

Access Control in a World of Software Diversity

Martín Abadi1, Andrew Birrell2, and Ted Wobber2

1University of California, Santa Cruz
2Microsoft Research, Silicon Valley

Abstract

We describe a new design for authentication and access control. In this design, principals embody a flexible
notion of authentication. They are compound principals that reflect the identities of the programs that have
executed, even those of login programs. These identities are based on a naming tree. Our access control lists
are patterns that recognize principals. We show how this design supports a variety of access control
scenarios.

1. Introduction

A central concern in securing a computer system is
access control: deciding whether to permit a particular
form of access to some of the system’s resources or
data. Classically, the system controls access by using a
“reference monitor”: a trusted piece of code that is used
to make all access decisions [1]. The reference monitor
is presented with the identity of a principal that makes a
request, the identity of an object (system resource or
data protected by the system), and the specific form of
access desired. The reference monitor then makes the
access control decision by deciding whether to accept
the proffered identity, and by consulting access control
information associated with the object. The access
control function is a predicate that maps principal,
object, and operation to a Boolean outcome.

In this paper we consider how to design this access
control machinery for a single-host, non-distributed
operating system such as Windows or Linux. A
direction for our future work will be to extend this
design to include distributed systems. For this paper, we
ignore issues of compatibility with previous access
control machinery.

In the classic design for this purpose, each principal
is identified by a small identifier (an SSID in Windows,
a user ID in Unix-based systems). The access control
data for an operation is an access control list kept with
each object, and takes the form of a set whose members
are either principals or identifiers for groups. A group,
in turn, is a set whose members are either principals or
identifiers for further groups. Access is permitted or
denied on the basis of the presence of the proffered
principal in the closure of the access control list and its
constituent groups. (In Windows the group member-

ships of a principal are actually determined at login time
and cached in a token. The semantics are as described
above, but the timing is somewhat different: some of the
reference monitor’s work was done at login time.)

The classic design, unfortunately, has many limita-
tions and drawbacks. These have become increasingly
critical in recent years as the diversity of the programs
installed in our systems, and of the attacks upon them,
have increased. The three drawbacks that we attempt to
address in the current design are as follows.

First, the notion that the principal is identified solely
with a logged-in user doesn’t allow us to express im-
portant real-world security situations. The actual user of
course isn’t really the entity making the access request.
The request is being made by a program. The classic
design assumes that every program executing in a user’s
session is acting on the user’s behalf and with the user’s
full trust. That might have been true historically, but it
is certainly not true today. For example, the user most
likely is happy if Microsoft Word is performing opera-
tions on objects that are Microsoft Word documents,
but would be unhappy if some ad-ware program was
doing so. Similarly, the user might reasonably object if
Microsoft Word was spontaneously accessing the user’s
Quicken database. So we desire that the principal pre-
sented to the reference monitor includes some notion of
the program that is executing, and also of the program
that provoked that execution, and so on back through
the execution history.

Second, the classical notion of “logged-in” is
inflexible. It is all or nothing, and implies that all
mechanisms for authenticating a user are equally
trusted. Equivalently, it requires that all authentication
mechanisms are part of the trusted computing base. To
support a modern execution environment, where

principals might arise from a console login, from a
remote terminal login, or from the creation of a back-
ground service, batch job, or daemon, and where
authentication might be by password, X.509 certificate,
smart card, or by an ad hoc decision by an application,
we require that these circumstances can be included as
part of the identity of the principal presented to the
reference monitor. This is a prerequisite to permitting
the monitor to base its decisions partly on how a
principal was authenticated.

Finally, once we have included so much extra
information within the idea of principal, it becomes
untenable to say that the access control data is just a set
of principal identifiers. We must be able to express in
the access control data a wide variety of constraints on
the acceptable principals, based on the wider variety of
information now included in our principals’ identities.
However, in order to maintain any real security, the
policies that can be described by this more general
mechanism must be expressed in a sufficiently simple
language that they can be understood by the people
responsible for them.

2. Previous Work

Within the confines of a short paper, we cannot come
close to doing justice to the wide range of proposals that
have been made to address some of the problems
identified in the introduction.

Many writers (and some writers many times) have
proposed authentication schemes that go well beyond
the basic notion of logged-in user [2,4,7,9]. Most com-
monly, such schemes allow a principal to adopt a “role”
or “restricted context” with the intention of reducing or
enhancing the principal’s privileges. Some schemes
become quite elaborate, including in the resulting com-
pound principals such details as the principal that
signed the certificate proving the identity of an execut-
ing program. Such designs provide great power, but
with a lot of complexity.

Current Java security mechanisms [5] take some
account of program execution history by using stack
inspection [8] when making access decisions.

Several systems, including current versions of
Windows and most current Unix-based systems, support
extensibility in their authentication mechanisms. There
are a few specialized systems that have made their
access control decisions dependent on how the principal
was authenticated [3], but this hasn’t made its way into
the access control machinery of general-purpose
operating systems. We believe that this information can
be included and used without adding undue complexity
to the design.

Other designs that involve compound principals have
also resulted in revisions to the design of access control
lists, though in somewhat different ways than the pre-
sent design. For example, the Taos work included
access control lists that expressed some logic about
which principals match [6].

3. Our Design

Our design is intended to address the deficiencies
described above. Specifically, we want to consider in
our access control decisions the identity of the
authenticated user, the identity of the agency that
performed the authentication, and the identity of the
program invocations that have brought the computation
to its current point. Then we want to have access control
lists that allow us to express succinctly and intelligibly a
wide variety of commonly useful access control
policies.

As will be seen below, the key aspects of our design
are:

• separation of principal names from the policies
and mechanisms that led us to trust those names
(the “naming tree”);

• compound principals formed by two operators
that represent authentication and program
invocation; and

• an expressive but straightforward access control
list mechanism.

3.1. The Naming Tree

The naming tree is a singly rooted tree in which each
arc is labeled with a simple string. Some of the nodes in
the tree have attached to them a data structure called a
“manifest”. A manifest specifies a particular executable
“program”, by providing the file names and
cryptographically secure fingerprints of the constituent
parts of the program — its executable, shared libraries,
data resources, and so forth. Since we want the identity
of an invoked program to be part of a principal name,
program invocation is a security-related operation, and
we require that programs are named by paths through
the naming tree.

The naming tree is also used to name users, and to
name groups whose contents can be referenced during
the evaluation of access control lists.

Our use of this naming tree lets us separate the
mechanisms and policy for constructing the tree from
the mechanisms and policy for running a reference
monitor. Both are important parts of the overall security

machinery, but the separation greatly simplifies the
authentication and access control mechanisms.

We expect quite familiar mechanisms would be used
to construct the tree, though we give no details here. For
example, the decision to install a program purporting to
be Microsoft Word would likely require a trusted party
(such as an authenticated administrator) to inspect
certificates (such as X.509 certificates) and agree that
the proffered bits really deserve to be given such a
trusted name. Once that decision has been made, the
presence of the resulting manifest at the node named,
e.g., “/bin/ms/office/word” makes the administrator’s
decision clear, and we can use this in subsequent
authentication and access control decisions.

Most likely, the naming tree would have its own
access control lists attached to it, to specify which
principals can modify which parts of the tree. One
advantage of using a tree structure to represent names is
that simple policies, for example, that a software
publisher controls the namespace beneath it, can be
applied. Similarly, the tree structure helps avoid naming
conflicts in an ever-evolving namespace.

3.2. Principal Names

A principal name is a string constructed from arcs in the
naming tree and operators “/”, “@”, and “+” according
to the following grammar.

• Manifest Name: MN = “/” Arc | MN “/” Arc
• Role: R = “/” Arc | R “/” Arc
• Manifest Role: MR = MN | MR “@” R
• Principal: P = MR | P “+” MR

The system provides exactly two operations that affect
principals:

• InvokeProcess(MN)
• ForkRole(R)

“InvokeProcess” runs a program. Its argument “MN” is
a manifest name, which is a path from the root of the
naming tree to the manifest of the desired program. The
system finds the named manifest, loads the appropriate
data into a new security context (process, say), and
initiates its execution. When the principal that calls
InvokeProcess is “P”, then the new security context runs
as principal “P+MN”.

In other words, occurrences of the “+” operator
within a principal name represent the history of program
invocations that resulted in the currently executing
program.

There is one variation of InvokeProcess. A manifest
might have been marked as a “service”, in which case
the new security context runs as the principal “MN”,
independently from its invoker.

“ForkRole” runs the same program as calls it, but in
a new security context with new program state. Its
argument “R” is an absolute path in the naming tree.
(Role names that are relative to a manifest name are
also possible; we do not discuss them here in the
interest of brevity.) When the principal that calls
ForkRole is “Q”, then the new security context runs as
principal “Q@R”.

In other words, occurrences of the “@” operator
within a principal name indicate where a program has
decided to adopt a distinguished role. This indication
says nothing about whether the role is more or less
privileged — that has meaning only to the extent that
access control lists grant more or less access to the new
principal name.

One critical use of ForkRole is to indicate when a
program makes an authentication decision. For
example, the system might run a console login program

 login

users

andrew ted

sshd

grp bin

ms

office

word excel

pathrole trusted

Groups

 bash

 Manifests

An example naming tree

by invoking the manifest “/bin/login” as a service, thus
executing as principal “/bin/login”. When the console
login program has received a satisfactory user name
“andrew" and password, it will use ForkRole to start
running itself as “/bin/login @ /users/andrew”, then use
InvokeProcess to run Andrew’s initial command shell
“/bin/bash”, which will then be executing as the
principal “/bin/login @ /users/andrew + /bin/bash”.

Similarly, we might run the manifest “/bin/sshd” to
listen for incoming SSH connections. After satisfactory
authentication through the normal SSH public-key
mechanisms it might adopt the role “/bin/sshd @
/users/andrew” then run the command shell, which
would execute as “/bin/sshd @ /users/andrew +
/bin/bash”.

In these two scenarios, if Bash decides to run “cat”
(whose manifest is named “/bin/cat”) and cat tries to
open a file, we would have an access request to the file
system from either the principal “/bin/login @
/users/andrew + /bin/bash + /bin/cat” or the principal
“/bin/sshd @ /users/andrew + /bin/bash + /bin/cat”
respectively. The reference monitor for the file system
would then consult the access control list on the
requested file to decide whether the given principal
should be granted access.

Another example of the utility of roles arises in the
context of program installation. Suppose that there is
an installer program “/bin/install” that manages the
installation of new software. It would be natural for
such a program, having checked that it is installing
certified Microsoft software, to adopt the role
“/bin/installer @ /bin/ms”. Acting in this role, the
installer might gain permission to update the naming
tree under “/bin/ms” (as well as other related system
resources), but without having rights to resources
designated for other publishers.

Nowhere in these scenarios has the system trusted
any of the programs involved: login, sshd, bash, cat, or
install. All the system did was to certify the program
invocations involved, and that, for example, /bin/login
and /bin/sshd chose to adopt the role “/users/andrew”.
In this design trust occurs only in constructing the
naming tree (trusting that the programs really deserve
their given names) and as a result of the way in which
we write access control lists (which embody our access
control decisions).

3.3. Access Control Lists

With complex principal names such as those we
propose above, having an access control list (“ACL”)
be merely a list (or set) of principal names does not give
us nearly enough convenience and expressive power.

For example, we might want to give access to a user
while executing some of a particular set of programs, or
when authenticated by some particular set of programs
(e.g., /bin/login or /bin/sshd, but not /bin/ftpd); or we
might want to give access to a program regardless of its
user. While we could perhaps list all allowed principals,
that would be awkward at best. Instead we use patterns
that recognize principal names.

The exact pattern recognition language that we use is
not critical to this idea, although the choice of language
will certainly have an impact on the usability of the
design, and therefore on the security of the resulting
systems. We present here a recognizer for a specialized
subset of regular expressions. Obviously, more or less
complex recognizers are possible, allowing the
expression of more or less complex access control
policies.

An ACL is a string constructed from arcs in the
naming tree and operators, as follows:

• Atom = Arc | “/” | “@” | “+”
• Item = Atom | “.” | “(” ACL “)” | Item “*” |

 “{” GroupName “}”
• GroupName = “/” Arc | GroupName “/” Arc
• Seq = Item | Seq Item
• ACL = Seq | ACL “|” Seq

The matching rules are similar to those for conventional
regular expressions:

• any Atom matches itself;
• “.” matches any single Arc (explicitly excluding

“/”, “@”, and “+”);
• “(ACL)” matches ACL;
• “Item *” matches zero or more sequential

occurrences of Item (greedily);
• “{ GroupName }” matches whatever is matched

by the ACL that is the contents of the node
GroupName in the naming tree;

• “Seq Item” matches Seq followed immediately
by Item;

• “ACL | Seq” matches either ACL or Seq.

A principal “P” matches an ACL “A” iff the string P
matches the regular expression that is the contents of A.
The match must be complete — all of P, not just a sub-
string of it.

“GroupName” provides a mechanism for sharing
parts of the recognition machinery amongst multiple
ACLs. We place groups within the same naming tree as
manifests and role names, with the same assumption
that their presence there reflects a trust decision made
by a suitable administrator. Recursively defined groups
are not permitted.

A reference monitor will grant P its requested access
to an object iff P matches the relevant ACL. In doing
so, the reference monitor is just performing string
manipulation on the principal name and the ACL
contents — it doesn’t need to use the naming tree itself,
except to read referenced groups. (We do not consider
here details of controlling access modes, such as “read”
and “write”; the reference monitor will of course grant
P only the appropriate mode.)

4. Usage Examples

Assume that the naming tree contains the following two
groups:

• /grp/pathrole = (/.)* (@ (/.)*)*
• /grp/trusted = (/bin /login | /bin/sshd)

The group “/grp/pathrole” matches a pathname with an
arbitrary sequence of roles. The group “/grp/trusted”
matches either of a pair of trusted authentication
programs.

The following ACL is similar to the baseline seman-
tics of existing systems, that is, it gives access to an
explicitly named user, if authenticated by a trusted
program:

{/grp/trusted} @ /users/ted (+ {/grp/pathrole}) *

More precisely, the above ACL permits access from any
program invoked (directly or indirectly) from one of our
trusted authentication programs, provided that the
authentication program has adopted the role
“/users/ted”. In contrast with existing systems, however,
the choice of which authentication programs should be
trusted is made in the ACL. We could trust different
sets of authentication programs for different objects, for
different users, or for different access modes.

Our next example is similarly simple, but not at all
like traditional access control: it gives access from any
of a specific set of programs — those found in the
naming tree under /bin/ms/office — regardless of the
user who invoked them:

({/grp/pathrole} +) * /bin/ms/office {/grp/pathrole}

One might use such an ACL, for example, to allow
Microsoft Office applications to access some auxiliary
files, regardless of who is running the applications,
while preventing users from doing anything else with
the auxiliary files.

Our final example gives access for user “ted” when
authenticated by sshd, but only when running some

chain of programs with the last one being Microsoft
Word:

/bin/sshd @ /users/ted (+ {/grp/pathrole})* +
/bin/ms/office/word

5. Conclusion

Our design has several important aspects that work well
together. First, the naming tree lets us separate the
policy and mechanisms for certifying programs and
groups from the day-to-day authentication and access
control mechanisms. Second, we provide just two
operators for composing principals, providing
expressiveness while retaining simplicity. Third, we use
these principals to avoid requiring that the system trust
particular authentication programs. Finally, we
generalize ACLs to be pattern recognizers, thereby
allowing compact expression of sophisticated access
control decisions that make full use of the
expressiveness of our principals.

We believe that this design allows for authentication
and access control in a modern operating system,
suitable for the more stringent requirements of a modern
security posture in a world with diverse software.

6. Acknowledgements

This work was done at Microsoft Research in the
context of the Singularity research project led by Galen
Hunt and Jim Larus. In particular, Úlfar Erlingsson and
Dan Simon made significant contributions to our many
discussions about this design.

References

1. Anderson. “Computer Security Technology
Planning Study Volume II”, ESD-TR-73-51, Air
Force Systems Command,Oct. 1972.

2. Badger et al. “A Domain and Type Enforcement
UNIX Prototype”. USENIX Comp. Sys., 9(1): 47-
83, Winter 1996

3. Fried & Lowry. “BigDog: Hierarchical
Authentication, Session Control, and Authorization
for the Web”. USENIX Second Workshop on
Electronic Commerce, Nov. 1996.

4. Gasser et al. “The Digital Distributed System
Security Architecture”, Proc. 1989 National
Computer Security Conf., (1989), pp. 305-319

5. Gong et al. “Inside Java 2 Platform Security,
Second Edition”. Addison-Wesley (May 2003).

6. Lampson et al. “Authentication in Distributed
Systems: Theory and Practice”. ACM Trans.
Comp. Sys., 10(4):265-310, Nov. 1992

7. Swift et al. "Improving the granularity of access
control for Windows 2000". ACM Trans. Info. and
Sys. Security, 5(4): 398-437, Nov. 2002.

8. Wallach et al. “SAFKASI: a security mechanism
for language-based systems”. ACM Trans. Soft.
Eng. and Meth., 9(4): 341-378, Oct. 2000.

9. Wobber et al. Authentication in the Taos Operating
System. ACM Trans. Comp. Sys., 12(1): 3-32, Feb.
1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

