
FAST:

Quick Application Launch on

Solid-State Drives

Yongsoo Joo1, Junhee Ryu2, Sangsoo Park1, and Kang G. Shin1,3

1Ewha Womans University, Korea

2Seoul National University, Korea

3University of Michigan, USA

Application Launch Delay

! Elapsed time between two events
! A user clicks the icon

! The application becomes responsible

! Important for interactive applications
! Critically affects user satisfaction

2

Application Launch Performance

! Moore’s law not applicable
! Faster CPU and larger main memory not helpful

! HDD seek and rotational latencies do not improve well

3

0.1!

1!

10!

100!

1000!

10000!

100000!

1970! 1980! 1990! 2000! 2010!

0!

50!

100!

150!

200!

250!

1980! 1990! 2000! 2010!

(MIPS) (Gbit/s)

(a) CPU performance (b) Peak bandwidth of DRAMs

0!

200!

400!

600!

800!

1000!

1200!

1990! 2000! 2010!

0!

3!

6!

9!

12!

15!

1990! 2000! 2010!

Average seek time!

Average rotational latency!

(Mbit/s) (ms)

(c) Peak bandwidth of HDDs (d) Disk access latencyCPU performance DRAM throughput HDD throughput HDD access latency

Exponential improvement Linear
improvement

seek

rotational

Application Launch Performance

! Application launch breakdown

4

!"#$"%&'(

)'$*%

+,'-.$/'0

1/2*3'(

1456'$

78 978 :78 ;78 <78 =778

>'%6.$?$/'0@
-?$*0A#

5**B@?0C@2'$?4
$/'0?-@-?$*0A#

D?$?@$2?0E3*2@
$/%*

! Many SW-level schemes deployed in OSes
! Application defragment, Superfetch, readahead, BootCache, etc.

! Sorted prefetch (ex: Windows prefetch)
! Obtain the set of accessed blocks for each application

! Monitor I/O requests during an application launch

! Pause the target application upon detection of its launch

! Prefetch the predetermined set of blocks in their LBA order

! Reduce the total seek distance of the disk head

! Resume the launch after the prefetch completes

SW-Level Optimization

5

! How sorted prefetch works

SW-Level Optimization

6

Improvement
(typ: 40%)

Time

Time

H
D

D
 t

ra
c
k

p
o

s
it
io

n
H

D
D

 t
ra

c
k

p
o

s
it
io

n

Launch

start
Launch

completion

Launch

detection

Launch

resumption

Launch

completion

Prefetcher

execution

<Without sorted prefetch>

<With sorted prefetch>

CPU

computation

(x-axis not in scale)

Flash-based SSD

! The single most effective way to eliminate

disk head positioning delay
! Acrobat reader: 4.0s -> 0.8s (84% reduction)

! Matlab: 16.0s -> 5.1s (68% reduction)

! Characteristics
! Consist of multiple NAND flash chips

! No mechanical moving part

! Uniform access latency (a few 100 microseconds)

! Prices now affordable
! 80 GB MLC SSD: less than 200$ now

7

Motivation

! Question: Are we satisfied with the app launch on SSD?
! Yes for lightweight applications (e.g., less than 1 sec)

! No for heavy applications (e.g., more than 5 sec)

! Far from ultimate user satisfaction

! Faster application launch is always good (at least, not bad)

! Needs increase for launch optimization on SSDs
! Applications are getting HEAVIER

! More blocks to be read

! SSD random read performance improves slowly

! Bounded by the single chip performance

8

HDD-Aware Optimizers on SSD

! Question: Will traditional HDD optimizers work for SSDs?
! Consensus: they will not be effective on SSDs

! Rationale: they mostly optimize disk head movement

! No disk head in SSDs

! Often recommended not to use on SSDs

! Microsoft Windows 7
! HDD-aware optimizers disabled upon detection of SSD

! Windows prefetch, Application defragmentation, Superfetch,

Readyboost, etc.

9

! No benefit from LBA sorting
! Uniform seek latency of SSD

! Launch performance still improves
! Increased effective queue depth (0.3->3.4, app: Eclipse)

! Observed 7% launch time reduction: better than nothing!

Sorted Prefetch on SSDs

10

(a) Cold start (no prefetcher)

(b) Baseline prefetcher (c) Baseline prefetcher (zoomed in)

(d) Two-phase prefetcher (e) Two-phase prefetcher (zoomed in)

0

32
24
16

8
0

1 2 3 4

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

0 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3

5

0 1 2 3 4 5

0 1 2 3 4 5

Average QD: 0.3

Average QD: 3.4

Average QD: 30.6

(sec)

Q
u
e
u
e
 d

e
p
th

(a) Cold start (no prefetcher)

(b) Baseline prefetcher (c) Baseline prefetcher (zoomed in)

(d) Two-phase prefetcher (e) Two-phase prefetcher (zoomed in)

0

32
24
16

8
0

1 2 3 4

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

0 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3

5

0 1 2 3 4 5

0 1 2 3 4 5

Average QD: 0.3

Average QD: 3.4

Average QD: 30.6
(a) Cold start (no prefetcher)

(b) Baseline prefetcher (c) Baseline prefetcher (zoomed in)

(d) Two-phase prefetcher (e) Two-phase prefetcher (zoomed in)

0

32
24
16

8
0

1 2 3 4

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

0 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3

5

0 1 2 3 4 5

0 1 2 3 4 5

Average QD: 0.3

Average QD: 3.4

Average QD: 30.6

(sec)

(sec)

Q
u
e
u
e
 d

e
p
th

Q
u
e
u
e
 d

e
p
th

Queue depth: 0.3

Queue depth: 3.4

FAST: Fast Application STarter

! Overlap CPU computation with SSD accesses

11

0

0

0

s1 s2 s3 s4

c1 c2 c3 c4

s1 s2 s3 s4c1 c2 c3 c4

Application

Prefetcher

Application

Time

Time

Time

(a) Cold start scenario

(c) Proposed prefetching ()

c1 c2 c3 c4Application

Time
(b) Warm start scenario

tcpu > tssd

tlaunch

tlaunch

tlaunch

Application Launch Sequence

! Deterministic block requests over repeated launches

! Raw block request traces

! Application launch sequence

12

b1 b2 b3 b4 b5

b4 b5

...

b3 b4 b5

b1 b2 b3

b1 b2

b1 b2 b3 b4 b5

Unrelated to application launch
Block requests irrelevant
to the application launch

What to Do

! Application launch sequence profiling
! Using blktrace tool

! Prefetcher generation
! Replay block requests according to the application launch

sequence

! Prefetcher execution
! Simultaneously with the original application

! By wrapping the system call exec()

! LD_PRELOAD

13

Prefetcher Generation

! Example application launch sequence
! AB->C->D

! Block-level I/O: (start LBA, size)
! (5, 2)->(1, 1)->(7, 1) <- obtainable from blktrace

! File-level I/O: (filename, offset, size)
! (“b.so”, 2, 2)->(“a.conf”, 1, 1)->(“c.lib”, 0, 1)

14

C A B D

0 1 2 3 4 5 7 8 96

0 1 2 0 1 2 0 1 23

"/dev/sda"

LBA

File offset

"a.conf" "b.so" "c.lib"

Accessed block

Prefetcher Generation

! Example application launch sequence
! AB->C->D

! Block-level I/O: (start LBA, size)
! (5, 2)->(1, 1)->(7, 1) <- obtainable from blktrace

! File-level I/O: (filename, offset, size)
! (“b.so”, 2, 2)->(“a.conf”, 1, 1)->(“c.lib”, 0, 1)

15

C A B D

0 1 2 3 4 5 7 8 96

0 1 2 0 1 2 0 1 23

"/dev/sda"

LBA

File offset

"a.conf" "b.so" "c.lib"

Accessed block

Prefetcher Generation

! Block-level I/O replay

16

int main(void) {
! fd = open("/dev/sda",O_RDONLY|O_LARGEFILE);
! posix_fadvise(fd,5*512,2*512,POSIX_FADV_WILLNEED);
! posix_fadvise(fd,1*512,1*512,POSIX_FADV_WILLNEED);
! posix_fadvise(fd,7*512,1*512,POSIX_FADV_WILLNEED);
! return 0;
}

LBA size

C A B D

0 1 2 3 4 5 7 8 96

0 1 2 0 1 2 0 1 23

"/dev/sda"

LBA

File offset

"a.conf" "b.so" "c.lib"

Accessed block

Page Cache Structure

17

/dev/sda

A B

C D

inode

cached
blocks

a.conf b.so c.lib

Page cache

Page Cache Structure

18

/dev/sda

A B

C D

inode

cached
blocks

a.conf b.so c.lib

Page cache

Miss! Miss! Miss!

Page Cache Structure

19

/dev/sda

A B

C D

inode

cached
blocks

a.conf b.so c.lib

C A B D

Page cache

What we need to construct

Prefetcher Generation

! File-level I/O replay

20

int main(void) {
! fd1 = open("b.so", O_RDONLY);
! posix_fadvise(fd1,2*512,2*512,POSIX_FADV_WILLNEED);
! fd2 = open("a.conf",O_RDONLY);
! posix_fadvise(fd2,1*512,1*512,POSIX_FADV_WILLNEED);
! fd3 = open("c.lib", O_RDONLY);
! posix_fadvise(fd3,0*512,1*512,POSIX_FADV_WILLNEED);
! return 0;
} file offset size

C A B D

0 1 2 3 4 5 7 8 96

0 1 2 0 1 2 0 1 23

"/dev/sda"

LBA

File offset

"a.conf" "b.so" "c.lib"

Accessed block

file name

Block-to-File Level I/O Conversion

21

C A B D

0 1 2 3 4 5 7 8 96

0 1 2 0 1 2 0 1 23

"/dev/sda"

LBA

File offset

"a.conf" "b.so" "c.lib"

Accessed block

(5,2)
(1,1)
(7,1)

(“b.so”, 2,2)
(“a.conf”,1,1)
(“c.lib”, 0,1)

! LBA-to-inode mapping
! Not supported by EXT file system

Block-to-File Level I/O Conversion

! Inode-to-LBA map for a single file
! Easy to build

! LBA-to-inode map for the entire file system
! Millions of files in a file system

! Frequently changed

! Only a few 100s of files used by a single application

! Our approach: build a partial map for each application
! Determine the set of files used for the launch

! Monitoring system calls using filename as their argument

22

Application Prefetcher

! Automatically generated application prefetcher for Gimp

23

int main(void) {

 ...

 readlink("/etc/fonts/conf.d/90-ttf-arphic-uming-embolden.conf", linkbuf, 256);

 int fd423;

 fd423 = open("/etc/fonts/conf.d/90-ttf-arphic-uming-embolden.conf", O_RDONLY);

 posix_fadvise(fd423, 0, 4096, POSIX_FADV_WILLNEED);

 posix_fadvise(fd351, 286720, 114688, POSIX_FADV_WILLNEED);

 int fd424;

 fd424 = open("/usr/share/fontconfig/conf.avail/90-ttf-arphic-uming-embolden.conf",

O_RDONLY);

 posix_fadvise(fd424, 0, 4096, POSIX_FADV_WILLNEED);

 int fd425;

 fd425 = open("/root/.gnupg/trustdb.gpg", O_RDONLY);

 posix_fadvise(fd425, 0, 4096, POSIX_FADV_WILLNEED);

 dirp = opendir("/var/cache/");

 if(dirp)while(readdir(dirp));

 ...

 return 0;

}

CPU and SSD Usage

24

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

Eclipse

Firefox

0 5

0 1

(sec)

(sec)

tcoldtwarm tFAST tsorted

tcoldtwarm tFAST tsorted

Cold

start

Warm

start

FAST

Sorted

prefetch

Cold

start

Warm

start

FAST

Sorted

prefetch

Low CPU usage

(a)
(b)

(c)

1 2 3 4

Reduction:
24%

CPU and SSD Usage

25

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

Eclipse

Firefox

0 5

0 1

(sec)

(sec)

tcoldtwarm tFAST tsorted

tcoldtwarm tFAST tsorted

Cold

start

Warm

start

FAST

Sorted

prefetch

Cold

start

Warm

start

FAST

Sorted

prefetch

Low CPU usage

(a)
(b)

(c)

1 2 3 4

Reduction:
24%

Reduction:
37%

CPU and SSD Usage

26

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

Eclipse

Firefox

0 5

0 1

(sec)

(sec)

tcoldtwarm tFAST tsorted

tcoldtwarm tFAST tsorted

Cold

start

Warm

start

FAST

Sorted

prefetch

Cold

start

Warm

start

FAST

Sorted

prefetch

Low CPU usage

(a)
(b)

(c)

1 2 3 4

Reduction:
24%

Reduction:
37%

Measured Application Launch Time

! Launch time reduction
! Warm start: 37% (upper bound)

! Proposed: 28% (min: 16%, max: 46%)

! Sorted prefetch: 7% (min: -5%, max: 21%)

27

(Normalized to the cold start time.)

!
"
"
#
$
$

!
"
%&
'
(
)*
%#
(
+
#
%

,
#
$
-.
/
#
%0
1
)2

3
"
4-5
$
#

3
6
"
#
4

7
08
5
&
)

7
-%
#
9&
6

:
-;
5

:
/
&
;
#

<
&
=
+
-/
-

>
+
#
?
+
#
$
-.
/
#
%

>
+
#
?
#
4&
5

>
&
/
@
=
#
%&
%

A
(
'
?
-#
B

C
(
)4
(
'

D
5
#
/
D
99
-"
#

E
&
B
#
%5
&
-/
)

8
F
G
5
#

H
I
=
/
+
#
%'
-%
+

J
-$
-&

K
&
%+

L
-4-
/
6
M8
3

!
?
#
%(
.
#

NONP

QNONP

2NONP

RNONP

SNONP

TNNONP

TQNONP

UDA,

8DVH

7!8H

K!VC

EV37

WDXY,

1.6s 0.8s 1.9s 4.8s 2.1s 1.1s 0.9s 2.3s 2.6s 5.6s 1.8s 1.6s 1.2s 2.7s 5.1s 0.9s 1.9s 1.0s 1.0s 3.7s 2.6s 6.6s 93%

72%

63%

27%

tcold

tsorted
tFAST

twarm
tssd

tbound

Measured Application Launch Time

! Launch time reduction
! Warm start: 37% (upper bound)

! Proposed: 28% (min: 16%, max: 46%)

! Sorted prefetch: 7% (min: -5%, max: 21%)

28

!"#$%&#

'(

)'(

*'(

+'(

,'(

-''(

-)'(

./01

2/$3#1

4!25

6%$7

93%
100%

72%
63%

Applicability on Smartphones

! Similarity to PCs with a SSD
! Running various applications

! Application launch performance does matter

! NAND Flash-based storage
! The same performance characteristic as SSDs

! Slightly modified OSes and file systems designed for PCs
! Easy to port

29

Applicability on Smartphones

! Further benefits
! More frequent launches of applications

! Limited main memory capacity

! Cold start scenario occurs more often

! Slower CPU and flash storage speed

! Relatively longer application launch time

30

Applicability on Smartphones

! Measured cold & warm start time on iPhone 4
! Average cold start time: 6.1 seconds

! Warm start time: 63% of cold start time

31

!
"
"
#

!
"
"
$

!
"
"
%

!
"
"
&

!
"
"
'

!
"
"
(

!
"
"
)

!
"
"
*

!
"
"
+

!
"
"
#
,

!
"
"
#
#

!
"
"
#
$

!
"
"
#
%

!
"
"
#
&

!
-
.
/0
1
.

,

'

#,

#'
23456780/8

90/:6780/8 6.1s

3.7s

L
a

u
n

c
h

 t
im

e
 (

s
e

c
)

Conclusion & Future Work

! Introduced an application prefetcher designed for SSDs

! Our ultimate goal
! Warm start performance in the cold start scenario

! Further improving FAST by exploiting the SSD parallelism
! See our poster!

32

(a) Cold start (no prefetcher)

(b) Baseline prefetcher (c) Baseline prefetcher (zoomed in)

(d) Two-phase prefetcher (e) Two-phase prefetcher (zoomed in)

0

32
24
16

8
0

1 2 3 4

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

32
24
16

8
0

0 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3

5

0 1 2 3 4 5

0 1 2 3 4 5

Average QD: 0.3

Average QD: 3.4

Average QD: 30.6

m1 d1 d2 d3 m4 d4 d5
c1 c2 c3 c4

m4 d4
d5
m1

d2
d1
d3

c1 c2 c3 c4 c5

c5

m4 d4
d5
d2

m1

d1
d3

c1 c2 c3 c4 c5

(a) No prefetcher

(b) Baseline prefetcher

(c) Two-phase prefetcher

1
2

1
2
3

1
2
3
4
5

Prefetcher

execution

Launch completion

Q
D

CPU
SSD

CPU
SSD

CPU
SSD

Time

Time

Time

Prefetcher

execution

First

phase
Second

phase

Q
D

Q
D

Backup Slides

Applicability on HDDs

! FAST works as well on HDDs, but ...
! Application launch on HDDs: I/O bound

! Little room for overlapping CPU time and HDD access time

! Launch time reduction: 15%

! Sorted prefetch performs better
! Launch time reduction: 40%

34

!"#$ %&'('")*+$,-).

/0

1/0

2/0

3/0

4/0

5//0 85%

60%

15%

100%

Normalized application launch time on HDD

Determinism on Multi-Core

! We observed determinism even on multi-core CPUs
! Only one core is active during the most time periods

! SSD is mostly idle when two or more cores are active

35

SSD
CPU core 1

CPU core 2

CPU core 3

CPU core 4

CPU core 5

Core 1

Core 2

Core 3

Core 4

Core 5

Core 1

Core 2

Core 3

Core 4

Core 5

Core 1

Core 2

Core 3

Core 4

Core 5

SSD

Why not Capturing File I/O?

! Why not simply capture all the file-level I/Os and replay
them?
! Ex) Capture all read() calls using strace

! That’s possible, but the problem is...
! The number of read() calls are extremely large

! Only few of them will cause page fault, generating a block I/O

! Replaying all the captured read() calls are inefficient

! In terms of both prefetcher size and function call overhead

! Not easy to determine which of them will actually cause page
faults

! May be more complicated than our approach (block-level to file-level

I/O conversion)

36

