
InnoDB DoubleWrite Buffer as Read Cache using SSDs∗

Woon-Hak Kang1, Gi-Tae Yun1, Sang-Phil Lim1, Dong-In Shin1,
Yang-Hun Park1, Sang-Won Lee1, and Bongki Moon2

1Sungkyunkwan University, Suwon, Korea
2University of Arizona, Tucson, AZ, U.S.A

1 Introduction

As the technology of flash memory solid state drives (SSD
hereafter for short) continues to advance, they are increas-
ingly adopted in a wide spectrum of storage systems. Nev-
ertheless, it is still true that the price per unit capacity of
flash memory SSDs is higher than that of disk drives, and
the market trend is likely to continue for the foreseeable
future. Therefore, for applications dealing with large scale
data, it may be economically more sensible to use flash
memory SSDs to supplement disk drives rather than to re-
place them. Along this vein, a few studies have been re-
cently proposed to use SSD as a cache between the RAM
buffer and harddisk [2], and they are very promising in
terms of performance and price.

Meanwhile, a recent empirical study showed that, due
to low latency of SSDs, significant performance improve-
ment can be achieved in OLTP databases just by replacing
magnetic harddisk with SSD for a certain type of special
storage tablespaces, where sequential writes and random
reads are prevalent, which are favorable to SSD [4]. An-
other interesting storage space not covered in the study is
the doublewrite buffer of InnoDB, a transactional storage
engine for the popular MySQL open source DBMS. As
explained later, it acts as a backup copy of recently evicted
dirty pages for guaranteeing the atomic writes. Also in the
doublewrite buffer (dw-buffer for short), the write pattern
is sequential (the default write unit is 1MB extent) and thus
the write pattern itself would not adversely affect the sys-
tem performance when SSD is used as the storage device
of dw-buffer .

In this paper, based on these observations, we propose
a simple but elegant extension ofdw-buffer : by deploying
SSD as the storage device fordw-buffer and enlarging its
size (e.g. 5% of total database capacity), we can utilize it
as read cache. Now,dw-buffer is used to serve the dual pur-
poses, namely, (1) atomic write support and (2) read cache
for random read. The evaluation result shows that, only
by deploying a commodity SSD asdw-buffer , our scheme
can improve the performance by more than 50% compared
to the harddisk-only InnoDB with 8 raided enterprise-class
HDDs.

∗This work was supported in part by the NRF of Korea grant funded
by the Korea government(MEST) (No. 2011-0027613) and (No. 2011-
0026492), also supported in part by the the MKE, Korea, underIT/SW
Creative research program supervised by the NIPA(NIPA-2011-C1820-
1102-0058)

2 InnoDB Doublewrite Buffer and SSDs

For recovery, database systems should guarantee that all
the page writes be atomic. However, modern harddisks do
not ensure the atomic write of data page of multiple sec-
tors, and thus thepartial page write problem can be en-
countered when a multisector page is being written to disk
but all the sector writes are yet completed. Therefore, mod-
ern database systems have developed various approaches
to achieve atomic write for data pages on top of hard-
disks [5].

One popular scheme to cope with partial page writes
is the doublewrite buffer of InnoDB [1]. dw-buffer is a
special reserved area, with two extents each of 1MB size,
which is keeping recently written pages to ensure that ev-
ery page write is atomic and durable against crash or power
failure. When InnoDB flushes dirty pages from the RAM
buffer to the disk, it writes them synchronously first to
dw-buffer , then asynchronously to the main data area to
which they really belong. InnoDB maintains two extents
for the purpose of double buffering: while one extent is
being written, the in-memory buffer of the other extent is
buffering the dirty pages flushed by the buffer manager. If
there is a partial page write todw-buffer itself, the origi-
nal page will still remain intact it its real location on disk.
Thus, during recovery, InnoDB will use the original page
instead of the inconsistent copy indw-buffer . However, if
the page is successfully written todw-buffer but the write
to its real location fails, InnoDB will use the copy indw-
buffer during recovery. In InnoDB, each page has a check-
sum at its end to check whether is is partially written.

From the above description, we can make two observa-
tions about the relationship betweendw-buffer and SSDs.
First, because InnoDB writes several pages at once todw-
buffer sequentially and only then calls fsync() to sync them
to disk, its write pattern is sequential-only, which is favor-
able to SSD. Second, since each dirty page is written to
dw-buffer always prior to its main storage, the page copy
residing indw-buffer is most recent one and thus can be
safely used to serve the read request for the page. There-
fore, with moderate size of SSD asdw-buffer (e.g. 5% of
the total database size), it can be used as read cache, espe-
cially considering the random read performance of modern
SSDs.

3 Proposed Scheme

Based on observations made in Section 2, we propose to
use SSD as the storage device fordw-buffer and more im-

1

Buffer pool (RAM) DoubleWrite Buffer (SSD)

Fetch from HDD
upon SSD miss

Write to HDD
(Asynchronous)

Data tablespace (HDD)

SSD hitWrite to SSD
(Synchronous)

Figure 1: System Overview

portantly to enlarge the size ofdw-buffer enough to cache
the recently evicted pages so that the hit ratio from the
cache is considerable.

Figure 1 shows the system architecture of our proposed
scheme. As shown in Figure 1,dw-buffer is separated from
the data tablespace in harddisk and is stored in a dedicated
SSD.dw-buffer is moderately sized (e.g. 5% of the total
database capacity) so that it can cache quite a large num-
ber of most recently evicted dirty pages, thus being able to
provide high hit ratio for the read request from InnoDB
buffer manager. In order to keep the mapping informa-
tion between each page indw-buffer and the main page
in harddisk and, when pageid is given, quickly search the
corresponding copy fromdw-buffer , a mapping table and
a hash structure, although not depicted in Figure 1, are
maintained in main memory. To ensure the durability of
the mapping information against crash, the mapping table
is periodically check-pointed.

Now, let us explain how read and write operations work
in our scheme. For dirty page writes, like the original Inn-
oDB, each page is sequentially written first todw-buffer in
SSD, then to its main location in harddisk. But, for page
reads, unlike the original InnoDB,dw-buffer in SSD is
first searched using the hash table. If a copy of the page
being read is found there (i.e., SSD hit), the copy is re-
turned. Otherwise, the disk copy is fetched from the main
tablespace. As will be shown later, due to the high tempo-
ral locality to re-read the pages recently written in OLTP
database [3], about 40% of read requests could be served
by dw-buffer of moderated size (e.g. 10% of total database
size) in SSD. From this, we can confirm thatdw-buffer in
SSD is very effective as read cache, taking into account
the fast read speed of SSDs.

4 Performance Evaluation

We have implemented this scheme in the MySQL 5.5.1.
The benchmark tests were carried out on a Linux sys-
tem with 2.8GHz Intel i7-860 processor and 1GB DRAM.
This platform was equipped with a Samsung S470 Series
128GB MLC SSD and an RAID-0 disk array with eight
enterprise-class harddisks (Seagate ST3146356SS). The
database size was set to approximately 30 GB (at the scale
of 470), and the RAM buffer pool was deliberately lim-

 0

 50

 100

 8 12 16 20

T
ra

ns
ac

tio
n

P
er

 S
ec

on
d

Number of Concurrent Users

DW-Buffer as Cache
DW-Buffer in SSD
DW-Buffer in HDD

Figure 2: Transaction throughput by user

ited to 50MB in order to amplify I/O effects. The bench-
mark database and workload were created by the Bench-
mark Factory tool.

Both SSD and harddisks were bound as a raw device to
minimize interference from data caching in file system.

Figure 2 graphs the number of transactions exectued
per second (TPS) of three configurations by varying the
number of concurrent users from eight to twenty. In the
first configuration (’DW-Buffer in HDD’ in Figure 2),dw-
buffer is stored in harddisk together with main data ta-
blespace. In the second one (’DW-Buffer in SSD’ in Fig-
ure 2), dw-buffer is separated from main tablespace in
harddisk and stored in SSD, but its size is not enlarged
and thus it consists of two extents each of 1MB. Finally,
the third configuration (’DW-Buffer as Cache’ in Figure 2)
represents our scheme withdw-buffer of 1GB in SSD. By
comparing the first two configurations, we can observe that
no performance improvement is gained only by separating
dw-buffer from harddisk and storing it in SSD. And, this
is not surprising because the sequential write bandwidth
of RAIDed eight harddisks (i.e. more than 1GB/sec) sur-
passes that of the SSD (i.e. 200MB/sec) used in our ex-
periment. Meanwhile, our scheme can improve the perfor-
mance by more than 50% over the first two configurations
regardless the number of concurrent users. And this is due
to the high hit ratio fromdw-buffer used to serve as a read
cache for the recently evicted dirty pages and the fast ran-
dom read speed of SSD.

References
[1] BARON SCHWARTZ, P. Z., TKACHENKO, V., ZAWODNY, J. D.,

LENTZ, A., AND BALLING , D. J. High Performance MySQL(2nd
ed.). O’Reilly, 2008.

[2] DO, J., ZHANG, D., PATEL , J. M., DEWITT, D. J., NAUGHTON,
J. F., AND HALVERSON, A. Turbocharging DBMS Buffer Pool
using SSDs. InProceedings of ACM SIGMOD (2011).

[3] HSU, W. W., SMITH , A. J., AND YOUNG, H. C. I/O reference be-
havior of production database workloads and the TPC benchmarks-
an analysis at the logical level.ACM Transactions on Database Sys-
tems 26, 1 (2001).

[4] L EE, S.-W., MOON, B., PARK , C., KIM , J.-M., AND K IM , S.-W.
A Case for Flash Memory SSD in Enterprise Database Applications.
In Proceedings of ACM SIGMOD (2008).

[5] M OHAN, C. Disk Read-Write Optimizations and Data Integrity in
Transaction Systems Using Write-Ahead Logging. InProceedings
of ICDE (1995).

2

