
Static Scheduling in Clouds

Thomas A. Henzinger

IST Austria

Anmol V. Singh

IST Austria

Vasu Singh

IST Austria

Thomas Wies

IST Austria

Damien Zufferey

IST Austria

Abstract

Cloud computing aims to give users virtually unlimited

pay-per-use computing resources without the burden of

managing the underlying infrastructure. We present a

new job execution environment Flextic that exploits scal-

able static scheduling techniques to provide the user with

a flexible pricing model, such as a tradeoff between dif-

ferent degrees of execution speed and execution price,

and at the same time, reduce scheduling overhead for

the cloud provider. We have evaluated a prototype of

Flextic on Amazon EC2 and compared it against Hadoop.

For various data parallel jobs frommachine learning, im-

age processing, and gene sequencing that we considered,

Flextic has low scheduling overhead and reduces job du-

ration by up to 15% compared to Hadoop, a dynamic

cloud scheduler.

1 Introduction

Computing services that are provided by datacenters over

the internet are now commonly referred to as cloud com-

puting. The price that a user is required to pay for the

execution of a particular job in the cloud depends on the

length of the job and the amount of data transfer involved

in the job execution. We believe that this pricing model

is intuitive for long term rentals of computing instances

on the cloud. However, in our experience of running

MapReduce jobs using Amazon Elastic MapReduce [2],

we observed nonlinearity in pricing due to the fact that

instances are rented on per-hour basis. Amazon Elastic

MapReduce allows the user to specify the number of in-

stances for the mappers, the mapper and reducer tasks,

and the input data. For example, consider a MapReduce

job that finishes in 61 minutes using 10 instances, and

in 105 minutes using 6 instances. The cloud user cer-

tainly pays a lot less for the job with 6 instances. A more

user-friendly pricing model will inform the user before-

hand about the price of the computation depending upon

Figure 1: Flextic Workflow

the number of instances rented. However, as clouds con-

ventionally rely on dynamic scheduling, it is not possi-

ble for clouds to quote a certain price to the user before

the actual execution of the job. Dynamic scheduling is

generally justified by the lack of information of the job

components (called tasks). It turns out that in a large

fraction of jobs from domains of machine learning, bio-

computing, and image processing, it is indeed possible to

estimate the maximum time required for each task in the

job. We believe that static scheduling for these jobs can

give significant benefits over dynamic scheduling. First

of all, static scheduling imposes less runtime overhead.

Moreover, static scheduling allows for pre-fetching re-

quired data and pipelining different stages of task execu-

tion. At the same time, static scheduling is more user-

friendly, as the precomputed schedule allows to quote a

price for the computation. Based on static scheduling,

we develop Flextic, a system where the user specifies the

job in terms of mapper and reducer tasks (in general a di-

rected acyclic graph of tasks), the input data, and instead

of choosing the number of instances, chooses a price of

execution and the finish time.

A brief overview of Flextic. We first describe our vi-

sion of Flextic (shown in Figure 1). (1) A user writes

1

a program in the Flextic job description language spec-

ifying the job characteristics, like maximum task dura-

tions and data sizes. (2) The program is parsed into an

execution plan. An execution plan is a directed acyclic

graph, corresponding to the user program. The execu-

tion plan is input to a static job scheduler. (3) The static

job scheduler takes the execution plan and computes pos-

sible schedules for executing the user job on the cloud.

(4) These schedules (in terms of finish time and price)

are presented to the user. (5) The user chooses a sched-

ule from the set of presented schedules, thus specifying a

price and deadline for her job. (6) The chosen schedule is

sent to the job execution platform, which despatches the

individual tasks of the execution plan to the virtual ma-

chines where they are executed as scheduled. (7) When

a task finishes, the execution platform informs the job

scheduler about its completion. The user is refunded for

the early completion of her job according to the pricing

policy.

Evaluation. We evaluate Flextic on top of the Ama-

zon EC2 cloud. We choose jobs from different domains:

gene sequencing, population genetics, machine learning,

and image processing. We evaluate the scheduling of

Flextic. We show that Flextic has a low scheduling la-

tency: for example, on a cloud with 200 cores, for a

MapReduce job with around 6500 tasks, Flextic can com-

pute ten different schedules in around two seconds. In the

second part, we consider the image processing MapRe-

duce job, and compare the performance of Flextic with a

Hadoop scheduler [3] on Amazon EC2. We observe that

due to the large communication overhead for Hadoop at

runtime, Flextic outperforms Hadoop by upto 15% in job

execution time.

2 Flextic

We now describe the different components of Flextic.

An Example. Consider a user who wants to use Im-

ageMagick [10] to apply an image transformation on

a set of images in a data store. The transformation

is composed of the ImageMagick transforms paint,

emboss and average. To every image she first applies

the paint and emboss transforms separately, produc-

ing two new intermediate images. Then she uses the

average transform to average the intermediate images

together with the original image into a single new output

image. The final image is put back into the data store.

Figure 2 shows a description of this job in the Flextic job

description language. We now describe the job language

in more detail.

The Job Language. The Flextic job language is simple,

declarative, and dataflow oriented. Our language enables

the user to describe data flow graphs consisting of indi-

// schemas

mapper pnt ([i1]) ([o1]) {

timeout 20 * i1

memory 200

o1 = i1

binary ’convert -paint 10’

}

mapper emb ([i1]) ([o1]) {

timeout 10 * i1

memory 200

o1 = i1

binary ’convert -emboss 10’

}

mapper avg ([i1], [i2], [i3]) ([o1]) {

timeout 3 * (i1 + i2 + i3)

memory 200

o1 = i1

binary ’convert -average’

}

// connections

pnt.o1 = avg.i1

emb.o1 = avg.i2

pnt.i1 = match * from img_buc

emb.i1 = match * from img_buc

avg.i3 = match * from img_buc

avg.o1 = store $avg.i3 into res_buc

Figure 2: Job description for a composed image transfor-

mation that is applied to a set of images stored in a data

base

vidual tasks and intermediate data objects in a concise

way. A job consists of schemas describing templates of

tasks, and connections describing the primary inputs and

outputs of the job, and how the tasks interact. A schema

declaration consists of a schema type and a task specifi-

cation. We distinguish two schema types: mapper and

reducer schemas. A task specification consists of (a) the

input and output ports, (b) the executable for the task, (c)

the timeout duration and estimated memory consump-

tion, and (d) estimates for the size of the output objects.

These requirements can be specified as simple functions

in terms of the size of input data objects. For instance,

in our example the user specifies that each paint task

should not run longer than 20 seconds per MB of the size

of the input image.

A connection is either of the following: (i) an output of

a schema to one or multiple inputs of other schemas, (ii) a

schema input to database objects, or (iii) a schema output

to database objects. We provide two methods to retrieve

files from the database, fetch file from bucket

and match pattern in bucket, and one method

to put files into the database, store file into

bucket.

A high-level diagram of parsing a user job is shown

in Figure 3. The unfolding of a job description into an

execution plan works as follows. How connections and

schemas are instantiated to objects, respectively tasks,

2

Figure 3: Job Parser

is ultimately determined by the input data connections.

Therefore these connections are instantiated first. A

connection of the form fetch file from bucket

is instantiated to a single data object. For instantiat-

ing a connection of the form match pattern in

bucket, the job parser interacts with the database as-

sociated with the compute nodes to find out the num-

ber of matching patterns. It then generates a data ob-

ject for each match. For every input object, the size of

the object is also stored. The remainder of the job de-

scription is then instantiated in topological order as fol-

lows. A mapper schema results in multiple task instanti-

ations (mappers), where each mapper handles one of the

input objects for each input port of the schema and re-

turns one output object per output port. We require that

the number of data objects that an input port of a map-

per schema is instantiated to, is the same for all input

ports of the schema. This number determines the num-

ber of mappers. The order in which input objects from

multiple input ports are combined by the mappers is de-

termined by the order in which they are retrieved from

the database. A reduce schema results in an instantia-

tion of a single task (reducer), where the input objects to

the reducer are the input objects appearing on each in-

put port of the schema. The sizes of the input objects are

then propagated through the unfolding of the job descrip-

tion to obtain the task durations and output object sizes,

according to the estimates specified in the schema decla-

rations. Figure 4 shows part of an execution plan for the

job in Figure 2: each of the three task schemas results

in one task per image that is put in the data store bucket

img buc.

Using the specified resource estimates, Flextic uses

static scheduling to compute a selection of possible

schedules for executing the execution plan on the dat-

acenter. These schedules and their prices are then pre-

Tasks

Task id Duration Memory

1 180 200

2 60 200

3 54 200

...

Objects

Object id Source Destination Size

1 img buc/1.jpg 1.i1 6 MB

2 img buc/1.jpg 2.i1 6 MB

3 img buc/1.jpg 3.i1 6 MB

4 1.o1 3.i2 6 MB

5 2.o1 3.i3 6 MB

6 3.o1 res buc/1.jpg 6 MB

...

Figure 4: An execution plan for the user job in Figure 2

sented to the user. The price of a schedulemay depend on

factors such as the amount of computation needed to ex-

ecute the job, the number and configuration of machines

used for the computation, and the data transfer volume.

As jobs scheduled far in the future may allow clouds

to optimize resource utilization, we advocate price dis-

counts for schedules that have a delayed start time.

Scheduling in Flextic. To implement Flextic, we need

to tackle some challenges in scheduling. First of all, we

need static schedulers that can efficiently schedule large

jobs on large data centers. Recently, we developed ex-

citing static scheduling techniques [7] for large jobs on

clouds, based on ideas of abstraction refinement (AR).

AR schedulers build abstractions (concise coarse repre-

sentations) of the job and the data center for scheduling.

These abstractions are orders of magnitude smaller than

the concrete job and data center. For example, an abstrac-

tion of a data center remembers the number of instances

belonging to different configurations, instead of every in-

stance in the data center. We showed that AR schedulers

can compute static schedules for jobs of up to a thousand

tasks on a data center with a few thousand computing

nodes within a few seconds [7].

The static scheduler despatches the tasks to the com-

pute nodes as per the static schedule. On each compute

node, a job daemon is responsible for the actual task ex-

ecution. We use existing cloud managing platforms, like

EC2 [1] and Eucalyptus [5] for managing the virtual ma-

chines and the associated data stores (S3 for EC2 and

Walrus for Eucalyptus). We use s3curl for commu-

nication between the compute nodes and the data store.

The job daemon is implemented in C++ and manages all

tasks that have been scheduled on a given compute node.

The communication between job daemons and the job

despatcher, as well as the communication among individ-

3

ual job daemons is implemented using Google protocol

buffers.

The statically computed schedules depend on the

user’s estimation of the resource requirements of the

jobs. Therefore they can only give rough guidelines

for the actual execution. The execution platform may

reveal many opportunities to further optimize the stati-

cally computed schedules at runtime. For example, tasks

may finish long before their estimated timeouts. Other

tasks whose dependencies are already met may be used

to fill the emerging idle time slots. Flextic uses a dynamic

scheduling technique, called backfilling [6, 13], that al-

lows the execution platform to make local scheduling de-

cisions by dynamically reordering tasks assigned to indi-

vidual compute nodes.

3 Experimental Evaluation

We first describe the suite of jobs we considered in our

evaluation. Then, we evaluate the performance of the job

scheduler and the job execution platform. In our evalua-

tion, we consider the AR scheduler FISCH [7].

User jobs. We chose applications from the domains of

population genetics, gene sequencing, machine learning,

and image processing to evaluate Flextic. Most of these

applications were obtained from the scientific research

groups at IST Austria. These applications range across

the spectrum of computation and data requirements. All

jobs are data parallel, however the number of input data

and the size of the input varies for each job. The popu-

lation genetics job is a MapReduce job, where a mapper

computes the likelihood for a given set of parameters.

The reducer stores the set of likelihoods to a file. The

gene sequencing job is a data parallel job that allows to

align multiple reads simultaneously. The output of the

alignment is a file. The image processing job applies im-

age transformations on a set of images. It is a MapRe-

duce job, where every mapper applies an image transfor-

mation to an image. The machine learning job treats the

problem of object localization in a natural image. We

created a MapReduce job, where a mapper analyzes the

localization for one particular image and returns the four

coordinates in text form. The reducer concatenates the

output of the mappers and puts it in the data store. For

all jobs, we asked the user the maximum running time

for each task in the job.

Evaluation of scheduling latency. For computing the

scheduling latency, we consider a cloud of Amazon EC2

instances [1] consisting of types small, large, and ex-

tra large. In total, our cloud consists of 200 virtual

cores. Table 1 shows the time required by Flextic to ob-

tain ten different schedules. We also give the size of the

execution plan, and the time required to create it after

Job
EP Details Scheduling

nodes edges time latency

Gene Sequencing
11 22 0.026 s 0.01 s

21 42 0.043 s 0.02 s

Machine Learning
183 550 0.184 s 0.26 s

6711 7732 1.251 s 2.29 s

Population Genetics
22 45 0.063 s 0.02 s

210 421 0.195 s 0.31 s

Image Processing
401 802 0.263 s 0.43 s

2005 2406 0.731 s 1.36 s

Table 1: Evaluation of the time required for static

scheduling. We run two examples for each job.

 20

 40

 60

 80

 100

 120

10 20 30 40 50 60 70 80

N
o
r
m
a
l
i
z
e
d

j
o
b

d
u
r
a
t
i
o
n

Number of virtual cores

Hadoop
FISCH

Figure 5: Comparison of job duration on Flextic and

Hadoop.

fetching the required information from Amazon S3. We

observe that for the machine learning job with around

6700 tasks, Flextic requires only 2.3 seconds to compute

around ten different schedules. The time required by the

static scheduler depends on the regularity of the job and

the quality measures set for scheduling [7]. We set the

quality measure as 90% cloud utilization.

Evaluation of the execution platform. We evaluate

the execution platform of Flextic on the image process-

ing job. We choose this job due to large amounts of data

transfer (around 3 MB per image) and long computations

(around 10 seconds per image transformation). We con-

sider clouds of different sizes, ranging from 10 to 80 vir-

tual cores. We create the clouds in U.S. East (N. Virginia)

region. We first use Hadoop streaming (version 0.19.0)

to run these jobs. To compare Flextic against Hadoop, we

let Flextic choose the fastest schedule obtained using the

static scheduler, and use instance-local backfilling. Fig-

ure 5 compares the job duration obtained with Hadoop

with that obtained with Flextic. As static scheduling in

Flextic frees the runtime from scheduling overheads, we

observe that Flextic performs better (by up to 15%) than

completely dynamic scheduling techniques like Hadoop.

Our evaluation inspires us to further explore static

4

scheduling techniques in clouds. We believe that coarse

static schedules augmentedwith dynamic scheduling can

reduce the runtime scheduling overheads in clouds, and

at the same time, provide users with certain price and

deadline guarantees for their jobs.

4 Concluding Remarks

Related work. Our current job description language

serves as a sample input interface to Flextic. It incorpo-

rates ideas from existing programming models for data-

oriented and computation-oriented programs. In partic-

ular, we provide MapReduce constructs to enable a con-

cise description of common patterns of data-parallelism.

Unlike the original MapReduce framework [4] and its

derivatives [3, 19], we allow a more expressive lan-

guage for user jobs. Our language draws inspiration from

systems such as DryadLINQ [18], Pig Latin [14], and

Sawzall [16].

Work on static multiprocessor scheduling dates back

to 1977 [17], where the problem of scheduling a directed

acyclic graph of tasks to two processors is solved using

network flow algorithms. Further research in this direc-

tion focused on scheduling distributed applications on a

network of homogeneous processors [12]. As optimal

multiprocessor scheduling of directed task graphs is an

NP-complete problem [15], heuristics are vastly used. A

wide range of such static scheduling heuristics have been

classified and rigorously studied [11]. Backfilling tech-

niques [6, 13] have been studied in the context of IBM

SP scheduling system.

Our earlier work in the direction of static schedul-

ing for clouds started with computing concrete greedy

schedules for simulated jobs on simulated clouds [8]. We

observed that the large scheduling latencies make static

scheduling impractical for large clouds, which led to sev-

eral interesting research problems [9]. To reduce the

scheduling latencies, we came up with the idea of ab-

straction refinement based schedulers [7].

Further directions. To develop Flextic into a mature

scheduling system comparable to Hadoop, we have to

address several issues.

Detailed abstractions. At this point, our static sched-

ulers capture compute speed and link bandwidths in their

abstractions. It is important to augment Flextic with ab-

stractions with more information aboutmemory, network

congestion, etc. Moreover, we need to refine schedules

more intelligently.

Progress monitoring. Similar to Hadoop, we plan to

add a monitoring system to the job execution platform

of Flextic, that allows a user to keep track of individ-

ual tasks. We observed this requirement while executing

jobs on Amazon EC2. While finding the source of job

failure was easy for Hadoop (using the JobTracker inter-

face), we currently need to go through the JobDaemon

log in order to find the cause of failure in case of Flextic.

Handling incorrect resource estimates. It is important to

define strategies for cases when the actual resource re-

quirements are larger than the user provided estimates.

First of all, the cause of the overshoot must be dis-

covered. If the cause is interference from other users’

jobs, then this should be treated as a fault caused by the

cloud provider, and appropriately handled according to

the fault tolerance mechanism. Otherwise, if the user

provided small estimates and the cloud has enough free

resources to continue the execution, the user should be

informed that she has to pay more for the job execution

than quoted (possibly including a penalty for a bad es-

timate). In the case that the cloud does not have free

resources, the job must be aborted.

Fault tolerance. To handle faults, we plan to explore

static scheduling techniques that encompass replication

and checkpointing in the context of Flextic.

5 Conclusion

We presented a new system prototype Flextic that

presents the user with a declarative language to express

the job, and uses static scheduling techniques to allow the

user to choose from multiple scheduling options, accord-

ing to her price and time constraints. Leaving the respon-

sibility of scheduling the jobs with the cloud provider

enables the provider to achieve good utilization of its re-

sources. We believe that our work shall ignite interest in

static scheduling techniques in clouds.

References

[1] Amazon Elastic Compute Cloud. http://aws.

amazon.com/ec2.

[2] Amazon Elastic Map Reduce. http://aws.

amazon.com/elasticmapreduce.

[3] Apache Hadoop. http://wiki.apache.

org/hadoop.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified

data processing on large clusters. Communications

of the ACM, pages 107–113, 2008.

[5] Eucalyptus Public Cloud. http://open.

eucalyptus.com.

[6] Dror G. Feitelson and Ahuva Mu’alem Weil. Uti-

lization and predictability in scheduling the IBM

SP2 with backfilling. In IPPS/SPDP, pages 542–

546, 1998.

5

[7] T. A. Henzinger, V. Singh, T.Wies, and D. Zufferey.

Scheduling large jobs by abstraction refinement. In

EuroSYS, pages 329–342, 2011.

[8] Thomas A. Henzinger, Anmol V. Singh, Vasu

Singh, Thomas Wies, and Damien Zufferey. Flex-

PRICE: Flexible provisioning of resources in a

cloud environment. In IEEE International Confer-

ence on Cloud Computing CLOUD. IEEE, 2010.

[9] Thomas A. Henzinger, Anmol V. Singh, Vasu

Singh, ThomasWies, and Damien Zufferey. A mar-

ketplace for cloud resources. In EMSOFT. ACM,

2010.

[10] ImageMagick. http://www.imagemagick.

org.

[11] Y-K. Kwok and I. Ahmad. Static scheduling algo-

rithms for allocating directed task graphs to multi-

processors. ACM Computing Surveys, pages 406–

471, 1999.

[12] C-H. Lee and K. G. Shin. Optimal task assignment

in homogeneous networks. IEEE Transactions on

Parallel and Distributed Systems, pages 119–129,

1997.

[13] David A. Lifka. The ANL/IBM SP scheduling sys-

tem. In Job Scheduling Strategies for Parallel Pro-

cessing, pages 295–303, 1995.

[14] C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins. Pig Latin: A not-so-foreign language

for data processing. In ACM SIGMOD Conference,

pages 1099–1110, 2008.

[15] Christos Papadimitrious and Mihalis Yannakakis.

Towards an architecture-independent analysis of

parallel algorithms. In STOC, pages 510–513, New

York, NY, USA, 1988. ACM.

[16] R. Pike, S. Dorward, R. Griesemer, and S. Quin-

lan. Interpreting the data: Parallel analysis with

Sawzall. Scientific Programming, pages 277–298,

2005.

[17] H. S. Stone. Multiprocessor scheduling with the aid

of network flow algorithms. IEEE Transactions on

Software Engineering, pages 85–93, 1977.

[18] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlings-

son, P. K. Gunda, and J. Currey. DryadLINQ: A

system for general-purpose distributed data-parallel

computing using a high-level language. In OSDI,

pages 1–14, 2008.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. H.

Katz, and I. Stoica. Improving MapReduce perfor-

mance in heterogeneous environments. In OSDI,

pages 29–42, 2008.

6

