
USENIX Association

Proceedings of
HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems

Lihue, Hawaii, USA
May 18–21, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 67

Crash-Only Software
George Candea and Armando Fox

Stanford University
{candea,fox}@cs.stanford.edu

Abstract

Crash-only programs crash safely and recover quickly.
There is only one way to stop such software—by crashing
it—and only one way to bring it up—by initiating recov-
ery. Crash-only systems are built from crash-only compo-
nents, and the use of transparent component-level retries
hides intra-system component crashes from end users. In
this paper we advocate a crash-only design for Internet sys-
tems, showing that it can lead to more reliable, predictable
code and faster, more effective recovery. We present ideas
on how to build such crash-only Internet services, taking
successful techniques to their logical extreme.

1. Occam’s Razor and the Restart Potpourri

There are many reasons to restart software, and many

ways to do it. Studies have shown that a main source of

downtime in large scale software systems is caused by in-

termittent or transient bugs [12, 20, 19, 1]. Most non-

embedded systems have a variety of ways to stop; for ex-

ample, an operating system can shut down cleanly, panic,

hang, crash, lose power, etc.

When shutting down programs cleanly, unavailability

consists of the time to shut down and the time to come back

up; when crash-rebooting, unavailability consists only of the

time to recover. Ironically, shutting down and reinitializing

can sometimes take longer than recovering from a crash. Ta-

ble 1 illustrates a casual comparison of reboot times; no im-

portant data was lost in either of the experiments.

System Clean reboot Crash reboot
RedHat 8 (with ext3fs) 104 sec 75 sec

JBoss 3.0 application server 47 sec 39 sec

Windows XP 61 sec 48 sec

Table 1. Duration of clean vs. crash reboots.

It is impractical to build a system that is guaranteed to

never crash, even in the case of carrier class phone switches

or high end mainframe systems. Since crashes are unavoid-

able, software must be at least as well prepared for a crash

as it is for a clean shutdown. But then—in the spirit of Oc-

cam’s Razor—if software is crash-safe, why support addi-

tional, non-crash mechanisms for shutting down? A fre-

quent reason is the desire for higher performance.

For example, to avoid slow synchronous disk writes,

many UNIX file systems cache metadata updates in mem-

ory. As a result, when a UNIX workstation crashes, the

file system reaches an inconsistent state that takes a lengthy

fsck to repair, an inconvenience that could have been
avoided by shutting down cleanly. This captures the design

tradeoff that improves steady state performance at the ex-

pense of shutdown and recovery performance. In the face

of inevitable crashes, such a file system turns out to be brit-

tle: a crash can lose data and, in some cases, the post-crash

inconsistency cannot even be repaired. Not only do such

performance tradeoffs impact robustness, but they also lead

to complexity by introducing multiple ways to manipulate

state, more code, and more APIs. The code becomes harder

to maintain and offers the potential for more bugs—a fine

tradeoff, if the goal is to build fast systems, but a bad idea if

the goal is to build highly available systems. If the cost of

such performance enhancements is dependability, perhaps

it’s time to reevaluate our design strategy.

In earlier work, we used recursive micro-reboots to im-

prove the availability of a soft-state system that was trivially

crash-safe [3]. In this paper we advocate a crash-only design
(i.e., crash safety + fast recovery) for Internet systems, a

class distinguished by the following properties: large scale,

stringent high availability requirements, built from many

heterogenous components, accessed over standard request-

reply protocols such as HTTP, serving workloads that con-

sist of large numbers of relatively short tasks that frame state

updates, and subjected to rapid and perpetual evolution. We

restrict our attention to single installations that reside inside

one data center and do not span administrative domains.

In high level terms, a crash-only system is defined by the

equations stop=crash and start=recover. In the rest of the
paper, we describe the benefits of the crash-only design ap-

proach by analogy to physics, describe the internal proper-

ties of components in a crash-only system, the architectural

properties governing the interaction of components, and a

restart/retry architecture that exploits crash-only design, in-

cluding our work to date on a prototype using J2EE.

2. Why Crash-Only Design ?

Mature engineering disciplines rely on macroscopic de-
scriptive physical laws to build and understand the behavior
of physical systems. These sets of laws, such as Newto-

nian mechanics, capture in simple form an observed physi-

cal invariant. Software, however, is an abstraction with no



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association68

physical embodiment, so it obeys no physical laws. Com-

puter scientists have tried to use prescriptive rules, such as
formal models and invariant proofs, to reason about soft-

ware. These rules, however, are often formulated relative to

an abstract model of the software that does not completely

describe the behavior of the running system (which includes

hardware, an operating system, runtime libraries, etc.). As a

result, the prescriptive models do not provide a complete de-

scription of how the implementation behaves in practice, be-

cause many physically possible states of the complete sys-

tem do not correspond to any state in the abstract model.

With the crash-only property, we are trying to impose,

from outside the software system, macroscopic behavior

that coerces the system into a simpler, more predictable uni-

verse with fewer states and simpler invariants. Each crash-

only component has a single idempotent “power-off switch”

and a single idempotent “power-on switch”; the switches for

larger systems are built by wiring together their subsystems’

switches in ways described by section 3. A component’s

power-off switch implementation is entirely external to the

component, thus not invoking any of the component’s code

and not relying on correct internal behavior of the compo-

nent. Examples of such switches include kill -9 sent to
a UNIX process, or turning off the physical, or virtual, ma-

chine that is running some software inside it.

Keeping the power-off switch mechanism external to

components makes it a high confidence “component

crasher.” Consequently, every component in the system

must be prepared to suddenly be deactivated. Power-off and

power-on switches provide a very small repertoire of high-

confidence, simple behaviors, leading to a small state space.

Of course, the “virtual shutdown” of a virtual machine, even

if invoked with kill -9, has a much larger state space
than the physical power switch on the workstation, but it

is still vastly simpler than the state space of a typical pro-

gram hosted in the VM, and it does not vary for different

hosted programs. Indeed, the fact that virtual machines are

relatively small and simple compared to the programs they

host has been successfully invoked as an argument for using

VMs for inter-application isolation [26].

Recovery code deals with exceptional situations, and

must run flawlessly. Unfortunately, exceptional situations

are difficult to handle, occur seldom, and are not trivial to

simulate during development; this often leads to unreliable

recovery code. In crash-only systems, however, recovery

code is exercised every time the system starts up, which

should ultimately improve its reliability. This is particularly

relevant given that the rate at which we reduce the number

of bugs per Klines of code lags behind the rate at which

the number of Klines per system increases, with the net re-

sult being that the number of bugs in an evolving system

increases with time [7]. More bugs mean more failures, and

systems that fail more often will need to recover more often.

Many of the benefits resulting from a crash-only design

have been previously obtained in the data storage/retrieval

world with the introduction of transactions. Our approach

aims for a similar effect on the failure properties of Internet

systems—crash-only design is in many ways a generaliza-

tion of the transaction model. It is important to note that In-

ternet applications do not have to use transactions in order

to be crash-only; in fact, ACID semantics can sometimes

lead to overkill. For example, session data accumulates

information at the server over a series of user service re-

quests, for use in subsequent operations. It is mostly single-

reader/single-writer, thus not requiring ordering and concur-

rency control. The richness of a query language like SQL is

unnecessary, and session state usually does not persist be-

yond a few minutes. These observations are leveraged by

SSM [18], a crash-only hashtable-like session state store.

A crash-only system makes it affordable to transform

every detected failure into component-level crashes; this

leads to a simple fault model, and components only need

to know how to recover from one type of failure. For ex-

ample, [21] forced all unknown faults into node crashes,

allowing the authors to improve the availability of a clus-

terized web server. Existing literature often assumes unreal-

istic fault models (e.g., that failures occur according to well-

behaved tractable distributions); a crash-only design enables

aggressive enforcement of such desirable fault models, thus

increasing the impact of prior work. If we state invariants

about the system’s failure behavior and make such behavior

predictable, we are effectively coercing reality into a small

universe governed by well-understood laws.

Moreover, a system in which crash-recovery is cheap

allows us to micro-reboot suspect components before

they fail. By aggressively employing software rejuvena-

tion [16]—rebooting in order to stave off failure induced

by resource exhaustion—we can prevent failures altogether.

The system can immediately trigger component-level re-

juvenation whenever it notices fail-stutter behavior [2], a

trough in offered workload, or based on predictive mathe-

matical models of software aging [10].

Finally, if we admit that most failures can be recovered

by micro-rebooting, crashing every suspicious component

could shorten the fault detection and diagnosis time—a pe-

riod that sometimes lasts longer than repair itself.

3. Properties of Crash-Only Software

In this section we describe a set of properties that we

deem sufficient for a system to be crash-only. In some sys-

tems, some of these properties may not be necessary for

crash-only behavior.

To make components crash-only, we require that all im-

portant non-volatile state be kept in dedicated state stores,

that state stores provide applications with the right abstrac-

tions, and that state stores be crash-only. To make a sys-

tem of interconnected components crash-only, it must be de-

signed so that components can tolerate the crashes and tem-

porary unavailability of their peers. This means we require

strong modularity with relatively impermeable component



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 69

boundaries, timeout-based communication and lease-based

resource allocation, and self-describing requests that carry

a time-to-live and information on whether they are idem-

potent. Many Internet systems today have some subset of

these properties, but we do not know of any that combines

all properties into a true crash-only system.

In section 4 we will show how crash-only components

can be glued together into a robust Internet system based on

a restart/retry architecture; in the rest of this section we de-

scribe in more detail the properties of crash-only systems.

Some relate to intra-component state management, while

others relate to inter-component interactions. We recognize

that some of these sacrifice performance, but we strongly

believe the time has come for robustness to reclaim its sta-

tus as a first-class citizen.

3.1. Intra-Component Properties

In today’s Internet applications there are a small num-

ber of types of state: transactional persistent state, single-

reader/single-writer persistent state (e.g., user profiles, that

almost never see concurrent access), expendable persistent

state (server-side information that could be sacrificed for the

sake of correctness or performance, such as clickstream data

and access logs), session state (e.g., the result set of a previ-

ous search, subject to refinement), soft state (state that can

be reconstructed at any time based on other data sources),

and volatile state. While differentiated mostly by guaran-

teed lifetime, the requirements for these categories of state

lead to qualitatively different implementations.

All important non-volatile state is managed by dedica-
ted state stores, leaving applications with just program
logic. Specialized state stores (e.g., relational and object-

oriented databases, file system appliances, distributed data

structures [14], non-transactional hashtables [15], session

state stores [18], etc.) are much better suited to manage

state than code written by developers with minimal training

in systems programming. Applications become stateless

clients of the state stores, which allows them to have

simpler and faster recovery routines. A popular example

of such separation can be found in three-tier Internet

architectures, where the middle tier is largely stateless and

relies on backend databases to store data.

These state stores must also be crash-only, otherwise the

problem has just moved down one level. Many commercial

off-the-shelf state stores available today are crash-safe (i.e.,

they can be crashed without loss of data), such as databases

and the various network-attached storage devices, but most

are not crash-only, because they recover slowly. Many prod-

ucts, however, offer tuning knobs that permit the administra-

tor to trade performance for improved recovery time, such as

making checkpoints more often in the Oracle DBMS [17].

An example of a pure crash-only state store is the Postgres

database system [25], which uses non-overwriting storage

and maintains all data in a single append-only log. Although

it trades away some performance, Postgres achieves practi-

cally instantaneous recovery, because it only needs to mark

the uncommitted transactions as aborted.

The abstractions and guarantees provided by state stores

must be congruent with application requirements. This

means that the state abstraction exported by the state store is

not too powerful (e.g., offering a SQL interface with ACID

semantics for storing and retrieving simple key-value tu-

ples) and not too weak. A state abstraction that is too weak

will require client components to do some amount of state

management, such as implementing a customer record ab-

straction over an offered file system interface. Good state

abstractions allow applications to operate at their “natural”

semantic level. Offering the weakest state guarantees that

satisfy the application allows us to exploit application se-

mantics and build simpler, faster, more reliable state stores.

For example, Berkeley DB [22] is a storage system sup-

porting B+tree, hash, and record abstractions. It can be ac-

cessed through four different interfaces, ranging from no

concurrency control/no transactions/no disaster recovery to

a multi-user, transactional API with logging, fine-grained

locking, and support for data replication. Applications can

use the abstraction that is right for their purposes and the

underlying state store optimizes its operation to fit those re-

quirements. Workload characteristics can also be leveraged

by state stores; e.g., expecting a read-mostly workload al-

lows a state store to utilize write-through caching, which

can significantly improve recovery time and performance.

We do not advocate that every application have its own

set of state stores. Instead, we believe Internet systems will

standardize on a small number of state store types: ACID

stores (e.g., databases for customer and transaction data),

non-transactional persistent stores (e.g., DeStor [15], a

crash-only system specialized in handling non-transactional

persistent data, like user profiles), session state stores (e.g.,

SSM [18] for shopping carts), simple read-only stores (e.g.,

file system appliances for static HTML and images), and

soft state stores (e.g., web caches). If we think carefully

about the state abstractions required by each application

component and use suitable state stores, we can make these

components crash-only.

3.2. Inter-Component Properties

Subsystems that crash on their own, or that are explic-

itly crash-rebooted for recovery, will temporarily become

unavailable to serve requests. For a crash-only system to

gracefully tolerate such behavior, we need to decouple com-

ponents from each other, from the resources they use, and

from the requests they process.

Components have externally enforced boundaries that
provide strong fault containment. The desired isolation can

be achieved with virtual machines, isolation kernels [26],

task-based intra-JVM isolation [24, 8], OS processes, etc.

Indeed, the Denali isolation kernel is designed for such en-



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association70

capsulation. Web hosting service providers often use mul-

tiple virtual machines on one physical machine to offer

their clients individual web servers they can administer at

will, without affecting other customers. The boundaries be-

tween components delineate distinct, individually recover-

able stages in the processing of requests.

All interactions between components have a timeout.
This includes explicit communication as well as RPC: if no

response is received to a call within the allotted timeframe,

the caller assumes the callee has failed and reports it to

a recovery agent [5], which can crash-restart the callee

if appropriate. Crash-restarting helps ensure the called

component is in a known state; this is safe because the

component is crash-safe and crash-restart is idempotent.

Timeouts provide an orthogonal mechanism for turning

all non-Byzantine failures, both at the component level

and at the network level, into fail-stop events (i.e., the

failed entity either provides results or is stopped), even

though the components are not necessarily fail-stop. Such

behavior is easier to accomodate, and containment of faults

is improved.

Crash-only components recover quickly, thus recovery

is very cheap. Under such circumstances, it becomes ac-

ceptable for the recovery manager to crash-recover suspect

components even when it lacks the certainty that those com-

ponents have indeed failed; the downtime risk of letting the

components run may be higher than crash-rebooting healthy

components.

All resources are leased, rather than permanently allo-
cated, to ensure that resources are not coupled to the compo-

nents using them. Resources include many types of persis-

tent state, such as account profiles for a free e-mail provider:

every time the user logs in, a 6-month lease is renewed;

when the lease expires, all associated data can be purged

from the system. It also includes CPU resources: if a com-

putation is unable to renew its execution lease, it is termi-

nated by a high confidence watchdog [9]. For example, in

PHP, a server-side scripting language used for writing dy-

namic web pages, runaway scripts are killed and an error is

returned to the web browser. Leases [11] give us the ability

to reason about the conditions that hold true of the system’s

resources after a lease expires. Infinite timeouts or leases

are not acceptable; the maximum-allowed timeout and lease

are specified in an application-global policy. This way it is

less likely that the system will hang or become blocked.

Requests are entirely self-describing, by making the
state and context needed for their processing explicit. This

allows a fresh instance of a rebooted component to pick up

a request and continue from where the previous instance

left off. Requests also carry information on whether they

are idempotent, along with a time-to-live; both idempo-

tency and TTL information can initially be set at the system

boundary, such as in the web tier. For example, the TTL

may be determined by load or service level agreements, and

idempotency flags can be based on application-specific in-

formation (which can be derived, for instance, from URL

substrings that determine the type of request). Many in-

teresting operations in an Internet service are idempotent,

or can easily be made idempotent by keeping track of se-

quence numbers or by wrapping requests in transactions;

some large Internet services have already found it practi-

cal to do so [23]. Over the course of its lifetime, a request

will split into multiple sub-operations, which may rejoin,

in much the same way nested transactions do. Recovering

from a failed idempotent sub-operation entails simply reis-

suing it; for non-idempotent operations, the system can ei-

ther roll them back, apply compensating operations, or tol-

erate the inconsistency resulting from a retry. Such trans-

parent recovery of the request stream can hide intra-system

component failures from the end user.

4. A Restart/Retry Architecture

A component infers failure of a peer component either

based on a raised exception or a timeout. When a compo-

nent is reported failed, a recovery agent may crash-reboot

it; the idempotency of crash-shutdown makes this an inex-

pensive way to ensure the component is indeed turned off

before attempting recovery. Components waiting for an an-

swer from the restarted component receive a RetryAfter(n)
exception, indicating that the in-flight requests can be re-

submitted after n msec (the estimated time to recover); this
exception is purely an optimization because, in its absence,

components would have timeouts as a fallback mechanism.

If the request is idempotent and its time-to-live allows it

to be resubmitted, then the requesting component does so.

Otherwise, a failure exception is propagated up the request

chain until either a previous component decides to resub-

mit, or the client needs to be notified of the failure. The web

front-end issues an HTTP/1.1 Retry-After directive to
the client with an estimate of the time to recover, and retry-

capable clients can resubmit the original HTTP request.

idemp = TRUE
TTL = 2,000

idemp = TRUE
TTL = 1,900

http://amazon.com/viewcart/195-23849382

Web server J2EE application server

idemp = TRUE
TTL = 1,500

idemp = TRUE
TTL = 1,500

idemp = TRUE
TTL = 700

SSM

(stateless session EJB)

(stateful session EJB)

Figure 1. A simple restart/retry architecture.

In Figure 1 we show a simple restart/retry example, in

which a request to view a shopping cart splits inside the

application server into one subrequest to a stateful session

EJB (Enterprise JavaBean) that communicates with a ses-

sion state store and another subrequest to a stateless session

EJB. Should the state store become unavailable, the appli-

cation server either receives a RetryAfter exception or times



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 71

out, at which time it can decide whether to resubmit the re-

quest to SSM or not. Within each of the subsystems shown

in Figure 1, we can imagine each subrequest further split-

ting into finer grain subrequests submitted to the respec-

tive subsystems’ components. We have implemented crash-

restarting of EJBs in a J2EE application server; an EJB-level

micro-reboot takes less than a second [5].

Timeout-based failure detection is supplemented with

traditional heartbeats and progress counters. The

counters—compact representations of a component’s pro-

cessing progress—are usually placed at state stores and

in messaging facilities, where they can map state access

and messaging activity into per-component progress. Many

existing performance monitors can be transformed into

progress monitors by augmenting them with request origin

information. Components themselves can also implement

progress counters that more accurately reflect application

semantics, but they are less trustworthy, because they are

inside the components.

The dynamics of loosely coupled systems can sometimes

be surprising. For example, resubmitting requests to a com-

ponent that is recovering can overload it and make it fail

again; for this reason, the RetryAfter exceptions provide
an estimated time-to-recover. This estimated value can be

used to spread out request resubmissions, by varying the re-

ported time-to-recover estimate across different requestors.

A maximum limit on the number of retries is specified in the

application-global policy, along with the lease durations and

communication timeouts. These numbers can be dynami-

cally estimated based on historical information collected by

a recovery manager [5], or simply captured in a static de-

scription of each component, similar to deployment descrip-

tors for EJBs. In the absence of such hints, a simple load

balancing algorithm or exponential backoff can be used.

To prevent reboot cycles and other unstable conditions

during recovery, it is possible to quiesce the system when

a set of components is being crash-rebooted. This can be

done at the communication/RPC layer, or for the system

as a whole. In our prototype, we use a stall proxy [5] in

front of the web tier to keep new requests from entering the

system during the recovery process. Since Internet work-

loads are typically made of short running requests, the stall

proxy transforms brief system unavailability into temporar-

ily higher latency for clients. We are exploring modifica-

tions to the Java RMI layer that would allow finer grain re-

quest stalling.

5. Discussion

Building crash-only systems is not easy; the key to

widespread adoption of our approach will require employ-

ing the right architectural models and having the right tools.

With the recent success of component-based architectures

(e.g., J2EE and .Net), and the emergence of the application

server as an operating system for Internet applications, it is

possible to provide many of the crash-only properties in the

platform itself. This would allow all applications running

on that platform to take advantage of the effort and become

crash-only.

We are applying the principles described here to an open-

source Java 2 Enterprise Edition (J2EE) application server.

We are separating the individual J2EE services (naming, di-

rectory lookup, messaging, etc.) into well-isolated com-

ponents, implementing requests as self-describing contin-

uations, modifying the RMI layer to allow for timeout-

based operation, modifying the EJB containers to imple-

ment lease-based resource allocation, and integrating non-

transactional state stores like DeStor and SSM. A first step

in this direction is described in [5].

We are focusing initially on applications whose work-

loads can be characterized as relatively short-running tasks

that frame state updates. Substantially all Internet services

fit this description, in part because the nature of HTTP has

forced designers into this mold. As enterprise services and

applications (e.g., workflow, customer management) be-

come web-enabled, they adopt similar architectures. We ex-

pect there are many applications outside this domain that

could not easily be cast this way, and for which deriving a

crash-only design would be impractical or infeasible.

In order for the restart/retry architecture to be highly

available and correct, most requests it serves must be idem-

potent. This requirement might be inappropriate for some

applications. Our proposal does not handle Byzantine fail-

ures or data errors, but such behavior can be turned into fail-

stop behavior using well-known orthogonal mechanisms,

such as triple modular redundancy [13] or clever state repli-

cation [6].

In today’s Internet systems, fast recovery is obtained by

overprovisioning and counting on rapid failure detection to

trigger failover. Such failover can sometimes successfully

mask hours-long recovery times, but often detecting failures

end-to-end takes longer than expected. Crash-only software

is complementary to this approach and can help alleviate

some of the complex and expensive management require-

ments for highly redundant hardware, because faster recov-

ering software means less redundancy is required. In addi-

tion, a crash-only system can reintegrate recovered compo-

nents faster, as well as better accommodate removed, added,

or upgraded components.

We expect throughput to suffer in crash-only systems, but

this concern is secondary to the high availability and pre-

dictability we expect in exchange. The first program written

in a high-level language was certainly slower than its hand-

coded assembly counterpart, yet it set the stage for software

of a scale, functionality and robustness that had previously

been unthinkable. These benefits drove compiler writers to

significantly optimize the performance of programs written

in high-level languages, making it hard to imagine today

how we could program otherwise. We expect the benefits of

crash-only software to similarly drive efforts that will erase,

over time, the potential performance loss of such designs.



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association72

6. Conclusion

By using a crash-only approach to building software, we

expect to obtain better reliability and higher availability in

Internet systems. Application fault models can be simplified

through the application of externally-enforced “crash-only

laws,” thus encouraging simpler recovery routines which

have higher chances of being correct. Writing crash-only

components may be harder, but their simple failure behav-

ior can make the assembly of such components into large

systems easier.

The promise of a simple fault model makes stating in-

variants on failure behavior possible. A system whose

component-level and system-level invariants can be en-

forced through crash-rebooting is more predictable, making

recovery management more robust. It is our belief that ap-

plications and services with high availability requirements

can significantly benefit from these properties.

Once we surround a crash-only system with a suitable

recovery infrastructure, we obtain a recursively restartable

system [4]. Transparent recovery based on component-

level micro-reboots enables restart/retry architectures to

hide intra-system failure from the end users, thus improving

the perceived reliability of the service. We find it encourag-

ing that our initial prototype [5] was able to complete 78%

more client requests under faultload than a non-crash-only

version of the system that did not employ micro-reboots for

recovery.

References

[1] T. Adams, R. Igou, R. Silliman, A. M. Neela, and E. Rocco.
Sustainable infrastructures: How IT services can address the
realities of unplanned downtime. Research Brief 97843a,
Gartner Research, May 2001. Strategy, Trends & Tactics Se-
ries.

[2] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-stutter
fault tolerance. In Proc. 8th Workshop on Hot Topics in Op-
erating Systems, Elmau/Oberbayern, Germany, 2001.

[3] G. Candea, J. Cutler, and A. Fox. Improving availability with
recursive micro-reboots: A soft-state system case study. Per-
formance Evaluation Journal, Summer 2003. To appear.

[4] G. Candea and A. Fox. Recursive restartability: Turning the
reboot sledgehammer into a scalpel. In Proc. 8th Workshop
on Hot Topics in Operating Systems, Elmau/Oberbayern,
Germany, 2001.

[5] G. Candea, P. Keyani, E. Kiciman, S. Zhang, and A. Fox.
JAGR: An autonomous self-recovering application server. In
Proc. 5th International Workshop on Active Middleware Ser-
vices, Seattle, WA, June 2003.

[6] M. Castro and B. Liskov. Practical Byzantine fault tolerance.
In Proc. 3rd USENIX Symposium on Operating Systems De-
sign and Implementation, New Orleans, LA, 1999.

[7] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems errors. In Proc. 18th
ACM Symposium on Operating Systems Principles, Lake
Louise, Canada, 2001.

[8] G. Czajkowski and L. Daynés. Multitasking without compro-
mise: A virtual machine evolution. In Proc. Conference on

Object Oriented Programming Systems Languages and Ap-
plications, Tampa Bay, FL, 2001.

[9] C. Fetzer. Perfect failure detection in timed asynchronous
systems. IEEE Transactions on Computers, 52(2):99–112,
Feb. 2003.

[10] S. Garg, A. V. Moorsel, K. Vaidyanathan, and K. S. Trivedi.
A methodology for detection and estimation of software ag-
ing. In Proc. 9th International Symposium on Software Reli-
ability Engineering, Paderborn, Germany, 1998.

[11] C. G. Gray and D. R. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency. In
Proc. 12th ACM Symposium on Operating Systems Princi-
ples, Litchfield Park, AZ, 1989.

[12] J. Gray. Why do computers stop and what can be done about
it? In Proc. 5th Symposium on Reliability in Distributed
Software and Database Systems, Los Angeles, CA, 1986.

[13] J. Gray and A. Reuter. Transaction processing: concepts and
techniques. Morgan Kaufmann, San Francisco, CA, 1993.

[14] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for Internet service con-
struction. In Proc. 4th USENIX Symposium on Operating
Systems Design and Implementation, San Diego, CA, Oct.
2000.

[15] A. C. Huang and A. Fox. Decoupled storage: State with
stateless-like properties. Submitted to the 22nd Symposium
on Reliable Distributed Systems, 2003.

[16] Y. Huang, C. M. R. Kintala, N. Kolettis, and N. D. Ful-
ton. Software rejuvenation: Analysis, module and appli-
cations. In Proc. 25th International Symposium on Fault-
Tolerant Computing, Pasadena, CA, 1995.

[17] T. Lahiri, A. Ganesh, R. Weiss, and A. Joshi. Fast-Start:
Quick fault recovery in Oracle. In Proc. ACM International
Conference on Management of Data, Santa Barbara, CA,
2001.

[18] B. Ling and A. Fox. A self-tuning, self-protecting, self-
healing session state management layer. In Proc. 5th Inter-
national Workshop on Active Middleware Services, Seattle,
WA, 2003.

[19] B. Murphy and N. Davies. System reliability and availability
drivers of Tru64 UNIX. In Proc. 29th International Sym-
posium on Fault-Tolerant Computing, Madison, WI, 1999.
Tutorial.

[20] B. Murphy and T. Gent. Measuring system and software re-
liability using an automated data collection process. Qual-
ity and Reliability Engineering International, 11:341–353,
1995.

[21] K. Nagaraja, R. Bianchini, R. P. Martin, and T. D. Nguyen.
Using fault model enforcement to improve availability. In
Proc. 2nd Workshop on Evaluating and Architecting System
Dependability, San Jose, CA, 2002.

[22] M. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In Pro-
ceedings of the 1999 Summer USENIX Technical Conference,
Monterey, CA, June 1999.

[23] A. Pal. Personal communication. Yahoo!, Inc., 2002.

[24] P. Soper, P. Donald, D. Lea, and M. Sabin. Application iso-
lation API specification. Java Specification Request No. 121,
http://jcp.org/en/jsr/detail?id=121, 2002.

[25] M. Stonebraker. The design of the Postgres storage sys-
tem. In Proc. 13th Conference on Very Large Databases,
Brighton, England, 1987.

[26] A. Whitaker, M. Shaw, and S. Gribble. Scale and perfor-
mance in the Denali isolation kernel. In Proc. 5th USENIX
Symposium on Operating Systems Design and Implementa-
tion, Boston, MA, 2002.


