Optimizing NAND Flash-Based SSDs via Retention Relaxation

Ren-Shuo Liu*, Chia-Lin Yang*, Wei Wu†
*National Taiwan University and †Intel Corporation

Motivation

- **Retention specification vs. actual retention requirement**
 - Industrial standards: 1 to 10 years vs. Applications’ needs: days or shorter

- **Retention relaxation**
 - If we don’t need to guarantee the maximal retention time, which design parameters of SSDs can be improved?

- **Contribution**
 - We propose retention-aware designs to trade data retention for the benefits on write speed, or ECCs’ cost and performance

NAND Flash Model

- **Threshold voltage (Vth) distribution model**
 - Probability density function of cells’ Vth
 - $P_k(V_t) = \alpha_k \exp \left(-\frac{V_t - \mu_k}{\sigma_k} \right)$, $k = 0$
 - $P_k(V_t) = \alpha_k \exp \left(-\frac{V_t - \mu_k}{\sigma_k} \right)$, $k = 0$
 - $P_k(V_t) = \alpha_k \exp \left(-\frac{V_t - \mu_k}{\sigma_k} \right)$, $k \neq 0$

- **Raw bit error rate (RBER)**
 - $RBER(t) = \sum_{k=0}^{K} \exp \left(-\frac{V_t - \mu_k}{\sigma_k} \right)$

Benefits of Retention Relaxation

- **Improving write speed**
 - Enlarging the step increment (ΔV_p) in NAND Flash’s programming procedures
 - Reduction decreases because the V_{th} distributions become wider and the margins between neighboring levels get narrower
 - Write speed increases because with large ΔV_p, fewer programming steps are required during writes
 - 2.3x write speedup is achievable if data retention is reduced to 2 weeks

- **Improving ECCs’ cost and performance**
 - Advanced ECCs such as LDPC codes are required for NAND Flash whose bit error rate $\geq 10^{-3}$
 - Shorter retention guarantee → fewer retention errors → less required ECC strength
 - BCH is strong enough for NAND Flash with the bit error rate up to 2.2×10^{-2} if the retention guarantee is relaxed to 2 weeks

System Evaluation

- **SSD write response time speedup**
 - Retention Relaxation achieves 2.2x to 5.5x speedup
 - Hadoop has the largest speedup
 - High I/O throughput and long queuing time
 - Retention Relaxation significantly reduces the queuing time

- **SSD performance vs. various LDPC throughput**
 - Retention Relaxation outperforms the baseline (conventional concatenated BCH-LDPC) with the same LDPC throughput
 - Retention Relaxation approaches the ideal performance with 20MB/s LDPC

The SSD simulator could stop simulations due to I/O queue saturation if LDPC’s throughput is insufficient. The bar of the baseline presents a yagag appearance between 5~80 MB/s because several traces which cause saturation are excluded.