
Cloud analytics: Do we really need to reinvent the storage stack?

Rajagopal Ananthanarayanan, Karan Gupta, Prashant Pandey, Himabindu Pucha
Prasenjit Sarkar, Mansi Shah, Renu Tewari

IBM Research

Abstract

Cloud computing offers a powerful abstraction that provides a scal-
able, virtualized infrastructure as a service where the complexity
of fine-grained resource management is hidden from the end-user.
Running data analytics applications in the cloud on extremely large
data sets is gaining traction as the underlying infrastructure can meet
the extreme demands of scalability. Typically, these applications
(e.g., business intelligence, surveillance video searches) leverage the
MapReduce framework that can decompose a large computation into
a set of smaller parallelizable computations. More often than not the
underlying storage architecture for running a MapReduce application
is based on an Internet-scale filesystem, such as GFS, which does not
provide a standard (POSIX) interface.

In this paper we revisit the debate on the need of a new non-
POSIX storage stack for cloud analytics and argue, based on an
initial evaluation, that it can be built on traditional POSIX-based
cluster filesystems. In the course of the evaluation, we compare the
performance of a traditional cluster file system and a specialized
Internet file system for a variety of workloads for both traditional
and MapReduce-based applications. We present modifications to
the cluster filesystem’s allocation and layout information to better
support the requirements of data locality for analytics applications.
We introduce the concept of a metablock that can enable the choice
of a larger block granularity for MapReduce applications to coexist
with a smaller block granularity required for traditional applications.
We show that a cluster file system enhanced with metablocks can
not only match the performance of specialized Internet file systems
for MapReduce applications but also outperform them for traditional
applications.

1 Introduction
Cloud computing is a compelling new paradigm that pro-
vides a scalable, virtualized infrastructure as a service, thereby,
enabling the end-user to exploit supercomputing power on-
demand without investing in huge infrastructure and manage-
ment costs. This potential for unlimited scaling has made
possible a plethora of cloud-based data analytics applications
that can process extremely large sets of data. These include
newer applications for business intelligence, semantic web
searches, video surveillance search, medical image analysis
along with traditional data-intensive scientific applications
such as satellite image pattern matching. A common feature
in all these applications is that they are extremely parallel
and their data access bandwidth requirements dominates other
resource requirements.

Such data-intensive applications where the computation
can be easily decomposed into smaller parallel computations
over a partitioned data set are a perfect match for Google’s
MapReduce framework [5] that provides a simple program-
ming model using map and reduce functions over key/value
pairs that can be parallelized and executed on a large clus-
ter of machines. More recently, an open source version of
MapReduce developed under the Apache Hadoop project is
becoming a popular platform for building cloud data analytics
applications.

The underlying architecture for cloud computing typically
comprises of large distributed clusters of low-cost servers in
concert with a server virtualization layer and parallel pro-
gramming libraries. One of the key infrastructure elements
of the cloud stack, for data analytics applications, is a storage
layer designed to support the following features: (1) scalable
– to store petabytes of data, (2) highly reliable – to handle
frequently-occurring failures in large systems, (3) low-cost –
to maintain the economics of cloud computing, and (4) effi-
cient – to best utilize the compute, network and disk resources.
The prevailing trend is to build the storage layer using an
Internet scale filesystem such as Google’s GFS [6] and its
numerous clones including HDFS [1] and Kosmix’s KFS [2].
The essential aspect of these filesystems is that they provide
extreme scalability with reliability by striping and replicating
the data in large chunks across the locally attached storage of
the cluster servers, but simplify design and implementation
by not providing a POSIX interface or consistency semantics.
Thus, they work well for MapReduce applications but cannot
support traditional applications. We refer to such MapReduce
focused file systems as specialized in the rest of the paper.

In this paper, we revisit the debate on the need of a new
non-POSIX storage stack for cloud analytics and argue, based
on an initial evaluation, that it can be built on traditional
POSIX-based cluster filesystems. Existing deployments of
cluster file systems such as Lustre [7], PVFS [3], and GPFS [8]
show us that they can be extremely scalable without being ex-
tremely expensive. Commercial cluster file systems can scale
to thousands of nodes while supporting 100 GBps sequential
throughput. Furthermore, these file systems can be configured
using commodity parts for lower costs without the need for
specialized SANs or enterprise-class storage. More impor-
tantly, these file systems can support traditional applications
that rely on POSIX file API’s and provide a rich set of man-
agement tools. Since the cloud storage stack may be shared

1



across different classes of applications it is prudent to rely
on standard file interfaces and semantics that can also easily
support MapReduce style applications instead of being locked
in with a particular non-standard interface.

To this end, we address the challenges posed by the access
characteristics of cloud analytics applications to traditional
cluster file systems. First, we observe that MapReduce-based
applications can co-locate computation with data, thus reduc-
ing network usage. We present modifications to the cluster
filesystem’s data allocation and data layout information to
better support the requirements of data locality for analytics
applications. Next, we observe that using large stripe unit
sizes (or chunks) benefits MapReduce applications at the cost
of other traditional workloads. To address that, we introduce a
novel concept called metablock that can enable the choice of a
larger block granularity for MapReduce applications to coex-
ist with a smaller block granularity required for pre-fetching
and disk accesses for traditional applications. While most
analytics applications are read-intensive, we also enable write
affinity that can better the performance of storing intermediate
results by writing data locally.

We compare the performance of both an Internet scale
filesystem (Hadoop’s HDFS) with a commercial cluster filesys-
tem (IBM’s GPFS) over a variety of workloads. We show that
a suitably optimized cluster filesystem can match the perfor-
mance of HDFS for a MapReduce workload (ideal data access
pattern for HDFS) while outperforming it for the data access
patterns of traditional applications. Concurrent to our work,
researchers at CMU have undertaken an effort to provide sup-
port for Hadoop’s MapReduce framework with PVFS [9]. It
should be noted that we don’t report HDFS performance for
traditional file benchmarks since these benchmarks cannot be
run on HDFS (even running with a FUSE layer only provides
a subset of the POSIX interface).

2 Challenges
In this section, we evaluate the suitability of cluster file sys-
tems for cloud analytics applications. In our study, we selected
for comparison the HDFS (Hadoop 18.1) filesystem which
is the de-facto filesystem for Apache’s Hadoop project and
IBM’s GPFS cluster filesystem which is widely deployed in
high-performance computing sites and whose source was read-
ily available to us for modification.

The hardware configuration we used is based on the IBM
iDataPlex modular hardware architecture consisting of a sin-
gle iDataPlex system with 42 nodes in two racks, where each
node has 2 quad-core 2.2 GHz Intel Core2Duo CPUs, 8 GB
RAM and 4 750 GB SATA drives. The nodes are connected
by 2 Gigabit Ethernet switches (one per rack) with a 1 Gbps
inter-switch link. The switch is Blade Network Technologies
G8000 RackSwitch with 48 1 Gbps ports. The software run-
ning on each of these nodes in Linux 2.6.18 (CentOS 5.3)
with two disks dedicated to the ext3 file system for storing
intermediate results from computations and the remaining two
disks dedicated to either GPFS or HDFS. We use 16 nodes in

File Completion Network MB
System Time (seconds) Transferred
HDFS 10 10
GPFS 220 66980

Table 1: Initial Evaluation of GPFS and HDFS.

the experiment with 8 nodes on either rack.

Function shipping. The first drawback we found of cluster
file systems is that they do not support shipping computation to
data, a key feature exploited by the MapReduce class of appli-
cations [5]. In addition, the default block sizes are small which
leads to a high task overhead for MapReduce applications that
schedule one task per data block.

To evaluate the effect of function shipping, we measured
performance of a simple MapReduce grep application with
GPFS and HDFS. The input to the grep application is a 16
GB text file. The Hadoop implementation did not take advan-
tage of any block location information in GPFS and function
shipping was not enabled as a result. Furthermore, we used
the default block size of 64 MB in HDFS, whereas for GPFS
we used a block size of 2 MB with pre-fetching turned on by
default.

Table 1 shows that HDFS is 22 times faster than GPFS
in executing the simple MapReduce application. The lack of
co-location of computation with data, and the use of small
blocks, are the main reasons for the slow-down in GPFS. The
table shows that GPFS transfers several orders of magnitude
more data over the network. In fact, the total amount of
data transferred exceeds the input data size because of the
default pre-fetching in GPFS. The filesystem sees 2 MB of
data being read sequentially and pre-fetches multiple data
blocks to satisfy expected reads.However, the map task for the
next block may be scheduled on another node and thus most
of the pre-fetched data is not used.

High Availability. Another key requirement for data intensive
applications is the ability to mask the failures of commodity
components. Programs should be able to recover and progress
in the event of multiple node and disk failures. This requires
the data to be replicated across multiple nodes such that in
the event of a node or disk failure, the computation can be
restarted on a different node. Specialized file systems are
designed based on this philosophy, and are able to tolerate
multiple failures in the infrastructure.

In comparison, cluster file systems have traditionally been
designed to use underlying data protection techniques (such
as RAID) in shared storage to circumvent failures. However,
the clusters that run data intensive applications typically do
not use shared storage due to concerns regarding cost and
bandwidth limitations, and instead attach local storage to each
node in the cluster. While cluster file systems will run on
nodes with locally attached storage (without replication or
shared storage), the file systems will suffer data loss in the
event of node or disk failures.

Some cluster file systems (like GPFS) do provide data
and meta-data replication as a means to survive node failures.
The mechanism of replication can vary across file systems.

2



GPFS, for example, uses a single source replication model,
with the writer forwarding copies to all replicas. Specialized
file systems, in contrast, use pipelined replication due to two
important considerations: first, the out-bound bandwidth at
the writer is not shared across multiple streams unlike the
single-source model; second, write data can be pipelined in
sequence from a node to the next node in the pipeline while
the data is being written in the node.

For traditional applications, cluster file systems allow the
use of concurrent writers to the same file, enabling the shar-
ing of write bandwidth across multiple nodes. MapReduce
applications usually have multiple simultaneous writers (to
different files), so we don’t expect the benefits of single-source
replication to be significant. We hypothesize that it is possi-
ble for cluster file systems to match the write performance of
specialized file systems and validate that in the experimental
evaluation in Sections 4 and 5. However, we are continuing to
explore the use of pipelined replication in cluster file systems.

3 Metablocks
Clearly, the grep application in the previous section demon-
strated that running a MapReduce based application on a spe-
cialized file system has much better performance. In this
section, we first attempt to mimic the basic properties of a spe-
cialized file system in GPFS and show the limitations of this
approach. Next, we introduce the concept of a metablock,
highlight the challenges in implementing the concept and
demonstrate that GPFS is able to match the read performance
of HDFS for MapReduce applications.

Large blocks. One approach would be to mimic the proper-
ties of specialized file systems as attempted in [9]. To achieve
this, we increase the block size to a large value (16 MB) so
that the map task and disk seek overhead is reduced (as one
map task is assigned to each data block and will fetch the
entire block for processing). Furthermore, we expose GPFS’s
block location information to the MapReduce layer in Hadoop
so that tasks could be scheduled on the node where the data
resides. In addition, we align the records in the input file with
block boundaries, because a lack of alignment could result in
the fetch of a large data block just to read a partial record that
straddles a block boundary. Finally, we turned pre-fetching off
to avoid the network traffic of transporting large data blocks.
This particular version of GPFS is referred to as GPFS lb
(GPFS with large blocks).

To validate whether the approach would work, we use the
same experimental setup as in Section 2 but with an input size
of 80 GB. Figure 1 shows the relative performance of GPFS lb
and HDFS in the experimental setup. The execution time of
GPFS lb is almost the same as that of HDFS, but the network
overheads of GPFS lb and HDFS are 2 GB and 1.4 GB of
data transferred over the network during the duration of the
experiment.

However, the performance parity with HDFS comes at a
price. Turning off pre-fetching and making the unit of caching

File Normalized Random Normalized Sequential
System Performance Performance
Unmodified GPFS 1 1
GPFS lb 0.15 2.29
GPFS mb 0.99 1.19

Table 2: Evaluation of GPFS optimizations with Bonnie.

large in GPFS lb is detrimental to the performance of tradi-
tional filesystem workloads. Pre-fetching has been demon-
strated to be extremely beneficial for sequential workloads
and small block sizes are ideal for random workloads. To ver-
ify these effects, we compared unmodified GPFS to GPFS lb
using the popular Bonnie filesystem benchmark [4]. The
results of the experiment are shown in Table 2 and show a
marked performance degradation for random workloads with
the optimizations used in this section. There is an improve-
ment for sequential workloads due to the large block size but
the scale is not commensurate to the extent of the previously
mentioned degradation. Bonnie also output other results that
were consistent with the conclusions from the experiment.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

HDFS
GPFS_lb

GPFS_mb

 0

 0.5

 1

 1.5

 2

 2.5

 3
E

xe
cu

tio
n 

Ti
m

e 
(s

ec
on

ds
)

N
et

w
or

k 
B

yt
es

 T
ra

ns
fe

rr
ed

 (G
B

)

Execution time and Network Bytes Transferred in MapReduce/Grep

Time
Network

Figure 1: Execution time and network bytes transferred for MapRe-
duce grep with HDFS, GPFS lb and GPFS mb (16 nodes, and 80
GBytes input data).

Metablocks. The results of the evaluation indicate an inter-
esting tradeoff in optimizing for data intensive and traditional
applications. While a large block size is needed to minimize
seek overheads and create a reasonable number of tasks in
MapReduce applications, a small block size is needed for
effective cache management and to reduce the pre-fetch over-
head particularly when application records could span multiple
blocks on different disks. Ideally, we need the best of both
worlds where both seeks and pre-fetching are optimized so that
both MapReduce and traditional applications can be supported.
If the cluster file system could expose a large node-local block
size to the MapReduce application and use a smaller block
size for internal book-keeping, data transfer and pre-fetching,
we can achieve the tradeoff. To better understand how we can
manage this, we first describe the block allocation strategy
used by GPFS.

GPFS implements wide-striping across the file system
where large files are divided into equal sized blocks, and con-
secutive blocks are placed on different disks in a round-robin
fashion. An allocation map keeps track of all disk blocks in
the file system. To enable parallel updates to the allocation

3



bit map, the map is divided into a large number of lock-able
allocation regions, with at least n regions for an n node sys-
tem. Each region contains the allocation status of 1/nth of
the disk blocks on every disk in the file system. This bitmap
layout allows GPFS to allocate disk space properly striped
across all disks by accessing only a single allocation region
at a time. This approach minimizes lock conflicts because
different nodes can allocate space from different regions. The
allocation manager is responsible for keeping the free disk
space statistics loosely- up-to-date across the cluster.

To balance the block size selection tradeoff, we define a
new logical construct called a metablock. A metablock is ba-
sically a consecutive set of blocks of a file that are allocated
on the same disk. For example, 64 blocks of size 1 MB could
be grouped into a 64 MB metablock. The GPFS round-robin
block allocation is modified to use a metablock as the alloca-
tion granularity for the striping across the disks. Consequently,
the block location map returned to the MapReduce application
is also at the metablock granularity with the guarantee that all
blocks in the metablock are in the same disk. Internally for all
other pre-fetching and accesses, GPFS uses the normal block
size granularity (which is 1 MB in our example).

However there are two important challenges in implement-
ing metablocks in GPFS – contiguity and fragmentation. First,
it may not be possible to get a region with a set of blocks that
is able to satisfy the contiguity requirement of a metablock.
In such a situation, the node trying to allocate a metablock
will need to request a region with a contiguous set of blocks
that can be used to build a metablock. However, a request to
the allocation manager may incur network latency and affect
the performance of a MapReduce application. To remedy the
situation, a node prefetches a pool of contiguous regions ahead
of time and requests new regions when the cardinality of the
pool drops below a threshold. This means that a node will
always have a ready pool of contiguous regions and will not
incur network latency in the path of an I/O request.

Second, allocating contiguous sets of blocks can lead to
fragmentation in the allocation map, with skews in the free
space of the regions in the allocation map depending on the
nature of requests to the allocation manager. To address this
issue, we relax the requirement for contiguity and only allo-
cate sets of blocks which are contiguous only around 1 MB.
This level of contiguity is reasonable for maintaining optimal
sequential read and write performance, provides node-level
locality, and minimizes the fragmentation problem.

We evaluate the effectiveness of the metablock allocation
scheme for the MapReduce grep application. The experi-
mental setup and the input data size (80 GB) is identical to
that in the previous experiment. Here, we experiment with
HDFS (as described before) and GPFS enhanced with a 16
MB metablock size and 512 KB block size, and no prefetch-
ing. The results demonstrate that the execution time of GPFS
with metablocks (referred to as GPFS mb) is within 10% of
that of HDFS, while the network traffic is 2× worse than that

of HDFS1. Further, when we enabled controlled prefetching
in GPFS (by specifying prefetch percentage), we incurred
additional network traffic proportional to prefetch percentage.

A possible cause for concern is that the metablock opti-
mization, which changes GPFS’s allocation scheme, could
have affected the performance of traditional applications. To
confirm this hypothesis, we compared unmodified GPFS to
GPFS mb. The results of the experiment are shown in Table 2
and show no marked difference between the two file systems.
The other results from Bonnie were also consistent with this
result. Consequently, we conclude that metablocks do not
hurt the performance of GPFS for traditional applications. It
is important to note that this change to the allocation policy
of the cluster file system does not impact the interface to the
applications, and preserves the POSIX semantics provided by
the unmodified system.

4 Real-life Benchmarks
We selected three benchmarks to analyze the relative efficien-
cies of the specialized and cluster file systems and their effect
on MapReduce applications: Hadoop grep, Teragen and Tera-
sort applications. Teragen does a parallel generation of a large
data set and is consequentially write-intensive. The grep appli-
cation does a search for a regular expression on the input data
set and is read-intensive and Terasort does a parallel merge-
sort on the keys in the data set and does heavy reading and
writing in phases.

The experimental setup was the same as before except for
the changes noted below. We used a replication factor of 1 to
evaluate basic data access efficiency of the two file systems
and also measured the effect of using a replication factor of
2 in order to evaluate the relative performance of n-way and
pipelined replication. We assumed that a replication factor of
2 is appropriate for a 16-node cluster, while the default value
of 3 in GFS and HDFS are more appropriate for clusters with
hundreds of nodes. A higher replication factor increases write
overhead but may speed read performance by exposing more
opportunities for load balancing MapReduce tasks.

We used the default block size of 64 MB for HDFS and set
the metablock size for GPFS to be 64 MB as well, for a fair
comparison. We found that using 1 MB as the block size of
GPFS was the best compromise between the performance of
traditional and MapReduce applications, and results presented
here use that value.

Furthermore, we ran the benchmarks on 16 node clusters
with two configurations - in the first, all nodes were in one rack,
while in the second, the nodes are equally distributed across
2 racks. The 1-rack setup essentially provides 1 Gbps links
between each node-pair, while the 2-rack setup has a network
bottleneck in the form of a single 1 Gbps link between the
two 8-node sub-clusters. In the 2-rack setup, when we enable
2-way replication, we configure the file systems to replicate

1We have isolated this issue to an unusual interaction between our data
ingestion and GPFS allocation, and are improving the performance further.

4



each block so that one copy is on each rack, for better fault
tolerance.

 0

 500

 1000

 1500

 2000

Grep-r1
Grep-r2

Teragen-r1
Teragen-r2

Sort-r1
Sort-r2

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

on
ds

)

Execution time HDFS and GPFS with metablocks

HDFS-rep1
GPFS_mb-rep1

HDFS-rep-2
GPFS_mb-rep2

Figure 2: Benchmark evaluation of HDFS and GPFS mb, using
160GB of input data and 16 nodes; replication factor = 1 (rep-1), 2
(rep-2). The 1-rack configuration is marked as r1, and the 2-rack
configuration as r2.

Figure 2 shows the execution times of the HDFS and GPFS
with metablock support (referred to as GPFS mb) for the se-
lected applications. The figure shows six clusters of four bars
each, with two clusters for each benchmark. The grep bench-
mark is dominated by reads to locally attached disks in a node
and is unaffected by a higher replication factor which impacts
writes. Similarly, the benchmark shows no difference in exe-
cution times in the 1-rack and 2-rack cases due to the lack of
network traffic.

The Teragen benchmark shows a difference in the write
behavior of GPFS mb and HDFS. When the replication factor
is 2, GPFS mb stripes all writes across the cluster while HDFS
writes the first replica to the local node and the second replica
to another node (on the remote rack, in the 2-rack case). Con-
sequently in this benchmark, we see the added latency caused
by GPFS mb’s use of the network in the 1-rack experiments,
and the 2-rack experiments with replication factor 1. How-
ever, with a 2-rack configuration and 2-way replication, the 1
Gpbs link becomes the bottleneck for both file systems and
the performance is equivalent.

Finally, the Terasort benchmark presents a mixed I/O work-
load to the file systems, and we see that the execution times
of HDFS and GPFS mb are roughly equal in the 1-rack exper-
iments. The differences in the two rack experiments can be
explained by the difference in network utilization for writes,
just like in the Teragen experiments.

5 Future Optimizations
The results above encouraged us to look more closely at av-
enues for improvement of cluster file systems for MapReduce
workloads. The most important was trying to make writes as
network efficient in GPFS as they are in HDFS (due to the first
replica being written to the local node). We designed an ex-
tension to metablocks which has allowed GPFS to potentially
match the performance of HDFS for writes as well. The ex-
tension involves adding an ioctl call to GPFS which lets an
application specify the set of hosts to be used by the metablock

allocation scheme for a particular file. This allows Hadoop
applications to specify that the first copy of data should re-
side on the local host, which is the policy used by HDFS.
This technique reduces the network traffic during writes, and
significantly improves write performance (up to a factor of 5).

True to our theme, we use GPFS with pre-fetching enabled
to benefit traditional as well as MapReduce workloads. This,
however, exposes two interesting questions we are currently
exploring: (1) Can we design an adaptive prefetching scheme
such that it only consumes spare network bandwidth, and
does not contend with critical network traffic? (2) Can any
MapReduce workloads benefit from such prefetching, thereby
outperforming HDFS?

Similarly, we are also pursuing use cases of MapReduce
workloads where GPFS, can in fact, outperform HDFS by
leveraging features unique to a true file system such as ability
to cope with client-side caching, and simultaneously support
random and sequential workloads.

6 Conclusions
This paper evaluates the debate whether cluster file systems
can potentially match the performance of Internet scale filesys-
tems for cloud-based analytics applications. We examine the
requirements of data intensive applications and show that clus-
ter file systems are deficient in support for large block sizes and
exposing block location information to MapReduce applica-
tions. To remedy this, we introduce the concept of metablocks
that provide the illusion of large blocks for MapReduce ap-
plications, while providing the benefits of small blocks for
traditional applications at the same time. We show that a clus-
ter file system enhanced with metablocks can provide the best
of both worlds performance.

Acknowledgments
We would like to thank the anonymous reviewers for their
feedback on this work; Frank Schmuck and the GPFS team
for their insights on GPFS design, implementation and tuning.

References
[1] Hadoop Distributed Filesystem. http://hadoop.apache.org.
[2] Kosmos Filesystem. http://kosmosfs.sourceforge.net/.
[3] Parallel Virtual Filesystem. http://www.pvfs.org/.
[4] The Bonnie Filesystem Benchmark. http://www.textuality.com/

bonnie/.
[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. In Sixth Symposium on Operating System Design and
Implementation, pages 137–150, December 2004.

[6] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. In
ACM SOSP, October 2003., 2003.

[7] Lustre. The lustre storage architecture. http://www.lustre.org/.
[8] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large

computing clusters. In Proc. of the First Conference on File and Storage
Technologies (FAST), pages 231–244, Jan. 2002.

[9] W. Tantisiriroj, S. Patil, and G. Gibson. The crossing the chasm: Sneaking
a parallel file system into hadoop. In SC08 Petascale Data Stroage
Workshop, 2008.

5

http://hadoop.apache.org
http://kosmosfs.sourceforge.net/
http://www.pvfs.org/
http://www.textuality.com/bonnie/
http://www.textuality.com/bonnie/
http://www.lustre.org/

	Introduction
	Challenges
	Metablocks
	Real-life Benchmarks
	Future Optimizations
	Conclusions

