Spark
Cluster Computing with Working Sets

Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica
Background

MapReduce and Dryad raised level of abstraction in cluster programming by hiding scaling & faults. However, these systems provide a limited programming model: acyclic data flow.

Can we design similarly powerful abstractions for a broader class of applications?
Spark Goals

Support applications with *working sets* (datasets reused across parallel operations)
 » Iterative jobs (common in machine learning)
 » Interactive data mining

Retain MapReduce’s fault tolerance & scalability

Experiment with programmability
 » Integrate into Scala programming language
 » Support interactive use from Scala interpreter
Programming Model

Resilient distributed datasets (RDDs)
 » Created from HDFS files or “parallelized” arrays
 » Can be transformed with map and filter
 » *Can be cached across parallel operations*

Parallel operations on RDDs
 » Reduce, collect, foreach

Shared variables
 » Accumulators (add-only), broadcast variables
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split(\'\t\')(2))
cACHEDmsgs = messages.cache()
cACHEDmsgs.filter(_.contains("foo"))\'.count
```

...
RDD Representation

Each RDD object maintains *lineage* information that can be used to reconstruct lost partitions

Ex:
```scala
cachedMsgs = textFile(...).filter(_ contains("error"))
  .map(_.split('t')(2))
  .cache()
```
Example: Logistic Regression

Goal: find best line separating two sets of points
Logistic Regression Code

```scala
val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
  val gradient = data.map(p => {
    val scale = (1/(1+exp(-p.y*(w dot p.x))) - 1) * p.y
    scale * p.x
  }).reduce(_ + _)
  w -= gradient
}

println("Final w: " + w)
```
Logistic Regression Performance

- First iteration: 174 s
- Further iterations: 6 s
- 127 s / iteration

Graph shows running time (s) vs number of iterations for Hadoop and Spark.
Demo
Conclusions & Future Work

Spark provides a limited but efficient set of fault tolerant distributed memory abstractions
 » Resilient distributed datasets (RDDs)
 » Restricted shared variables

In future work, plan to further extend this model:
 » More RDD transformations (e.g. shuffle)
 » More RDD persistence options (e.g. disk + memory)
 » Updatable RDDs (for incremental or streaming jobs)
 » Data sharing across applications
Related Work

DryadLINQ
» Build queries through language-integrated SQL operations on lazy datasets
» Cannot have a dataset persist across queries
» No concept of shared variables for broadcast etc

Pig and Hive
» Query languages that can call into Java/Python/etc UDFs
» No support for caching a datasets across queries

OpenMP
» Compiler extension for parallel loops in C++
» Annotate variables as read-only or accumulator above loop
» Cluster version exists, but not fault-tolerant

Twister and Halooop
» Iterative MapReduce implementations using caching
» Can’t define multiple distributed datasets, run multiple map & reduce pairs on them, or decide which operations to run next interactively