Large-scale Incremental Data Processing with Change Propagation

Pramod Bhatotia
Alexander Wieder, Istemi Ekin Akkus, Rodrigo Rodrigues, Umut A. Acar

MPI-SWS, Germany

USENIX HotCloud 2011
Large-scale Data Processing

- Need to **repeatedly** process **evolving data-sets**
 - For Web search PageRank is re-computed for every crawl

- Online data-sets evolve **slowly**
 - Successive Yahoo! Web crawls change by **0.1% to 10%**

- Need for **incremental computations**
 - Instead of re-computing from scratch
Incremental Data Processing

- **Systems** for incremental processing
 - Google Percolator [OSDI’10]
 - Yahoo! CBP [SoCC’10]

- **Drawbacks** of these systems
 - Adopt a new programming model
 - Require implementation of dynamic algorithms
Incremental Data Processing

- **Systems** for incremental processing
 - Google Percolator [OSDI’10]
 - Yahoo! CBP [SoCC’10]

- **Drawbacks** of these systems
 - Adopt a new *programming model*
 - Require implementation of *dynamic algorithms*
Example of a Static Algorithm

Compute the maximum element in a list

Scan the list and compute max in $O(n)$
Static Algorithm with Input Change

Modify the input and find the max

Static algorithms re-computes from scratch: $O(n)$
Example of a Dynamic Algorithm

maintain maximum heap
Example of a Dynamic Algorithm

Incremental updates in $O(\log n)$
Asymptotically faster than the static algorithm
Example of a Dynamic Algorithm

Incremental updates in $O(\log n)$
Asymptotically faster than the static algorithm
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Simplicity</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linked list (Static)</td>
<td>Easy</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Heap (Dynamic)</td>
<td>Hard</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>
Goals

- Retain the *simplicity* of static algorithms
- Achieve the *efficiency* of dynamic algorithms

Can we meet these goals in *distributed systems*?

This talk: *MapReduce*
Our Approach

• Take an unmodified MapReduce program
• Automatically make it incremental

• Basic principle: **Self-adjusting computations**
 • Break computation into sub-computations
 • Memoize the results of sub-computations
 • Track dependencies between input and computation
 • Re-compute only the parts affected by changes
MapReduce with Change Propagation

Changes propagate through dependence graph
MapReduce with Change Propagation

Changes propagate through dependence graph

Read input
Map tasks
Reduce tasks
Write output
Challenges

- How to efficiently detect insertion/deletion?
- How to minimize data movement?
- How to perform fine-grained updates?
Challenges

• How to efficiently detect insertion/deletion?

• How to minimize data movement?

• How to perform fine-grained updates?
How to control granularity of Reduce?

Read input
Map tasks
Reduce tasks
Write output
How to control granularity of Reduce?
Controlling Reduce Granularity

- Leverage Combiners: pre-processing of Reduce
- Co-located with Map task for local reduction
- Use them to break up Reduce work
Contraction Phase: Tree of Combiners

- Read input
- Map tasks
- Reduce tasks
- Write output
Contraction Phase: Tree of Combiners

Read input
Map tasks
Contraction
Reduce tasks
Write output
Evaluation: Proof-of-concept

- Single-node MapReduce with change propagation
- Computing maximum for a list with single modification

SpeedUp = \frac{\text{Run-time for computing from scratch}}{\text{Run-time for incremental computation}}

Asymptotic gains with increase in size of data-set
Summary

Goals:
• Retain the simplicity of static algorithms
• Achieve the efficiency of dynamic algorithms

This talk:
• How to achieve these goals in MapReduce

Future:
• Apply principles to broad class of data processing systems