Understanding Performance Implications of Nested File Systems in a Virtualized Environment
Duy Le, Hai Huang, Haining Wang

Motivation and Goals

- “Selected file systems are based on workloads”
 - Only true in physical systems
- File system for guest virtual machine depends on
 - I/Os (varied workloads)
 - Deployed file systems at host (disk images, disks)
- What are best and worst Guest/Host File System combination?
 ➔ Investigation needed!

Multiple Guest File Systems / Multiple Host File Systems

Macroelevel Experimentations

- Filebench benchmark
- 4 services (NFS, Mail, Web, Database)

Micro-level Analysis

- FIO benchmark
- Primitive I/Os (Read/Write and Rand/Seq)

Observations

Read-dominated workloads
- Unaffected performance by nested file systems

Write-dominated workloads
- Heavily affected performance by nested file systems

Serial Write
JFS/ReiserFS vs. XFS/Ext3

1.0
0.8
0.6
0.4
0.2
0
0
0.2
0.4
0.6
0.8
1

Normalized seek distance

XFS causes more long distance disk seeks than ReiserFS

XFS’s multiple logging mechanism of metadata induces overhead under intensive sequential writes

Findings

- Sequential Read
 - Readahead at host when file systems are nested
- Sequential Write
 - I/O scheduler is NOT good for all nested file systems
 - Journal logging on disk images lowers the performance
 - Effectiveness of guest FSS’s block allocation is NOT guaranteed

Advice

#1 – Read-dominated workloads
Minimum impact on I/O throughput
- Sequential reads: even improve the performance

#2 – Write-dominated workloads
- Nested file system should be avoided
- Journaling degrades the performance for most workloads

#3 – I/O sensitive workloads
- I/O latency increased by 10-30%

#4 – Data allocation scheme
- Impossibility to classify guest’s data and metadata at host
- Pass-through host file system sometimes is good

#5 – Tuning file system parameters
- “Discard” disk or access time (noatime and nodiratime)
- Data allocation and balancing tasks