HotCloud 2011

Data Sovereignty

The importance of geolocating data in the cloud

Zachary N J Peterson
Mark Gondree
Rob Beverly
Your Data is Here
But, maybe it should be here
Or Here?
Breaking the Abstraction

Is data within some **political** boundary

Privacy protections

Intellectual property protections

Regulatory compliance

Has data been **replicated**
Existing Notions of Location in the Cloud

Regions of service

Content-distribution networks

Location guaranteed only by **service-level agreements** and **quality of service** metrics

No **interfaces** or external **techniques** for establishing the location of remote data
Data Sovereignty
Data Sovereignty

Protocols for establishing the **location** and **authenticity** of data in the cloud

In scope: Efficiently positioning **some copy** of data within some geopolitical boundary

Not in scope: the location of **any copy** of data
State of the Art
Geolocation

Geolocation of **hosts** (NICs)

Evidence gathering (whois, extrinsic evidence)

Delay-based measurements

Wang *et al.* NSDI ‘10: Street-level geolocation
Possession of Data

Provable Data Possession (PDP) & Proofs of Retrievability (POR)

Probabilistic challenge & response protocols

Designed to **minimize** storage, computation, communication complexity

Techniques: Homomorphic signatures, PRFs, BLS signatures, MACs
Naïve Composition

Naïvely composing geolocation & PDP (e.g. serially) provides **limited assurance**

Data exists **somewhere**, and the **responder** is within some physical bound

(Not: the **data** exists within some physical bound)
Adversaries

DS considers a more powerful adversary

One who may actively fool the challenger

e.g. act as proxy for remote storage,
cache subsets of data,
manipulate delay measurements

Adding delay increases perceived distance
An Initial Approach
An Initial Approach

Leverage MAC-PDP:

Tag: $t_i = \text{HMAC}_k(D_i)$

Store: $<D_i, t_i>$

Challenge: $<D_c, t_c>$ for c indices

Verify: $\text{HMAC}_k(D_c) =? t_c$
An Initial Approach

Augment MAC-PDP with network delay measurements

Query blocks one at a time, randomly

Measure the response time

Single response verifies data authenticity and calculates distance
Single Challenger
Multiple Challengers
An Initial Approach

Requires no server-side computation

Can be implemented on existing infrastructure, as part of an SLA compliance tool

But, at a high communication cost

And, susceptible to honest, variable overheads
Future Directions

Evaluation of our initial idea

Landmark placement and operation

More efficient and less adversarial DS schemes

Given *existing* infrastructure

Given some *future* infrastructure

Ways to bind *computation* to a location