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Application Launch Delay

! Elapsed time between two events
! A user clicks the icon

! The application becomes responsible

! Important for interactive applications
! Critically affects user satisfaction
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Application Launch Performance

! Moore’s law not applicable
! Faster CPU and larger main memory not helpful

! HDD seek and rotational latencies do not improve well
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Application Launch Performance

! Application launch breakdown
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! Many SW-level schemes deployed in OSes
! Application defragment, Superfetch, readahead, BootCache, etc.

! Sorted prefetch (ex: Windows prefetch)
! Obtain the set of accessed blocks for each application

! Monitor I/O requests during an application launch

! Pause the target application upon detection of its launch

! Prefetch the predetermined set of blocks in their LBA order

! Reduce the total seek distance of the disk head

! Resume the launch after the prefetch completes

SW-Level Optimization
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! How sorted prefetch works

SW-Level Optimization
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Flash-based SSD

! The single most effective way to eliminate 

disk head positioning delay
! Acrobat reader:  4.0s -> 0.8s (84% reduction)

! Matlab:            16.0s -> 5.1s (68% reduction)

! Characteristics 
! Consist of multiple NAND flash chips

! No mechanical moving part

! Uniform access latency (a few 100 microseconds)

! Prices now affordable
! 80 GB MLC SSD: less than 200$ now
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Motivation

! Question: Are we satisfied with the app launch on SSD?
! Yes for lightweight applications (e.g., less than 1 sec)

! No for heavy applications (e.g., more than 5 sec)

! Far from ultimate user satisfaction

! Faster application launch is always good (at least, not bad)

! Needs increase for launch optimization on SSDs
! Applications are getting HEAVIER

! More blocks to be read

! SSD random read performance improves slowly

! Bounded by the single chip performance
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HDD-Aware Optimizers on SSD

! Question: Will traditional HDD optimizers work for SSDs?
! Consensus: they will not be effective on SSDs

! Rationale: they mostly optimize disk head movement

! No disk head in SSDs

! Often recommended not to use on SSDs

! Microsoft Windows 7
! HDD-aware optimizers disabled upon detection of SSD

! Windows prefetch, Application defragmentation, Superfetch, 

Readyboost, etc.
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! No benefit from LBA sorting
! Uniform seek latency of SSD

! Launch performance still improves
! Increased effective queue depth (0.3->3.4, app: Eclipse)

! Observed 7% launch time reduction: better than nothing!

Sorted Prefetch on SSDs
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FAST: Fast Application STarter

! Overlap CPU computation with SSD accesses
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Application Launch Sequence

! Deterministic block requests over repeated launches

! Raw block request traces

! Application launch sequence
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What to Do

! Application launch sequence profiling
! Using blktrace tool

! Prefetcher generation
! Replay block requests according to the application launch 

sequence

! Prefetcher execution
! Simultaneously with the original application

! By wrapping the system call exec()

! LD_PRELOAD
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Prefetcher Generation

! Example application launch sequence
! AB->C->D

! Block-level I/O: (start LBA, size)
! (5, 2)->(1, 1)->(7, 1)   <- obtainable from blktrace

! File-level I/O: (filename, offset, size)
! (“b.so”, 2, 2)->(“a.conf”, 1, 1)->(“c.lib”, 0, 1)
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Prefetcher Generation

! Example application launch sequence
! AB->C->D

! Block-level I/O: (start LBA, size)
! (5, 2)->(1, 1)->(7, 1)   <- obtainable from blktrace

! File-level I/O: (filename, offset, size)
! (“b.so”, 2, 2)->(“a.conf”, 1, 1)->(“c.lib”, 0, 1)

15

C A B D

0 1 2 3 4 5 7 8 96

0 1 2 0 1 2 0 1 23

"/dev/sda"

LBA

File offset

"a.conf" "b.so" "c.lib"

Accessed block



Prefetcher Generation

! Block-level I/O replay
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int main(void) {
! fd = open("/dev/sda",O_RDONLY|O_LARGEFILE);
! posix_fadvise(fd,5*512,2*512,POSIX_FADV_WILLNEED);
! posix_fadvise(fd,1*512,1*512,POSIX_FADV_WILLNEED);
! posix_fadvise(fd,7*512,1*512,POSIX_FADV_WILLNEED);
! return 0;
}

LBA size
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Page Cache Structure
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Page Cache Structure
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Page Cache Structure
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Prefetcher Generation

! File-level I/O replay
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int main(void) {
! fd1 = open("b.so",  O_RDONLY);
! posix_fadvise(fd1,2*512,2*512,POSIX_FADV_WILLNEED);
! fd2 = open("a.conf",O_RDONLY);
! posix_fadvise(fd2,1*512,1*512,POSIX_FADV_WILLNEED);
! fd3 = open("c.lib", O_RDONLY);
! posix_fadvise(fd3,0*512,1*512,POSIX_FADV_WILLNEED);
! return 0;
} file offset size
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Block-to-File Level I/O Conversion
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! LBA-to-inode mapping
! Not supported by EXT file system



Block-to-File Level I/O Conversion

! Inode-to-LBA map for a single file
! Easy to build

! LBA-to-inode map for the entire file system
! Millions of files in a file system

! Frequently changed

! Only a few 100s of files used by a single application

! Our approach: build a partial map for each application
! Determine the set of files used for the launch

! Monitoring system calls using filename as their argument
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Application Prefetcher

! Automatically generated application prefetcher for Gimp
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int main(void) {

 ...

 readlink("/etc/fonts/conf.d/90-ttf-arphic-uming-embolden.conf", linkbuf, 256);

 int fd423;

 fd423 = open("/etc/fonts/conf.d/90-ttf-arphic-uming-embolden.conf", O_RDONLY);

 posix_fadvise(fd423, 0, 4096, POSIX_FADV_WILLNEED);

 posix_fadvise(fd351, 286720, 114688, POSIX_FADV_WILLNEED);

 int fd424;

 fd424 = open("/usr/share/fontconfig/conf.avail/90-ttf-arphic-uming-embolden.conf", 

O_RDONLY);

 posix_fadvise(fd424, 0, 4096, POSIX_FADV_WILLNEED);

 int fd425;

 fd425 = open("/root/.gnupg/trustdb.gpg", O_RDONLY);

 posix_fadvise(fd425, 0, 4096, POSIX_FADV_WILLNEED);

 dirp = opendir("/var/cache/");

 if(dirp)while(readdir(dirp));

 ...

 return 0;

}



CPU and SSD Usage
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CPU and SSD Usage

25

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

SSD

CPU

Eclipse

Firefox

0 5

0 1

(sec)

(sec)

tcoldtwarm tFAST tsorted

tcoldtwarm tFAST tsorted

Cold

start

Warm

start

FAST

Sorted

prefetch

Cold

start

Warm

start

FAST

Sorted

prefetch

Low CPU usage

(a)
(b)

(c)

1 2 3 4

Reduction:
24%

Reduction:
37%



CPU and SSD Usage
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Measured Application Launch Time

! Launch time reduction
! Warm start: 37% (upper bound)

! Proposed: 28% (min: 16%, max: 46%)

! Sorted prefetch: 7% (min: -5%, max: 21%)
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Measured Application Launch Time

! Launch time reduction
! Warm start: 37% (upper bound)

! Proposed: 28% (min: 16%, max: 46%)

! Sorted prefetch: 7% (min: -5%, max: 21%)
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Applicability on Smartphones

! Similarity to PCs with a SSD
! Running various applications

! Application launch performance does matter

! NAND Flash-based storage
! The same performance characteristic as SSDs

! Slightly modified OSes and file systems designed for PCs
! Easy to port
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Applicability on Smartphones

! Further benefits
! More frequent launches of applications

! Limited main memory capacity

! Cold start scenario occurs more often 

! Slower CPU and flash storage speed

! Relatively longer application launch time
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Applicability on Smartphones

! Measured cold & warm start time on iPhone 4
! Average cold start time: 6.1 seconds

! Warm start time: 63% of cold start time
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Conclusion & Future Work

! Introduced an application prefetcher designed for SSDs

! Our ultimate goal
! Warm start performance in the cold start scenario

! Further improving FAST by exploiting the SSD parallelism
! See our poster!
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Backup Slides



Applicability on HDDs

! FAST works as well on HDDs, but ...
! Application launch on HDDs: I/O bound

! Little room for overlapping CPU time and HDD access time

! Launch time reduction: 15%

! Sorted prefetch performs better
! Launch time reduction: 40%
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Determinism on Multi-Core

! We observed determinism even on multi-core CPUs
! Only one core is active during the most time periods

! SSD is mostly idle when two or more cores are active
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Why not Capturing File I/O?

! Why not simply capture all the file-level I/Os and replay 
them?
! Ex) Capture all read() calls using strace

! That’s possible, but the problem is...
! The number of read() calls are extremely large

! Only few of them will cause page fault, generating a block I/O

! Replaying all the captured read() calls are inefficient

! In terms of both prefetcher size and function call overhead

! Not easy to determine which of them will actually cause page 
faults

! May be more complicated than our approach (block-level to file-level 

I/O conversion)
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