Motivation: Enhanced Reliability for SSDs

- Problem with current SSDs: low reliability
 - High error rate and limited erase count of flash memory
 - Multi-level cell (MLC) flash memory aggravates problem
- One solution: provide RAID-5 configuration with chips comprising the SSD device

Problems

- Typical RAID-5 [Logical Block Number (LBN) based striping]: Parity update burden
 - Small write problem: read old data, calculate parity, write new data
- Added burden when adopting RAID-5 configuration to SSDs: Out-of-place update
 - With LBN-based striping ⇒ MUST keep (new) updated page in SAME chip as old page

- Lower performance & reliability, higher cleaning cost, decreased lifetime

- Our solution: Dynamic Stripping-RAID (DS-RAID)

Logical Block Number (LBN) based striping

- Need Stripe map table in RAID Controller
- Must read old data & old parity
- May result in particular chips being written to more frequently (skewed writes)
- Window of vulnerability for new small writes

Physical Page Number (PPN) based striping

- No need for Stripe map table
- No need to read old data & old parity
- All chips are written to evenly
- RAID-5 reliability for new small writes (even without non-volatile RAM)

Evaluation Platform and Results

- **Evaluation platform**
 - SSD Extension for DiskSim
- **Parameter**
 - Number of chips: 8
 - Pages per chip: 8
 - Blocks per plane: 256
 - Pages per block: 64
 - Over provision space: 5%
 - Page size: 4KB
 - Stripe size: 2KB

- **Workload**
 - Postmark: 1.6MB (Avg. write size)
 - Random write: 12KB (Avg. write size)

- **Includes**
 - Parity writes
 - Writes for cleaning
 - Sub-parity stripe writes

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2007-200-20071-1); by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (NRF) (No. 2009-0085883), and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0026582).

10th USENIX Conference on File and Storage Technologies (FAST’12)