Introduction

Motivation:
- Storage is one of the common problematic subsystems in a cloud environment.
- Need to make upper layers resilient to storage failures.
- Need a framework to study the impact of disk failures on a large testbed.

PRObE:
- Aims to build a large testbed for systems research with such a framework.

Goals:
- Lets users of Emulab testbed simulate various disk errors.
- Provide a scriptable and repeatable means to inject failures.
- Compress real disk-failure timelines into shorter timelines for experimentation.
- Replay I/O traces from real systems to model real disk failures.
- Try it out by signing up for a free account at http://emulab.net/

System Architecture

1. **Device Mapper on Linux**
 - Maps virtual disks onto real storage disks
 - Provides various disk target types
 - Target types can be used to simulate disk failures
 - Ability to dynamically change disk target type

2. **Event System/NS on Emulab**
 - Ability to schedule/trigger disk faults at later point in time
 - NS syntax to script disk failure experiments

3. **Disk-Agent for Emulab**
 - Interfaces libdevmapper and Event system
 - Listens to disk events and invokes various disk failure conditions

Example

Typical NS TCL script to specify experiments on Emulab

```tcl
set nodeA [Ns new node]
set disk0 [NodeA disk-agent -type "linear" -mountpoint "/mnt"]
Ns at 0 "$disk0 run"
set disk1 [NodeA disk-agent -type "delay" -mountpoint "/mnt" -parameters "100"]
Ns at 22 "$disk1 run"
set disk2 [NodeA disk-agent -type "linear" -mountpoint "/mnt"]
Ns at 72 "$disk2 run"
```

The above NS script allocates a physical node, specifies a disk which starts out being a good disk and 22 seconds later, we turn it into a slow disk by delaying the I/O’s by 100ms. And then, at 72nd second we turn it back into a normal disk.

This material is based upon work supported by the National Science Foundation under Grant No. CNS-1042537. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.