
Reducing SSD Read Latency via NAND Flash
Program and Erase Suspension

Guanying Wu and Xubin He
Department of Electrical and Computer Engineering

Virginia Commonwealth University, Richmond, VA 23284

Abstract

In NAND flash memory, once a page program or block
erase (P/E) command is issued to a NAND flash chip,
the subsequent read requests have to wait until the time-
consuming P/E operation to complete. Preliminary re-
sults show that the lengthy P/E operations may increase
the read latency by 2x on average. As NAND flash-
based SSDs enter the enterprise server storage, this in-
creased read latency caused by the contention may sig-
nificantly degrade the overall system performance. In-
spired by the internal mechanism of NAND flash P/E al-
gorithms, we propose in this paper a low-overhead P/E
suspension scheme, which suspends the on-going P/E to
service pending reads and resumes the suspended P/E
afterwards. In our experiments, we simulate a realistic
SSD model that adopts multi-chip/channel and evaluate
both SLC and MLC NAND flash as storage materials of
diverse performance. Our experimental results show that
the proposed technique achieves a near-optimal perfor-
mance gain on servicing read requests. Specifically, the
read latency is reduced on average by 50.5% compared
to RPS and 75.4% compared to FIFO at cost of less than
4% overhead on write requests.

1 Introduction

NAND flash-based SSDs have better random access per-
formance over hard drives and have potential in high per-
formance computing system market. However, NAND
flash has performance and cost problems which limit its
application [11]. The problem addressed in this paper
is the read vs. program/erase (P/E) contention. Due to
slow P/E speed of NAND flash, once P/E is committed
to the flash chip, pending or subsequent read requests
suffer from the prolonged service latency caused by the
waiting time. As disk read requests are resulted from
upper level cache misses, the compromised read latency
of the disk causes degraded application performance. To
reduce read latency, on-disk write buffers may avoid or
postpone the write commitments to the flash [9, 6, 7]. Ex-
ecuting the garbage collection processes during the idle
time of the drive may also alleviate the contention be-
tween read and P/E [1, 10]. Furthermore, the read re-

quests can be prioritized in a pending list to reduce the
queuing time caused by the P/E. However, none of these
approaches preempt the committed P/E for read requests.

To address this read vs. P/E contention problem, we
propose a P/E Suspension scheme for NAND flash that
allows the execution of the P/E operations to be sus-
pended so as to service the pending reads and then the
suspended P/E is resumed. The internal process of the
program operation is done in a “step-by-step” fashion
(Incremental Step Pulse Programming, or ISPP [2]), and
thus the program can be suspended at the interval of two
consecutive steps, or the on-going step could be canceled
and re-executed upon resumption. The erase process re-
quires the duration of erase-voltage pulse to be satisfied,
and thus the erase can also be suspended and resumed as
long as we ensure the required timing.

The implementation of P/E suspension for NAND
flash involves minimal modifications to the flash inter-
face, i.e., merely the “program suspend/resume” and
“erase suspend/resume” commands need to be added in
the command set of the flash interface [12]. To support
P/E suspension, the control logic inside the flash chip is
required to determine the appropriate time to suspend
the P/E (suspension point) and to maintain or retrieve
the previous state of the suspended P/E so as to resume
it. Noting that the implementation feasibility of the pro-
posed schemes is based on the fundamental/typical cir-
cuitry of flash memories [3].

This paper makes the following contributions. First,
we analyze the impact of the long P/E latency on read
performance, showing that even with the read prioritiza-
tion scheduling, the read latency is still severely compro-
mised. Second, by exploiting the internal mechanism of
the P/E algorithms in NAND flash memory, we propose
a low-overhead P/E suspension scheme which suspends
the on-going P/E operations for servicing the pending
read requests. In particular, two strategies for suspend-
ing the program operation, Inter Phase Suspension (IPS)
and Intra Phase Cancelation(IPC) are proposed. Third,
based on simulation experiments under various work-
loads, we demonstrate that compared to FIFO, the pro-
posed design can significantly reduce the SSD read la-
tency for both SLC and MLC NAND flash.

The rest of this paper is organized as follows: In Sec-
tion 2 we give an overview of the internal mechanism for
P/E on NAND flash and briefly discuss related work. In
Section 3, we conduct simulations to show how the read
latency is increased by chip contention. We describe our
detailed P/E suspension scheme in Section 4 and evalu-
ate our approach via simulation experiments in Section 5.
Finally we conclude our paper in Section 6.

2 Background and Related Work

2.1 NAND Flash Program/Erase Algorithm

Incremental Step Pulse Programming (ISPP) is typically
used for precisely programming or erasing the NAND
flash [3]. It is made of a series of program and verify
iterations. The execution of ISPP and the erase process
is implemented in the flash chip with an analog block
and a control logic block. The analog block is responsi-
ble for regulating and pumping the voltage for program
or erase operations. The control logic block is responsi-
ble for interpreting the interface commands, generating
the control signals for the flash cell array and the analog
block, and executing the program and erase algorithms.
As shown in the following diagram [3], the write state
machine consists of three components: an algorithm con-
troller to execute the algorithms for the two types of op-
erations, several counters to keep track of the number of
ISPP iterations, and a status register to record the results
from the verify operation.

Algorithm

Controller

Counters

Status

Register

Command

Interface

Write State Machine

Requests

To Analog Block

and Flash Array

From Flash

Array

2.2 Related Work

The idea of preempting low priority operations for high
priority ones via breaking down an operation to small
phases has been embodied in [4], [13], etc. Dimitrijevic
et al. proposed Semi-preemptible IO [4] to divide HDD
I/O requests to small disk commands to enable preemp-
tion for high priority requests. Similar to NAND flash,
Phase Change Memory (PCM) has much larger write la-
tency than read latency. Qureshi et al. proposed in [13]
a few techniques to preempt the on-going writes of PCM
for reads: write cancelation and a threshold-based over-
head control method to reduce the overhead are proposed
to cancel entire write operations; PCM, like NAND flash,
adopts the iterative-write algorithm. Our work differs

from [13] as follows: PCM has the in-place update capa-
bility, while NAND flash requires erase before program.
In our work, the suspension of erase operation is pro-
posed. Write Cancelation for the entire write process of
NAND flash is not viable. NAND flash’s iterative write
process differs from PCM in that, each iteration has two
phases (program and verify). Thus, for each iteration,
we may have two suspension points. Furthermore, we
propose the shadow buffer to overcome the overhead of
re-transferring the write data upon resumption, which is
not discussed in [13].

3 Motivation

In this section, we demonstrate how the read vs. P/E con-
tention increases the read latency under various work-
loads. We have modified MS-add-on simulator [1] based
on Disksim 4.0. Specifically, under the workloads of a
variety of popular disk traces, we compare the read la-
tency of two scheduling policies, FIFO and read priority
scheduling (RPS), to show the limitation of RPS. Fur-
thermore, with RPS, we set the latency of program and
erase operation to be equal to that of read and zero to
justify the impact of P/E on the read latency.

3.1 Configurations and Workloads

The simulated SSD is configured as follows: there are 16
flash chips, each of which owns a dedicated channel to
the flash controller. Each chip has four planes that are
organized in a RAID-0 fashion; the size of one plane is
512 MB or 1 GB assuming the flash is used as SLC or 2-
bit MLC, respectively (the page size is 2 KB for SLC or
4 KB for MLC). To maximize the concurrency, each indi-
vidual plane has its own allocation pool [1]. The garbage
collection processes are executed in the background so
as to minimize the interference with the foreground re-
quests. In addition, the percentage of flash space over-
provisioning is set as 30%, which doubles the value sug-
gested in [1]. Considering the limited working-set size of
the workloads used in this paper (described in next sub-
section), 30% over-provisioning is believed to be suffi-
cient to avoid frequent execution of garbage collection
processes. The write buffer size is 64 MB. The SSD is
connected to the host via a PCI-E of 2.0 GB/s. The phys-
ical operating parameters of the flash memory is summa-
rized in Table 1.

We choose 6 disk I/O traces for our experiments: Fi-
nancial 1 and 2 (F1, F2) [14]; Display Ads Platform
and payload servers (DAP) and MSN storage meta-
data (MSN) traces [8]; Cello99 [5] traces (C3, C8). Not-
ing that those traces were originally collected on HDDs,
to produce more stressful workloads for SSDs, we com-
press all these traces so that the system idle time is re-
duced from 98% to around 70% for each workload.

Symbols Description Value
SLC MLC

Tbus
The bus latency of transferring 20 µs 40 µs
one page from/to the chip

Tr_phy
The latency of sensing/reading 10 µs 25 µs
data from the flash

Tw_total
The total latency of ISPP 140 µs 660 µs
in flash page program

Nw_cycle The number of ISPP iterations 5 15

Tw_cycle
The time of one ISPP iteration 28 µs 44 µs
(Tw_total /Nw_cycle)

Tw_program
The duration of program phase 20 µs 20 µs
of one ISPP iteration

Tveri f y The duration of the verify phase 8 µs 24 µs
Terase The duration of erase pulse 1.5 ms 3.3 ms

Tvoltage_reset
The time to reset operating 4 µs
voltages of on-going operations

Tbu f f er
The time taken to load the page 3 µs
buffer with data

Table 1: Flash Parameters

Trace SLC MLC
Read Write Read Write

F1 0.37 0.87 0.44 1.58
F2 0.24 0.57 0.27 1.03

DAP 1.92 6.85 5.74 11.74
MSN 4.13 4.58 8.47 25.21

C3 0.25 2.85 0.52 6.30
C8 0.44 2.33 0.56 4.54

Table 2: Numerical Latency Values of FIFO (in ms)

3.2 Experimental Results

In this subsection, we compare the read latency perfor-
mance under four scenarios: FIFO; RPS; PER (the la-
tency of program and erase is set equal to that of read);
and PE0 (the latency of program and erase is set to zero).
Note that both PER and PE0 are applied upon RPS in
order to study the chip contention and the limitation of
RPS. Due to the large range of the numerical values of
the experimental results, we normalize them to the corre-
sponding results of FIFO, which are listed in Table 2 for
reference. The normalized results are plotted in Fig. 1,
where the left part shows the results of SLC and the right
part is for MLC. Compared to FIFO, RPS achieves im-
pressive performance gain, e.g., the gain maximizes at an
effective read latency (“effective” refers to the actual la-
tency taking the queuing delay into account) reduction of
44.6% (SLC) and 48.3% (MLC) on average. However, if
the latency of P/E is the same as read latency or zero, i.e.,
in the case of PER and PE0, the effective read latency
can be further reduced. For example, with PE0, the read
latency reduction is 71.7% (SLC) and 75.6% (MLC) on
average. Thus, even with RPS policy, the chip contention
still increases the read latency by about 2x on average.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8

N
o

rm
a

li
ze

d
 R

e
a

d
 L

a
te

n
cy

FIFO RPS PER PE0

SLC MLC

Figure 1: Read Latency Performance Comparison:
FIFO, RPS, PER, and PE0. Results normalized to FIFO.

4 Design of P/E Suspension Scheme

4.1 Erase Suspension and Resumption

In NAND flash, the erase process consists of two phases:
first, an erase pulse lasting for Terase is applied on the
target block; second, a verify operation that takes Tveri f y
is performed to check if the preceding erase pulse has
successfully erased all bits in the block. Otherwise, the
above process is repeated until success, or if the number
of iterations reaches the predefined limit, an operation
failure is reported. Typically, for NAND flash, since the
over-erasure is not a concern [3], the erase operation can
be done with a single erase pulse.

How to suspend an erase operation: suspending ei-
ther the erase pulse or verify operation requires resetting
the status of the corresponding wires that connect the
flash cells with the analog block. Specifically, due to the
fact that the flash memory works at different voltage bias
for different operations, the current voltage bias applied
on the wires (and thus on the cell) needs to be reset for
the pending read request. This process (Opvoltage_reset for
short) takes a period of Tvoltage_reset . Noting that either
the erase pulse or verify operation always has to conduct
Opvoltage_reset at the end (as shown in the following dia-
gram of erase operation timeline).

Erase Pulse Verify

Tvoltage_reset Tvoltage_resetImmediate Suspension Range Immediate Suspension Range

Terase Tverify

Thus, if the suspension command arrives dur-
ing Opvoltage_reset , the suspension will succeed once
Opvoltage_reset is finished (as illustrated in the following
diagram of erase suspension timeline).

Erase Pulse

Tvoltage_resetImmediate Suspension Range

Read Arrival Suspension Point

Read

Otherwise, an Opvoltage_reset is executed immediately
and then the read request is serviced by the chip (as illus-
trated in the following diagram).

Erase Pulse

Tvoltage_reset

Read Arrival

Opvoltage_switch Read

Suspension Point

How to resume an erase operation: the resump-
tion means the control logic of NAND flash resumes
the suspended erase operation. Therefore, the control
logic should keep track of the progress, i.e., whether the
suspension happens during the verify phase or the erase
pulse. For the first scenario, the verify operation has to
be re-done all over again. For the second scenario, the
erase pulse time left (Terase minus the progress), for ex-
ample, 1 ms will be done in the resumption if no more
suspension happens. Actually, the task of progress track-
ing can be easily supported by the existing facilities in
the control logic of NAND flash: the pulse width gener-
ator is implemented using a counter-like logic [3], which
keeps track of the progress of the current pulse.

The overhead on the effective erase latency: resum-
ing the erase pulse requires extra time to set the wires
to the corresponding voltage bias, which takes approx-
imately the same amount of time as Tvoltage_reset . Sus-
pending during the verify phase causes a re-do in the re-
sumption, and thus the overhead is the time of the sus-
pended/cancelled verify operation. In addition, the read
service time is included in the effective erase latency.

4.2 Program Suspension and Resumption

The process of servicing a program request is: first, the
data to be written is transferred through the controller-
chip bus and loaded in the page buffer; then the ISPP is
executed, in which a total number of Nw_cycle iterations
consisting of a program phase followed by a verify phase
are conducted on the target flash page. In each ISPP iter-
ation, the program phase is responsible for applying the
required program voltage bias on the cells so as to charge
them. In the verify phase, the content of the cells is read
to verify if the desired amount of charge is stored in each
cell: if so, the cell is considered program-completion;
otherwise, one more ISPP iteration will be conducted on
the cell. Due to the fact that all cells in the target flash
page are programmed simultaneously, the overall time
taken to program the page is actually determined by the
cell that needs the most number of ISPP iterations. A ma-
jor factor that determines the number of ISPP iterations
needed is the amount of charge to be stored in the cell,
which is in turn determined by the data to be written. For
example, for the 2-bit MLC flash, programming a “0” in
a cell needs the most number of ISPP iterations, while

for “3” (the erased state), no ISPP iteration is needed.
Since all flash cells in the page are programmed simul-
taneously, Nw_cycle is determined by the smallest data (2-
bit) to be written; nonetheless, we make a rational as-
sumption in our simulation experiments that Nw_cycle is
constant and equal to the maximum value. The program
process is illustrated in the following diagram.

Program Verify

Tw_cycle

Program Verify

Tw_program Tverify

Program Verify

Nw_cycle

Bus

How to retain the page buffer content: before we
move on to suspension, this critical problem has to be
solved. For program, the page buffer contains the data
to be written. For read, it contains the retrieved data to
be transferred to the flash controller. If a write is pre-
empted by a read, the content of the page buffer is cer-
tainly replaced. Thus, the resumption of the write de-
mands the page buffer re-stored. Intuitively, the flash
controller that is responsible for issuing the suspension
and resumption commands may keep a copy of the write
page data until the program is finished and upon resump-
tion, the controller re-sends the data to the chip through
the controller-chip bus. However, the page transfer con-
sumes a significant amount of time: unlike the NOR flash
which does byte programming, NAND flash does page
programming, and the page size is of a few kilobytes.
For instance, assuming a 100 MHz bus and 4 KB page
size, the bus time Tbus is about 40 µs.

To overcome this overhead, we propose a Shadow
Buffer in the flash. The shadow buffer serves like a
replica of the page buffer and it automatically loads it-
self with the content of the page buffer upon the arrival
of the write request and re-stores the page buffer while
resumption. The load and store operation takes the time
Tbu f f er. The shadow buffer has parallel connection with
the page buffer, and thus the data transfer between them
can be done on the fly. Tbu f f er is normally smaller than
Tbus by one order of magnitude.

How to suspend a program operation: compared to
the long width of the erase pulse (Terase), the program and
verify phase of the program process is normally two or-
ders of magnitude shorter. Intuitively, the program pro-
cess can be suspended at the end of the program phase
of any ISPP iteration as well as the end of the verify
phase. We refer to this strategy as “Inter Phase Suspen-
sion” (IPS). IPS has in total Nw_cycle ∗2 potential suspen-
sion points as illustrated in the following diagram.

Program Verify Program Verify Program VerifyBus

Read Arrival Suspension Point

Read Arrival

Suspension Point

Due to the fact that at the end of the program or
verify phase, the status of the wires has already re-
set (Opvoltage_reset), IPS does not introduce any extra
overhead, except for the service time of the read or
reads that preempt the program. However, the effec-
tive read latency should include the time from the ar-
rival of read to the end of the corresponding phase.
For simplicity, assuming the arrival time of reads fol-
lows the uniform distribution, the probability of en-
countering the program phase and the verify phase
is Tw_program/(Tveri f y +Tw_program) and Tveri f y/(Tveri f y +
Tw_program), respectively. Thus, the average extra latency
for the read can be calculated as:

Tread_extra =
Tw_program

(Tveri f y+Tw_program)
∗ Tw_program

2

+
Tveri f y

(Tveri f y+Tw_program)
∗ Tveri f y

2

(1)

Substituting the numerical values in Table 1, we get
8.29 µs (SLC) and 11.09 µs (MLC) for Tread_extra,
which is comparable to the physical access time of the
read (Tr_phy). To further improve the effective read la-
tency, we propose “Intra Phase Cancelation” (IPC). Sim-
ilar to canceling the verify phase for the erase suspen-
sion, IPC cancels an on-going program or verify phase
upon suspension. The reason of canceling instead of
pausing the program phase is that the duration of the pro-
gram phase, Tw_program, is short and normally considered
atomic (cancelable but not pause-able).

Again, for IPC, if the read arrives when the program or
verify phase is conducting Opvoltage_reset , the suspension
happens actually at the end of the phase, which is the
same as IPS; otherwise, Opvoltage_reset is started immedi-
ately and the read is then serviced. Thus, IPC achieves a
Tread_extra no larger than Tvoltage_reset .

How to resume from IPS: first of all, the page buffer
is re-loaded with the content of the shadow buffer. Then,
the control logic examines the last ISPP iteration number
and the previous phase. If IPS happens at the end of the
verify phase, which implies that the information of the
status of cells has already been obtained, we may con-
tinue with the next ISPP if needed; on the other hand, if
the last phase is the program phase, naturally we need to
finish the verify operation before moving on to the next
ISPP iteration. The resumption process is illustrated in
the following diagram.

Read Buffer

Tbuffer

Program/Verify Verify/Program

Resumption Point

How to resume from IPC: compared to IPS, the re-
sumption from IPC is more complex. Different from the
verify operation, which does not change the charge status
of the cell, the program operation puts charge in the cell
and thus changes the threshold voltage (Vth) of the cell.

Therefore, we need to determine whether the canceled
program phase has already achieved the desired Vth (i.e.,
whether the data could be considered written in the cell),
by a verify operation. If so, no more ISPP iteration is
needed on this cell; otherwise, the previous program op-
eration is executed on the cell again. The later case is
illustrated in the following diagram.

Read BufferProgram Verify

Resumption Point

Re-do PROG Verify

Re-doing the program operation would have some af-
fect on the tightness of Vth, but with the aid of ECC
and a fine-grained ISPP, i.e., small incremental voltage
∆Vpp, the IPC has little impact on the data reliability of
the NAND flash. The relationship between ∆Vpp and the
tightness of Vth is modeled in [15].

The overhead on the effective write latency: IPS re-
quires re-loading the page buffer, which takes Tbu f f er.
For IPC, if the verify phase is canceled, the overhead is
the time elapsed of the canceled verify phase plus the
read service time and Tbu f f er. In case of program phase,
there are two scenarios: if the verify operation reports
that the desired Vth is achieved, the overhead is the read
service time plus Tbu f f er; otherwise, the overhead is the
time elapsed of the canceled program phase plus an ex-
tra verify phase, in addition to the overhead of the above
scenario. Clearly, IPS achieves smaller overhead on the
write than IPC but relatively lower read performance.

5 Performance Evaluation

In this section, we evaluate our proposed design under
different workloads described in Section 3.1.

5.1 Read Performance Gain

First, we compare the average read latency of P/E sus-
pension with RPS, PER and PE0 in Fig. 2, where the
results are normalized to that of RPS. For P/E sus-
pension, the IPC (Intra Phase Cancelation), denoted as
“PES_IPC”, is adopted in Fig. 2. PE0, with which the
physical latency values of program and erase are set to
zero, serves as an optimistic situation where the con-
tention between reads and P/E’s is completely elimi-
nated. Fig. 2 demonstrates that, compared to RPS, the
proposed P/E suspension achieves a significant read per-
formance gain, which is almost equivalent to the optimal
case, PE0 (with less than 1% difference). Specifically, on
the average of the 6 traces, PES_IPC reduces the read la-
tency by 48.9% for SLC and 50.5% for MLC compared
to RPS, and 71.6% for SLC and 75.4% for MLC com-
pared to FIFO. For conciseness, the results of SLC and

(then) MLC are listed without explicit specification in the
following text.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8

N
o

rm
a

li
ze

d
 R

e
a

d
 L

a
te

n
cy

RPS PER PE0 PES_IPC

SLC MLC

Figure 2: Read Latency Performance Comparison: RPS,
PER, PE0, and PES_IPC (P/E Suspension using IPC).
Normalized to RPS.

As stated in Section 4, IPC can achieve better read per-
formance but cause higher write overhead compared to
IPS. We compare the read performance of IPC and IPS
in Fig. 3. The read latency of IPS is 8.0% and 2.7% on
average and at-most 13.2% and 6.7% (under F1) higher
than that of IPC. The difference is resulted from the fact
that IPS has extra read latency, which is mostly the time
between read request arrivals and the suspension points
at the end of the program or verify phase. We notice that
the latency performance of IPS using SLC is poorer than
MLC under all traces, which is because of the higher sen-
sitivity of SLC’s read latency to the overhead caused by
the extra latency.

0.9

0.95

1

1.05

1.1

1.15

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8

N
o

rm
a

li
ze

d
 R

e
a

d
 L

a
te

n
cy

PES_IPC PES_IPS

SLC MLC

Figure 3: Read Latency Performance Comparison:
PES_IPC vs. PES_IPS. Normalized to PES_IPC.

5.2 Write Overhead

Since both RPS and P/E suspension introduce mini-
mal extra chip bandwidth usage, the write throughput
is barely compromised. We use the latency as a metric
for the overhead evaluation. First, we compare the aver-
age write latency of FIFO, RPS, PES_IPS, and PES_IPC
in Fig. 4. Obviously, the write overhead in terms of la-
tency is trivial compared to the read performance gain we

achieve with P/E suspension. Specifically, RPS increases
the write latency by 2.3% and 1.2% on average and at-
most 6.7% (SLC, MSN) and 3.8% (MLC, DAP), com-
pared to FIFO. PES_IPC increases write latency by 3.6%
and 1.9% on average and at-most 6.9% (SLC, MSN) and
4.3%(MLC, DAP), respectively. PES_IPC increases the
write latency by 3.6% and 2.0% on average and at-most
6.9% (SLC, MSN) and 4.3%(MLC, DAP).

0.8

0.85

0.9

0.95

1

1.05

1.1

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8
N

o
rm

a
li

ze
d

 W
ri

te
 L

a
te

n
cy

FIFO RPS PES_IPS PES_IPC

SLC MLC

Figure 4: Write Latency Performance Comparison:
FIFO, RPS, PES_IPC, PES_IPS. Normalized to FIFO.

Two major factors determine the write latency over-
head: increased latency of each suspended P/E operation;
the percentage of P/E that are suspended. We compare
the original P/E latency reported by the device with la-
tency after suspension in Fig. 5. The average overhead of
suspended P/E is about 10.2% (SLC) and 7.8% (MLC).
The percentage of suspended P/E is presented in Fig. 6.
There is 4.9% (SLC) and 7.4% (MLC) of P/E’s that are
suspended on average. These two sets of results explain
the low write overhead our design achieves.

0

2

4

6

8

10

12

14

16

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8

L
a

te
n

cy
 O

v
e

rh
e

a
d

 o
n

S
u

sp
e

n
d

e
d

 W
ri

te
s

SLC MLC

Figure 5: Compare the original write latency with the
effective write latency resulted from P/E Suspension. Y
axis represents the percentage of increased latency caused
by P/E suspension.

5.3 Sensitivity Study on Write Queue Size

Finally, we study the sensitivity of write overhead to the
write queue size. In order to obtain an amplified write
overhead, we select F2, which has the highest percent-
age of read requests, and compress the simulation time

0

2

4

6

8

10

12

14

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8

P
e

rc
e

n
ta

tg
e

 o
f

P
/

E
 S

u
sp

e
n

si
o

n SLC MLC

Figure 6: Percentage of suspended writes.

of F2 by 7 times to intensify the workload. In Fig-
ure 7 we present the write latency results of RPS and
PES_IPC (normalized to that of FIFO) by varying the
maximum write queue size from 16 to 512. Clearly, the
write overhead of both RPS and PES_IPC is sensitive
to the maximum write queue size, which suggests that
the flash controller should limit the write queue size to
control the write overhead. Noting that, relative to RPS,
the PES_IPC has a near-constant increase on the write
latency, which implies that the major contributor of over-
head is RPS when the queue size varies.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
o

rm
a

li
ze

d
 W

ri
te

 L
a

te
n

cy

RPS PES_IPC

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

16 32 64 128 256 512

N
o

rm
a

li
ze

d
 W

ri
te

 L
a

te
n

cy

Maximum Write Queue Size

RPS PES_IPC

Figure 7: The write latency performance of RPS and
PES_IPC while the maximum write queue size varies.
Normalized to FIFO.

6 Conclusion and Future Work

One performance problem of NAND flash is that its pro-
gram and erase latency is much higher than the read la-
tency. This problem causes the chip contention between
reads and P/Es due to the fact that with current NAND
flash interface, the on-going P/E cannot be suspended
and resumed. To alleviate the impact of the chip con-
tention on the read performance, in this paper we propose
a light-overhead P/E suspension scheme by exploiting
the internal mechanism of P/E algorithm in NAND flash.
The design is simulated/evaluated with precise timing
and realistic SSD modeling of multi-chip/channel. Ex-
perimental results show that the proposed P/E suspension
significantly reduces the read latency with trivial over-
head on write performance.

Our future work will apply the idea of P/E suspension
to further improve the performance of foreground pro-

cesses via suspending the background operations (e.g.,
the garbage collection operations) in SSDs.

Acknowledgments

We thank Tong Zhang for the preliminary discussion on
some physical parameters of NAND flash. We also thank
our shepherd Dushyanth Narayanan and anonymous re-
viewers for their feedback. This research is sponsored
in part by the U.S. National Science Foundation (NSF)
under grants CCF-1102605 and CCF-1102624.

References

[1] AGRAWAL, N., PRABHAKARAN, V., AND ET AL. Design Trade-
offs for SSD Performance. In USENIX ATC (Boston, Mas-
sachusetts, USA, 2008).

[2] ARASE, K. Semiconductor NAND Type Flash Memory with
Incremental Step Pulse Programming, Sept. 22 1998. U.S. Patent
5,812,457.

[3] BREWER, J., AND GILL, M. Nonvolatile Memory Technolo-
gies with Emphasis on Flash. IEEE Whiley-Interscience, Berlin
(2007).

[4] DIMITRIJEVIC, Z., RANGASWAMI, R., AND CHANG, E. De-
sign and Implementation of Semi-preemptible IO. In FAST
(2003), USENIX, pp. 145–158.

[5] HEWLETT-PACKARD LABORATORIES. Cello99 Traces. http:
//tesla.hpl.hp.com/opensource/.

[6] JO, H., KANG, J.-U., AND ET AL. FAB: Flash-Aware Buffer
Management Policy for Portable Media Players. IEEE Transac-
tions on Consumer Electronics 52, 2 (2006), 485–493.

[7] KANG, S., AND ET AL. Performance Trade-Offs in Using
NVRAM Write Buffer for Flash Memory-Based Storage De-
vices. IEEE Transactions on Computers 58, 6 (2009), 744–758.

[8] KAVALANEKAR, S., AND ET AL. Characterization of Storage
Workload Traces from Production Windows Servers. In IISWC
(2008).

[9] KIM, H., AND AHN, S. BPLRU: A Buffer Management Scheme
for Improving Random Writes in Flash Storage Abstract. In FAST
(2008).

[10] KIM, Y., ORAL, S., SHIPMAN, G., LEE, J., DILLOW, D., AND
WANG, F. Harmonia: A Globally Coordinated Garbage Collector
for Arrays of Solid-State Drives. In MSST (2011), IEEE, pp. 1–
12.

[11] NARAYANAN, D., THERESKA, E., DONNELLY, A., ELNIKETY,
S., AND ROWSTRON, A. Migrating server storage to SSDs:
Analysis of tradeoffs. In EuroSys (2009).

[12] ONFI WORKING GROUP. The Open NAND Flash Interface,
2011. http://onfi.org/.

[13] QURESHI, M., AND ET AL. Improving Read Performance of
Phase Change Memories via Write Cancellation and Write Paus-
ing. In HPCA (2010), IEEE, pp. 1–11.

[14] STORAGE PERFORMANCE COUNCIL. SPC Trace File Format
Specification. http://traces.cs.umass.edu/index.
php/Storage/Storage.

[15] WU, G., HE, X., XIE, N., AND ZHANG, T. DiffECC: Improv-
ing SSD Read Performance Using Differentiated Error Correc-
tion Coding Schemes. MASCOTS (2010), 57–66.

