Accelerating Data Deduplication by Exploiting Pipelining and Parallelism with Multicore or Manycore Processors

Wen Xia, Hong Jiang, Dan Feng, Lei Tian

Background and Challenges

• Data deduplication
 - Reduce storage space requirement by eliminating duplicate data
 - Minimize the transmission of redundant data in storage systems

• Deduplication computation overheads
 - Contend—Defined Chunking (Rabin)
 - Fingerprinting (SHA1 or SHA256)

• Increasing compute resource with multicore or manycore

![Graph showing throughput vs. cores for CDC-based and FSC-based deduplication]

Observation and Motivations

• Minimize the deduplication compute overheads

 • Serial Dedupe
 \[X_{\text{put}} = \frac{1}{T_c + T_f + T_w/D} \]

 • Pipelining
 \[X_{\text{put}} = \frac{1}{\max(T_c, T_f, T_w/D)} \]

 • Parallelism
 \[X_{\text{put}} = \frac{1}{\max\left(T_c, T_f, \frac{1}{N}, T_w/D\right)} \]

P-Dedupe Approaches

• Data deduplication process can be organized as:
 - Data units (such as chunks and files)
 - Functional units (i.e., chunking, hashing, indexing, and writing)
 - They are independent of one another

• Full exploitation of parallelism on data deduplication
 - Pipelining of CDC based deduplication processes
 - Paralleling fingerprinting and chunking

![Diagram of P-Dedupe system architecture]

Real world data deduplication

![Bar chart showing throughput for different data sets]

Preliminary Results

• Evaluate P-Dedupe on an Intel quad-core and eight-thread CPU

 ![Graph showing performance of P-Dedupe vs. traditional deduplication methods]

 • Deduplication based writing throughput

• Write efficiency among Serial, Pipeline, and P-Dedupe

Ongoing Work

• Boost the performance with increasing numbers of cores
 - Memory and cache management
 - Choices of section size and chunk size
 - Asynchronization or synchronization of parallelism
 - Deduplicated file fragments issue

![Diagram showing write efficiency with and without deduplication]

This work was supported by Chinese 973 Program of under Grant No.2011CB302301, and the US NSF under Grants CNS-1116606, CNS-1016609, IIS-0916859 and CCF-0937993.

© 2012 Huazhong University of Science and Technology and University of Nebraska-Lincoln. All right reserved.