata

bject. Causeway implements frequently used merge

between how data and metadata are handled.
Second, propagating metadata at application level onl
will involve augmenting applications and application- routines likemi n, max, concat, etc. Other merge

level mter-process gommun|cat!on protocpl_s. This aProutines can be implemented in Causeway, if required.
proach has its own pitfalls. Consider a multi-tiered server

) o .A merge routine is invoked on the incoming metadata
for web SEIVICes. L?t us assume, an apphcatlon—speuﬁ%nd the existing metadata of an actor when they have the
HTTP header is deflned_to propagate metadata to a we . me identifier but differ in value.
server. But not all applications use the same protocol.
For instance, the web server may need to communicatﬂ
to a database server. In this case, the database server
does not understand HTTP. To propagate metadata to théauseway has two components: (1) interfaces to inject
database server, then, the communication protocol beand access metadata and (2) mechanisms to automate
tween the web server and the database server needs poopagation of metadata.
be augmented as well. In essence, by this approach all
possible application-level communication protocols will 4.1
require augmentation — a tedious solution. By makingMeta-applications can interact with Causeway in two
the propagation of metadata a system-level function, itvays — through an interface by which actors can in-
becomes independent of the application-level communiject and access metadata, and through a callback inter-
cation protocol being used. face under which Causeway calls handlers registered by
Finally, in a distributed program, it is possible that the meta-application.

Causeway Design

Interfaces



Actor Interface Causeway provides interfaces for in- 4.2.2 Propagation across Channels

jection, inspection, modification and removal of meta-

data by actors. These interfaces may be called from usefow we describe the propagation mechanism across

level or kernel-level by an actor, which could be a pro-gach of the channel types. We emphasize that the rules

cess, a thread or an event-handler. described in Section 4.2.1 are applied to assign metadata
Causeway defines the following interface functionsto an actor after propagation across a channel. Cause-

to be called by an actorcwa_t ype_query retrieves way currently implements metadata propagation across

the collection of metadata types that are associated witsockets and pipes.

the actor;cwa_dat a_| ookup retrieves any metadata

of the given type that is associated with the actor;gockets and Pipes Causeway handles sockets and
cwa_dat a.i nsert associates the given metadata with pipes similarly. When an actor writes to a socket (or a
the actor, overwriting any prior metadata of that type; andyipe), Causeway associates metadata from the actor to
cwa_dat a_r enpve disassociates any metadata of thethe data written. On subsequent read from the socket by

given type from the actor. Since all metadata are actoranother (or the same) actor, metadata is propagated from
private, synchronization of metadata access interfaces ige data to the actor.

not required.

. ) . The above applies foLOCAL sockets only. For
Callback Interface _Us_mg Causew_ays callback INr- | NTERNET sockets, data is encapsulated in IP packets
face the meta-application can rggmtetransfer-pomt . for send and receive across sockets. Causeway encapsu-
callback methoq. A transfer pointis a point where data iyo metadata, in addition to data, in the IP packets. For
read from orwritten to a ch.annelzl by an actor. Ata trans-y Pv4, Causeway encapsulates metadata in the IP header
fer_pomt Causeway determinesif the type.ofthe metadat s IP options. In particular, Causeway defines a new IP
being passed has a callback method registered. If a cal 5ption type, populates the IP header with the option type,

back method exists, it is invoked with the metadata as it%ption length, and option payload. At the receiving side
argument. The callback method reads and possibly mOd[he metadata, if any, is extracted from the IP options.

ifies the metadata and passes it back to the transfer poir%inCe IP options can be a maximum of 40 bytes only

The callback method can cgll g_rbitrary operating system, ik 1 byte each for options type and options length,
code, e.g., to change the priorities of actors. Causeway can transfer at most 38 bytes of metadata via
this mechanism. For most practical purposes, this has
proven sufficient. This limitation is an artifact of Cause-

When an actor performs a write on a channel, the acway’s implementation and not its design. A general pur-
tor's metadata is associated with the data written into thé?0Se tunneling protocol could be used to overcome this
channel. On a subsequent read on the channel by an alémitation, if required. For IPv6, Causeway uses the des-
tor, metadata is propagated from the data and assignéH‘atiO” options in the IP header which does not have any
to the actor. First, we describe the rules of metadata asiize limitation. Further details about that are outside the
signment to an actor. Then we describe the propagatioficope of this paper.

mechanism across each of the channel types.

4.2 Automatic Propagation of Metadata

The following case presents a challenge to the above

4.2.1 Assigning Metadata to an Actor design. Consider a scenario where multiple pieces of

data are ready to be read from a socket (or pipe), and
There are two ways metadata can be assigned to an actat least one piece has a metadata identifier different than
- injection and propagation across a channel. On injecrest of the above. Then a decision needs to be made about
tion, an actor loses any existing metadata and the injectedthat metadata is to be propagated to the actor reading
metadata is assigned to it. On propagation, two cases afeom the socket (or pipe). Causeway resolves this situa-
possible. First, the actor does not have any existing metaion as follows. The pieces of data ready on the socket
data, or the identifier of its existing metadata does notre read in &l FOmanner. Causeway returns from the
match the identifier of the metadata propagated. In thisead just before the first piece having metadata identi-
case the actor loses its existing metadata, if any, and thier different than the earlier pieces. So, all the pieces of
propagated metadata is assigned to it. Second, the idedata read by the actor are guaranteed to have the same
tifier of the actor’s existing metadata matches that of themetadata identifier. The merge routine is then applied
propagated one but the metadata values are different (non these metadata, if their values differ, and the result is
action is required if the values match). In this case thepropagated to the actor. In our implementation of Cause-
merge routine, specified in the metadata, is invoked oway on FreeBSD, we associate metadata witlif s on
the two metadata, and the result is assigned to the actorsend and receive operations®acket s.



5 Using Causeway in Causeway. As future work, we intend to extend the de-

I . ign of Causeway to handle parallel computation paths
Meta-applicationsto control and analyze the execution Ognd address security concerns. Finally, we intend to

dlstr_|buted programs can be built gas!ly using Causewe}yqualntify the overhead of using Causeway.
We illustrate two such meta-applications here: a multi-
tier priority scheduling system and a distributed profiler.6.1 Files

5.1 Multi-tier Priority Scheduling System When an actor writes to a file, Causeway assigns the
Using C Id idlv imol ¢ i metadata from the actor to the range of bytes written.
sing ~.auseway we could rapidly implement a MUt o, 5 raaq operation, two cases are possible: (1) all bytes

\txlviricphr I:)emzessctzesilélt"'zg ;ﬁfﬂiﬂt’i:rzgtrwgggbgseegr:er"'garead are associated with the same metadata — the meta-
q ' PPIC%ata is propagated to the actor in this case, (2) at least

Flon are e>.<ecuted. Under this system, the appllcatlon None byte has associated metadata different than the rest
jects priority as metadata, Causeway automatically prop- in this case the merge routine, specified in the meta-
agates the priority metadata to all the tiers, and the metas. - is applied on the different n;etadata and the result
application uses the priority metadata to enforce priorityis pré)pagated to the actor '
scheduling on each tier. The meta-application is auto- '
matically invoked on each tier through Causeway'’s call-6.2 Shared Memory

back mechanism. .
Producer-consumer is a popular model of shared mem-

The implementation of this system on top of Cause-Ory usage. This model is used, by applications like

way requ_lred writing _onIy al_:)out 150 I|ne_s of code. We Apache and MySQL. At an abstract level, the model
tested this system with an implementation of the TPC-Works as follows.  Producers and consumers share a
W benchmark [10]. No modifications were made to thebuﬁer or aueue O'f obiects. A producer creates an ob-
TPC-W code, other than selective injection of priority. . ; J AP o .

We subjected the TPC-W system to a background Workj_ect, acquires a lock to enter the critical section, adds
load and a foreground test load. The background work:[he object to the shared bu_ffer or queue, and relea_ses
load was injected with metadata signifying default pri- the lock. A consumer acquires a lock to enter the crit-

. L . ical section, retrieves and removes an object from the
ority. The foreground load was injected with metadata
A : L shared buffer or queue, releases the lock, and then ac-
for default priority in one case, and high priority for an-

: %esses the retrieved object. The use of system-supported
other. Response time measurement for the foregroun hronizati A likeot h d
load showed one to two orders of magnitude ofimprove—SynC ronization primitives, likept hr ead.nut ex or
ment when using hiah oriorit pt hr ead_r Wl ock, can make producer-consumer com-
ghghp Y munication through shared memory visible to Causeway.
5.2 Distributed Profiler We note that the producer accesses the created object
just beforethe lock operation and in the critical section,

In tfhlls .:ﬁctlon we p()jreselnt _the de_S|ng1:f0r a d'Strfl'g.e hile the consumer accesses the retrieved object in the
profier that we are developing using .auseway. 'Scritical section and jusafter the unlock operation. We

tributed application has multiple components executing, investigating ways to identify this pattern and insert

Lneg'sf;esr?;}?rgge:;ee; tiigrgwfznﬁiﬁayléhﬁsaecﬁ i';fggen\t/vphri(l) in the source or precompiled binary) ca_lls to save meta-
o . i S " tata from the producer and calls to retrieve metadata in
itis possible to profile Fhe. compopents n !solatlon, itis the consumer. The transformed producer code will do the
hard to colla;te the pr.ofllle |nf<|)rén<':|1t|onff?r dlffergnt codm- following: create the object, save the producer’s meta-
ggﬂiee ?/tes ttr?isovtlliﬁ?haas(lj?sq[r(iel;u%; d ?Jr(r))fri?elri;s \;g(ﬁ(;w;n Wt: data e}r_ld assoc_iate it yvith the creat_e_d object; then enter
will pass context information as metadata on remote pr0:[he cr!t!cal sect!on as in the unmodified program. Afte_r
the critical section, the transformed consumer code will

cedure calls (RPC) .from th? callgr o the callee. Th'sdo the following: access the retrieved object and retrieve
propagated context information will be used to annotatethe metadata associated with the retrieved object.

the callee’s profile information. Profile information from
the caller and the callee can then be stitched together witB.3 Execution Path Fork and Join
this Contex_t mformafuor?. Thus using Causeway, a SmgleCauseway needs to handle execution iatks andjoins
global profile for a distributed program can be generated. :
caused by parallel computation paths. In the common
case, an actor writes to a channel and then reads from the
same channel, waiting for a response. However, some-
In this section we describe the design of Causeway tdimes, an actor may write to multiple channels without
propagate metadata across file and shared memory chawaiting for the individual responses. As an example, a
nels. As ongoing work, this design is being implementedweb server may send queries to multiple nodes in a repli-

6 Ongoing and Future Work



cated database system and then wait for their individual[e]
responses. Each of these writes constitutes a fork in the
execution path. When the response corresponding to g7]
fork arrives, it is termed a join. In the above example,
the response from a database server constitutes a join8l
As future work, we intend to extend the design of Cause-
way to identify and handle such forks and joins in the
execution paths.

6.4 Security Concerns

Like SDI [9] we argue that the issue of illegal network [10]
access modifying metadata in IP packets should be ad-
dressed by using IPSec [6]. In order to prevent the ille-
gal modification of the metadata by the application, we
intend to incorporate a secure signing mechanism like
MDS5 as a part of the metadata for propagation across the
user-kernel boundary.

7 Conclusions

The contributions of this paper are the following. We
have designed Causeway, operating system support for
facilitating development of meta-applications, like pri-
ority scheduling and performance debugging, to con-
trol and analyze the execution of distributed programs.
Causeway provides interfaces for metadata injection and
access, and performs automatic propagation of meta-
data in distributed programs. Propagated metadata can
be accessed and used to implement the desired ser-
vice in the system. We have implemented Causeway in
the FreeBSD operating system, thebpt hr ead and

the | i bevent libraries. We have demonstrated the
use of Causeway by implementing a multi-tier priority
scheduling system and using it to achieve global priority
scheduling on an implementation of the TPC-W bench-
mark [10].

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance Debugging for Distribusgd-
tems of Black Boxes. IRroceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP ,q®ges 74-89, Oct.
2003.

L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and\S.
Haghighat. A Domain and Type Enforcement UNIX Prototype.
In Fifth USENIX UNIX Security Symposiudune 1995.

P. T. Barham, A. Donnelly, R. Isaacs, and R. Mortier. \gditag-
pie for Request Extraction and Workload Modelling. @$DI,
pages 259-272, Dec. 2004.

M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. BreweinP
point: Problem Determination in Large, Dynamic Internet-Se
vices. InProceedings of the International Conference on De-
pendable Systems and Networks (IPDS Trapkpes 595-604,
June 2002.

R. Isaacs, P. Barham, J. Bulpin, R. Mortier, and D. Nanaya
Request extraction in Magpie: events, schemas and temporal
joins. In SIGOPS EW'04: ACM SIGOPS European Workshop
Sept. 2004.

(2]

(3]

(4]

(5]

S. Kent and R. Atkinson. Security Architecture for theemet
Protocol. INIETF RFC 24011998.

ONJava.com. Introduction to Aspect-Oriented PrograngmAt
http://www.onjava.com/pub/a/onjava/2004/01/14/atmlh

N. Provos. Libevent - an event notification library.
Version 0.7c is available from the author's web site,
http://iwww.monkey.orgtprovos/libevent/, Oct. 2003. Libevent

is also included in recent releases of the NetBSD and OpenBSD
operating systems.

[9] J. Reumann and K. G. Shin. Stateful Distributed Inteitpms

ACM Transactions on Computer Syste@&(1):1-48, Feb. 2004.

T. P. P. C. (TPC). TPC BENCHMARK W (web commerce). At
http://www.tpc.org/tpcw/, Feb. 2002.



