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Abstract

This paper introduces proximal I/O, a new technique for

improving random disk I/O performance in file systems.

The key enabling technology for proximal I/O is the abil-

ity of disk drives to retire multiple I/Os, spread across

dozens of tracks, in a single revolution. Compared to

traditional update-in-place or write-anywhere file sys-

tems, this technique can provide a nearly seven-fold im-

provement in random I/O performance while maintain-

ing (near) sequential on-disk layout. This paper quan-

tifies proximal I/O performance and proposes a simple

data layout engine that uses a flash memory-based write

cache to aggregate random updates until they have suf-

ficient density to exploit proximal I/O. The results show

that with cache of just 1% of the overall disk-based stor-

age capacity, it is possible to service 5.3 user I/O requests

per revolution for random updates workload. On an aged

file system, the layout can sustain serial read bandwidth

within 3% of the best case. Despite using flash memory,

the overall system cost is just one third of that of a sys-

tem with the requisite number of spindles to achieve the

equivalent number of random I/O operations.

1 Introduction

This paper focuses on an important but neglected as-

pect of file system performance: workloads that mix ran-

dom writes with sequential reads to the same data. In

particular, serial reads after random writes (SRARW)

are common in many applications that are large con-

sumers of storage in enterprise environments. For exam-

ple, database systems typically acquire and update data

through online transactional processing (OLTP), which

is dominated by small writes, and subsequently read it in

bulk for other tasks, such as analysis or backup. SRARW

workloads are particularly problematic in large-scale de-

ployments, which are often spindle-limited and too large

to be moved to flash-based SSDs cost effectively.

Existing file system designs optimize either the serial

read access or the random writes in a SRARW work-

load, but do so at the expense of the other operation type.

At one end of the spectrum, write-anywhere file systems

such as the Sprite log-structured file system (LFS) [27]

and its descendants [19, 22, 3] are write optimized. They

batch small or random writes into larger sequential allo-

cations on disk, transforming updates of logically unre-

lated data into physically sequential I/O. However as they

age, their data layout becomes fragmented, scattering re-

lated data across the disk. Thus, logically sequential ac-

cess such as a database table scan leads to inefficient disk

I/O. We have measured access to physically fragmented

data at as little as 3% of the best-case serial read band-

width. (See results in Section 5.3.)

At the other end of the spectrum, update-in-place file

systems, such as FFS [21] and related designs [5, 32]

are optimized for serial read and write access. These

file systems attempt to allocate logically sequential data

to physically sequential disk locations, providing good

bandwidth for serial data access. However, this trans-

lates into inefficient non-sequential I/O, as destination

blocks are predetermined by past allocation decisions,

which are unlikely to be optimal in the face of random

updates. Moreover, when such systems keep older ver-

sions of the data, they must perform a variant of copy-

on-write [25], doubling the amount of inefficient random

write I/O. Database systems often decouple this ineffi-

cient back-end I/O from foreground processing through

the use of logging. The log then becomes a staging area

for asynchronous bulk updates to the database tables.

However, this technique alone does not mitigate the high

cost of random I/Os to the back-end of a storage system

that has limited I/O capacity.

To increase the back-end’s effective I/O capacity with-

out increasing disk (spindle) count, we introduce a new

type of disk access pattern that we term proximal I/O.

We demonstrate how proximal I/O leverages features of

current disk drives to retire in a single revolution several

I/Os scattered across dozens of tracks holding hundreds

of thousands of sectors (Section 2). We propose a new

data layout (Section 3), which shares the desired prop-

erties of existing copy-on-write, write-anywhere file sys-

tems that make random user writes efficient and allow for

snapshots with minimal I/O overhead.

Using a prototype implementation of our data layout (de-

tailed in Section 4), we show that with write cache sized

only at 1% of the overall storage capacity, we can ser-

vice 5.3 I/Os per revolution for workloads with random

updates, all the while maintaining data layout on a heav-

ily aged system that can deliver 97% of the bandwidth

achieved with the best-case scenario of physically se-



quential layout (Section 5). The 5.3 I/Os serviced per

revolution represent a 7× improvement over the cost of a

random disk I/O in traditional frame arrays with update-

in-place data layout. With RAID5 and non-volatile write

caches, they use four random disk I/Os at the back-end;

with copy-on-write snapshots, this number doubles. In

contrast, our approach uses about one disk I/O at the back

end for every user-level random update when both RAID

and copy-on-write are employed.

The primary contribution of this paper is the introduction

of a data layout strategy that combines a small amount

of flash memory with proximal I/O to efficiently service

random updates to sequentially-allocated on-disk data

without undermining on-disk locality. We provide effi-

ciency both in performance and cost, significantly im-

proving the performance of random writes at less than a

third of the cost per IOPS of a pure disk solution. Fi-

nally, we present the first study to quantify the behavior

of modern disk drives under proximal I/O access pattern.

2 Proximal I/O

Proximal I/O leverages the ability of modern disk drives

to execute multiple I/Os per single revolution scattered

across dozens of disk tracks. Given the 300-400 Gb/in2

aerial density of the magnetic media in currently ship-

ping disk drives, this translates to a range of hundreds of

thousands of logical blocks (LBNs)1. We describe the in-

terplay between seek-time profile and request scheduling

that make proximal I/O possible.

In the material presented here, we focus primarily on one

disk model (the Seagate Cheetah 15K.5, introduced to

the market in late 2007). However, both the 15,000 RPM

enterprise-class drives as well as the 7,200 RPM high-

capacity nearline drives, colloquially referred to by their

interfaces as respectively SCSI/FC and SATA drives, are

capable of proximal I/O. Our measurements of over 20

different models of both drive types, representing several

generations of the same family of drives and manufac-

tured by four different vendors confirm the observations

about proximal I/O described here.

2.1 Relevant technologies

Historically the seek profile, the plot of seek time as a

function of radial distance, has been described by a con-

tinuous curve with two components: for small distances,

one that is a square root of the cylinder distance and,

1The number of sectors per track (SPT) for recent 3.5” disk drives

ranges between 800 and 2800. edge. The 15,000 RPM enterprise-class

disks employing 65 mm platters have fewer SPT at their outer-most

track compared to the 95 mm platters in the 7,200 RPM disk drives [2].

for larger seek distances, one where seek time is a lin-

ear function of cylinder distance [28]. As observed by

Schlosser et al. [31], the seek profile of more recent disks

includes a third component: for very small seek distances

of less than C cylinders, the seek time is nearly constant

and is effectively equivalent to the track-switch time, or

the time needed for the head to settle on a track.

The surface-serpentine disk layout adopted by more re-

cent drives [1, 31] uses minimal seek time over a range of

tracks. After mapping the last LBN to a given track, the

disk firmware maps the next LBN to the adjacent track

on the same surface rather than to the same track on a

different surface. After mapping across C consecutive

tracks, the next logical LBN is mapped to a sector on

a track of a different surface C cylinders away. Thus,

when accessing sequential run of LBNs, the disk heads

will occasionally seek across the C cylinders to access

the next logically sequential LBN. Using a disk extrac-

tion tool [29], we determined C = 65, which covers the

range of 624,000 LBNs (1200 SPT × 65 cylinders ×8

surfaces) for the 300 GB Cheetah 15K.5 disk.

The Shortest-Positioning-Time-First (SPTF) request

scheduler [34] implemented in the disk firmware can ef-

fectively increase the throughput of serviced requests. It

reorders requests to minimize the total positioning time

(i.e., the sum of seek time and rotational latency) for each

I/O request in the queue. With sufficiently large number

of outstanding requests, it can lower the total positioning

cost (i.e., the sum of the seek time and rotational latency)

and service many more requests per unit of time [1].

2.2 Expressing request service time

Issuing only one request at a time to the disk negates the

benefits of the SPTF scheduler. The service time of a

small random request will then be equivalent to the sum

of average seek (equivalent to 1/3 of the full-strobe seek)

and rotational delay of 1/2 a revolution. For the Cheetah

15K.5 disk, this is is respectively 3.6 ms and 2 ms, re-

sulting in service time of 5.6 ms. For a 7,200 RPM West-

ern Digital RE3 nearline disk, the values are respectively

6.9 ms and 4.2 ms, yielding service time of 11.1 ms.

As these times for the two drives vary (by design) by a

factor of 2×, we will use instead a relative measure of

service time, here called OP, that lets us ignore the dif-

ferences between disk types and their generations. Thus,

1 OP is the service time for a small random disk request

or the measure of resources consumed when servicing a

random disk I/O.

Our enterprise-class disk has the capacity to service

about 180 I/Os per second, while the nearline disk only

90. These drives demonstrate a useful rule of thumb;



the average seek time of a disk is roughly equal to the

time for a full rotation. Thus, the seek component of an

OP is roughly 2/3 OP while the remaining portion is at-

tributed to the rotational latency of half a revolution. This

rule predicts that a disks can typically service 0.66 ran-

dom requests per revolution. Our two drives do slightly

better—0.71 for the enterprise-class disk and 0.75 for the

nearline disk. This trend has held across many disk gen-

erations with different rotational speeds and seek times.

2.3 Measurements

To quantify the benefits of proximal I/O, we measured

the per-request service time in a batch of requests, here

called a strand, under a variety of conditions. We chose

at random a location on the disk and controlled the span

of LBNs covered by the requests as well as the number

of requests in the strand issued simultaneously (i.e., the

disk queue depth). The measured response time for the

entire strand, listed in Table 1, is the sum of the service

times of the individual requests in the strand.

To service a strand of requests, the disk must first seek

to the general vicinity of the requests. Servicing the first

request in the strand thus incurs the cost of an average

seek in addition to some rotational latency. However, if

the requests are near each other, servicing the remaining

requests, incurs only some additional rotational latency

and potentially minimal seek/track switch, since all re-

quests in the strand are within C cylinders of each other.

As we batch all requests, the disk is free to reorder them.

Figure 1 shows the effective per-request service time as

the number of requests in the strand (and hence the queue

depth) increases, expressed both absolutely and in rela-

tive units of OPs. The graph compares three different

access modes. The track-approximate access limits the

LBN span to 1024, the approximate size of the disk’s

track, rounded down to the power of two. The prox-

imal access uses a span of 100,000 LBNs. The semi-

sequential access represents the best possible disk ac-

cess after sequential streaming [30] — the requests are

carefully chosen such that each request is positioned at

a different track and at an offset equivalent to the mini-

mal seek/track switch time. For semi-sequential access,

we need to know detailed disk drive parameters. On the

other hand, proximal I/O does not require the knowledge

of track switch time or precise track size (SPT).

We remark on the following trends. First, as the num-

ber of requests in the strand increases, the effective per-

request service time decreases from 1 OP to 0.39 OP for

a strand of 8 requests — a 2.5× improvement over the

case with one request per strand. Second, both track-

approximate and proximal mode are very similar, despite

the ten-fold difference in the LBN span. And third, the

Strand response time (ms)

Requests per strand 2 4 6 8

Semi-sequential 5.9 7.3 8.6 9.9

Track-approximate 7.4 10.8 13.9 17.0

Proximal READ 7.4 11.2 14.2 17.1

Proximal WRITE 8.6 12.9 16.8 20.4

Table 1: Comparison of strand response times for Seagate

Cheetah 15K.5. The mean service time of single READ request

is 5.6 ms. For WRITE, it is 5.8 ms due to extra write-settle time.
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Figure 1: Per-request cost of small requests in a strand.

semi-sequential mode yields 0.23 OP for 8 requests per

strand compared to 0.39 OP of proximal mode — an ad-

ditional 1.7 times improvement. The results for WRITEs

(not shown here) exhibit a similar trend; the slightly

higher strand response time (see Table 1) is due to ad-

ditional write-settle time for track-to-track seeks.

2.4 Detailed model comparisons

Two hypotheses might explain why we do not see values

for proximal I/O that are closer to the semi-sequential

mode. First, with randomly chosen blocks, some of them

may land on the same track and the disk firmware opts

to prefetch the remainder of the track before servicing

other requests. Second, even without triggering prefetch-

ing, the random placement of the requests can cause extra

(missed) revolutions as we describe below.

The semi-sequential access carefully chooses the place-

ment of blocks so as to eliminate any rotational delays

between requests after a track switch. With randomly

chosen requests in proximal access, requests on different

tracks can have rotational offset that is smaller than the

time needed to switch tracks. The following paragraphs

help illustrate how the disk scheduler minimizes overall

rotational latency. They also show that it is the stochastic

nature of the request placement rather than an artifact of

the disk firmware causing the extra revolutions.
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Figure 2: Per-request service time for strand of 8 requests with

a varying number of READ requests outstanding at the drive.

The first point is equivalent to a FIFO scheduler. The percent-

ages next to the data points represent improvement relative to

the FIFO data point. The second graph compares the modeled

and the observed (measured) behavior.

To verify our hypothesis, we set up an experiment, whose

results are shown in Figure 2, where we fixed the number

of requests per strand to 8 and varied the number of re-

quests queued at the drive. With one request outstanding,

the requests are serviced in FIFO order. As the number

of outstanding requests increases, the disk scheduler can

choose a request with smaller rotational latency, yielding

a 32% reduction in per-request service time for a queue

depth of 8 requests. This result confirms that proximal

access effectively leverages the SPTF scheduler.

To obtain the expected number of revolutions needed to

service a strand of requests with proximal I/O, we de-

veloped an analytical model for computing the expected

strand response time and the probability distribution

of missing revolution(s) for proximal I/O access. The

model is based on the birthday paradox principle [33]

and works at a high level as follows. It divides the disk

into equally sized wedges or bins. When two requests

(on different tracks) fall into the same bin, the disk heads

cannot move fast enough to reach the second request in

time and will have to service it during the next revolu-

tion. Because of the high track switch time relative to

the revolution time (0.4–0.8 ms), there are only a few

bins (days in a month) available and several requests are

likely to fall into the same bin (i.e., having birthday on

the same day). See Appendix A for model details.

Figure 3 demonstrates the high accuracy of our model,

comparing the measured and modeled distributions of

the strand response times. The two curves labeled

Strands and Model are very similar with nearly identi-

cal distributions. The curve labeled FIFO corresponds to

measurements with one request outstanding at the disk

drive, which is the scenario described in Figure 2.
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Figure 3: Model-predicted vs. measured (observed) values.

2.5 Practical considerations

There are a few practical considerations for proximal I/O.

First, we discovered that the manner in which we issue

the requests in the strand is important. Issuing requests

in a random order and relying solely on the scheduler’s

ability to reorder them does not work. However, when

we issue the requests in ascending LBN, the scheduler

works as expected — it picks from the strand a request

with the lowest positioning cost, services it first, and re-

orders the remaining ones as necessary. Figure 4 shows

the effect of issuing requests in ascending LBN for two

different disk drives. The previously reported results in-

clude this workaround.

We attribute this limitation to two factors: the lack of

the embedded CPU power (especially for nearline drives)

and a firmware bug. We consulted disk manufactures

who acknowledged both factors. In one case, our inquiry

led to a fix in a subsequent firmware release. In prac-

tice, even with current limitations, pre-sorting requests

is not an issue. Second, to engage the request scheduler

properly, the strand must be issued to a non-empty disk

queue. Again, in practice this limitation is not a prob-

lem. In many deployed systems, disks are seldom idle;

they are busy servicing either client-generated workload

or a variety of background scanning and grooming tasks.

Third, we explored strands with at most 8 requests out-

standing, although deeper queues would likely result in

better results. This is again driven by a practical con-

sideration. Many commercial storage systems [20, 8, 9]

limit the number of pending requests to 4 or 8 to put a

bound on the response time of a time-critical request.

As a final remark note that our experiments assumed a

purely random workload, which we simulated by a uni-

form distribution of requests in the given range of LBNs.

We believe that workloads that have more locality (but

which are not sequential by nature) will benefit at least

as much (if not more) from using proximal I/O.
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Figure 4: The effects of sorting requests in ascending LBN order before issuing them to the disk. The full track data serves as a

reference of request scheduling efficiency and corresponds to reading approximately one full track. Same trends hold for WRITEs.

3 Data layout with proximal I/O

Previous section explained how proximal I/O can retire

several I/Os per revolution within the span of approxi-

mately 100 tracks or half a million LBNs. In this section

we describe the design principles for data layouts that

leverage the proximal I/O construct. For our discussion,

we will use the term block to designate the basic data

allocation unit in file systems (typically 4 KB) to distin-

guish them from sectors, or LBNs, which are typically

512 bytes and serve as the basic unit of disk I/O.

3.1 Increasing I/O density

We start by considering how to increase the density of

writes in the SRARW workload. The goal is to take a

stream of random requests and produce sequences of I/O

that will benefit from proximal I/O. As long as a storage

system can produce a batch of several, say eight, write re-

quests, and the data layout engine can place them within

the span of ≈ 100,000 blocks, each request will be ser-

viced in time equivalent to much less than one revolu-

tion and consume only 3.2 OP of resources (i.e., 0.4 OP

per request as shown in Figure 1) regardless of the pre-

vious position of the disk heads. In contrast, servicing

eight blocks randomly scattered across the entire media

will require 8 OP. Put differently, we need to find a way

to increase the effective I/O density instead of spreading

out a given batch of I/Os across the entire disk.

We use two complementary approaches to achieving the

necessary I/O density. First, we leverage indirection

when assigning data to their physical locations akin to

inodes in file systems that map file offset to a physical ad-

dress at the underlying storage. Write-anywhere systems

with no-overwrite semantics [19, 27] already take advan-

tage of this approach; random writes at the storage sys-

tem interface are mapped to the same segment (allocation

area) at the physical layer. Our technique expands on

this notion by allocating data to free space in the vicinity

of the previously written logically related data. Second,

when the I/O density of 6–8 requests within the zone of

effectiveness of proximal I/O is not enough, we comple-

ment the new type of write allocation described above

with the use of a staging area. With a large-enough stag-

ing area, one can selectively pick appropriate requests

and write-allocate them to achieve the required I/O den-

sity as determined by the disk technology.

Our approach contrasts with existing ones in several

ways. Traditional frame arrays that export logical vol-

umes composed of disk drives organized into a RAID

group typically do not have much flexibility in mapping

their blocks to the underlying devices. They stripe data in

a round-robin fashion across the constituent disks. Such

systems do not require any additional metadata; they can

compute the disk number and disk offset with simple

modulo and divide arithmetic. However, a given write

operation at the storage interface will land at a specific

location on the disk, negating the desire for decoupling

the front-end workload from the back-end. As a result,

they need much larger write caches to achieve the re-

quired write density compared to our approach.

A back-end system with hundreds of large-capacity near-

line disk drives, will require hundreds of GB of stag-

ing area. Using that much NV-RAM (i.e., some form

of battery-backed DRAM) would make the overall sys-

tem cost prohibitively high (although there are commer-

cial systems that offer such configurations [10, 9]). A

more cost-effective solution is to use Flash memory an

append-only log [23], at approximately 1/10th of the cost

per GB. Another possibility is to use a dedicated disk as

commercial relational database systems do for their log.

However, with disk-based staging area, we would re-

quire some additional DRAM to hold the data during the



destage operation to perform random reads from DRAM

rather than disk during destage operation.

3.2 Overwrites and snapshots

In contrast to purpose-built storage systems [4, 7, 14,

18]) that function as fixed-content repositories or that

handle specialized scientific workloads that write lots

of intermediate results, most writes in commercial sys-

tems are (logical) overwrites or updates rather than new

writes. For example, commercial databases and email

servers [11] update individual records within database

pages. New, or append-only, writes occur infrequently

as these systems typically pre-allocate their table space

by writing out empty (but non-zero) pages in bulk. Sim-

ilarly, writes to objects containing virtual machine disk

images create clones of a baseline golden image with rel-

atively few unique blocks.

Proximal I/O can also reduce the overhead of preserving

multiple versions of the same block, be it snapshots for

fast recovery after a crash or keeping diverging replicas

of original files. A storage system will turn an update into

a copy-on-write operation that will write data to a new lo-

cation. A write-anywhere file layout, for example, lends

itself to keeping snapshots with very little overhead, as in

WAFL [19]. Other systems, such as frame arrays, with

direct mapping of logical blocks to disk locations must

issue an extra I/O to preserve old block versions.

Both types of systems exhibit a similar shortcoming. A

version (the new one in case of WAFL and the old one

in case of frame arrays) of the data is put in a location

that is convenient for the system without considering the

semantic relationship to the original data. This can ad-

versely affect the efficiency of subsequent reads. Log-

ically related data may end up too far away from each

other, incurring high positioning cost when they are both

first written and then later on retrieved. Therefore, when

a data layout engine maintains physical proximity of log-

ically related data (be it a live version or a snapshot), it

can leverage proximal I/O for copy-on-write of data that

are updates in place from the client’s perspective.

Most storage systems use RAID to protect their data

against disk failures and grown media defects. The

RAID read-modify-write (RMW) operation is not prox-

imal I/O per se. However, we can combine copy-out

and RMW operations and leverage proximal I/O; we can

pipeline them such that we write out the just-read old

version of the data within the effective span of proximal

I/O in time before the disk spins around to write the new

version of the block. With enough flexibility in the data

layout, we can accomplish two RMW operations, that is

four media accesses, in time equivalent to slightly more

than one and a half revolution plus the initial seek.

3.3 Efficiency of reads

So far we have discussed proximal I/O in the context of

writes. However, it can also improve the efficiency of

subsequent reads. The careful placement of related ver-

sions of the data during writes allows the disk to collect

physically non-contiguous blocks with minimal position-

ing overhead for logically sequential access. Proximal

I/O can access both the current data as well as the snap-

shots with similar efficiency.

Systems that do not place logically related data near

each other are likely to perform differently depending on

which version of the data they access. For example, a

sequential table scan on an aged system may be less effi-

cient than one performed against a snapshot made earlier.

In contrast, when systems can place related data within

the span of blocks that can be serviced with proximal

I/O, they will likely exhibit much smaller variations in

performance regardless of the version/snapshot they are

reading. This is because both the old and new versions

of data blocks, as well as logically related unmodified

blocks will be in close proximity of each other, allowing

proximal I/O to read either old or new versions of the

data with high efficiency.

3.4 Summary of key design points

We summarize the key design points of a data layout en-

gine suited for proximal I/O:

1. Flexible mapping of object data to the physical on-

disk location is an effective mechanism for increas-

ing I/O density. Put differently, given a certain level

of “randomness” in the front-end workload, systems

with flexible per-block location pointers will need

smaller staging area compared to systems that use

rigid mapping of front-end blocks to on-disk physi-

cal locations.

2. The system needs to employ large-enough write

staging area to achieve the required I/O density

for the given front-end workload. Naturally, com-

pletely random workloads will require the largest

size. In practice, workloads are rarely purely ran-

dom — there are typically hot spots where rel-

atively small portion of the data is updated fre-

quently. These hotspots reduce the amount of stag-

ing area required for effective proximal I/O.

3. A data layout engine with built-in efficient copy-on-

write mechanism is well suited for proximal I/O;

only some adjustments will be necessary to marry

the constraints of proximal I/O with their already

existing mechanisms.



We conclude by examining the various access patterns

encountered by enterprise storage systems. In addition to

serial reads after random updates (SRARW) that we tar-

get with proximal I/O, we must consider random reads,

sequential writes, and sequential reads not coupled with

frequent (small) updates. It is our belief that storage sys-

tems already employ effective techniques that can handle

these other access patterns. In our view, proximal I/O is

the missing link that fixes the inefficiencies of disk ac-

cesses in today’s deployments.

Increasing the size of read caches, for example by em-

ploying devices based on flash memory, effectively copes

with random reads. A modicum of NV-RAM can turn

sequential writes into efficient disk accesses. In con-

trast, increasing the efficiency of random updates re-

quires large buffers. Finally, sequential reads (in the ab-

sence of small updates) are easy to achieve. For exam-

ple, workloads typical for fixed-content repositories of-

ten write out and read entire objects. When individual

objects would be too small for efficient disk I/O, they are

grouped into larger allocation and access units [4, 35].

3.5 Target workloads

Our work targets workloads in large-scale storage sys-

tems and is motivated by the emergence of virtualized

data center environments. The computing infrastructure

includes a storage manager that allocates data from the

underlying storage systems in large chunks or extents.

For example, both the Oracle ASM [12] and VMWare

VMFS [13] allocate data in 1 MB chunks. Storage sys-

tems in these environment in turn provide data man-

agement features such as fine-grain snapshots, writable

clones, etc. [20].

In these environments SRARW workloads are typical.

The storage manager reads and prefetches data in full al-

location units (chunks). However updates are typically

at a finer granularity—for Oracle ASM, the update size

is equivalent to the DBMS page size (typically 4–8 KB).

For VM hypervisors, the update size is governed by the

block size of the file system in the VM guest operating

system. The writes from the storage managers to the

underlying storage systems may turn into copy-on-write

(rather than update-in-place) operations in order to pre-

serve older versions data for disaster recovery. Our work

focuses on these logical update-in-place operations with

serial reads for prefetching or OLAP data scans.

4 Prototype data layout engine

The goal of our work is not to build an entire new file sys-

tem. Instead, we have built a data layout engine (DLE)

that uses our staging and allocation algorithms to demon-

strate the feasibility of using proximal I/O to greatly

improve random write performance while maintaining

(near) optimal serial performance for SRARW work-

loads. We believe these algorithms are readily adaptable

to both update-in-place and write-anywhere file systems.

Our DLE is, in effect, a stripped-down object storage sys-

tem. We store logical extents of data in a flat namespace,

where each extent is named only by a unique ID. Ex-

tents can be created, read, written (and overwritten) and

deleted. For simplicity, we only support reads and writes

that are properly-aligned on block boundaries. Our DLE

includes all of the necessary file systems structures to

support this functionality, inode-like structures for each

extent, allocation maps to track free space, and additional

metadata to facilitate layouts friendly to proximal I/O.

Because we are primarily interested in addressing the

SRARW workload, our DLE is designed to efficiently

support moderately large extents (1 MB or larger)—large

enough for the serial read portion of the workload to ben-

efit substantially from sequential layout. Our DLE works

correctly for smaller extents, but we have not tested or

optimized its performance in those cases. We believe

that for those workloads, file systems would benefit more

from using allocation algorithms that are different from

those implemented in our prototype DLE. We describe

here only the major pieces of our prototype necessary to

understand the experiments presented in Section 5.

4.1 Extent interface

The DLE operates on extents. An extent is a contigu-

ous logical range of bytes. The DLE decides how to best

allocate extent data into fixed-size blocks (4 KB in our

prototype) of the underlying storage subsystem—a logi-

cal volume created from raw disks in a RAID group. In-

ternally, each extent is represented by an inode, which is

the root of a constant-height tree of indirect blocks. The

leaf nodes of this tree contain the extent data.

4.2 Staging area

Our DLE uses a separate flash device as a staging area to

accommodate random writes. When the DLE writes data

into the staging area, it also updates the corresponding

metadata including inode and indirect blocks for the just-

written extent. Thus the staging area is the full-fledged

home (albeit temporary) for new data, rather than a write

cache with a copy of the data. When the system achieves

the required I/O density (or the staging area runs out of

capacity) we use proximal I/O to move data from the

flash-based staging area to the on-disk location. More

importantly, during destage, we make just-in-time allo-



cation decisions for the best on-disk placement in rela-

tion to the data already-allocated to the disk. Because

of our desire to keep previous versions of data for snap-

shots, we don’t overwrite in place and instead write to a

new location. When the destage operation finishes, we

update the extent and DLE metadata accordingly to re-

flect its new on-disk location.

As part of its metadata, the staging area maintains a ta-

ble mapping each block in the staging area to the extent

and offset that the block belongs to. This allows us to

efficiently locate items in the staging area for destage.

Our DLE also uses the flash device to store its internal

metadata, so metadata access does not interfere with the

SRARW access patterns we wish to study.

4.3 Allocation policies

The more interesting feature of our prototype is the set

of write allocation policies we implemented. When new

data is written to an extent, we use the size of the write

to determine whether to write the data to the staging area

or directly to disk. In the current implementation this

threshold is 168 KB—a number chosen to be approxi-

mately the break-even point between the response time

of a random I/O of that size and a full-track read for our

current disks. Although, we have not examined alternate

settings, we believe that the precise value has little qual-

itative effect on our system; it only serves to distinguish

between small and large writes.

We have three different I/O allocation scenarios in our

system: small writes allocated to the staging area, large

writes allocated on disk, and collections of small writes

allocated on disk when destaging. We manage the stag-

ing area as an append-only log. Other more involved

schemes are possible, but we have not explored them.

When the staging area fills, we destage its full contents

and start refilling it again from the beginning. As de-

scribed earlier, when we write a block to the staging area,

we update the metadata that points to it, freeing any on-

disk block containing older data at that offset if that block

is not used for a snapshot.

When we receive a large write request, we write it di-

rectly to disk, allocating new space if necessary, as when

first writing an extent. Since we assume that extents

will be large, and we want to provide good serial per-

formance, we map large sequential ranges of an extent

to similarly sized physical extents on disk that we call

allocation ranges. By allocating at first fewer physical

blocks than the size of the allocation range, we can pro-

vide extra space for future updates and write-anywhere-

style snapshots [19] at the cost of a corresponding frac-

tion of serial bandwidth. We have not yet explored this

capability in our prototype.

We follow the recommendations of Chen et al. [6] for

stripe unit size to approximate the disk track size. Given

the current disk parameters, we chose 1 MB as the size

for the RAID stripe unit and allocation range for near-

line drives and 512 KB for enterprise-class drives. Note

however, that we need not know the precise disk parame-

ters. The allocation unit size is a configurable parameter

in our allocation algorithm and can loosely follow tech-

nology trends over time as track size increases.

Small writes (or updates) are first written to a staging

area and held there until sufficient number of random

updates is accumulated to achieve the required proximal

I/O density. At that point we collect the relevant data

(using our metadata info) and destage them to their fi-

nal place. That is where alternative storage technologies

work to our advantage; we can perform random reads

directly from the staging area backed by e.g., flash mem-

ory. If using disks instead, we need to perform (possibly

multiple) sorting pass(es) and use additional DRAM.

Destage is a two phase process. First, by scanning the

staging area tables, we identify sets of blocks that can

be allocated together. We do this by sorting the blocks

first by extent and then by logical offset within each ex-

tent. Second, from the extent metadata, we determine the

allocation range(s) that contain related data i.e., data at

the logical offsets immediately preceding and following

the data being destaged. If there is enough space in the

corresponding allocation range we simply write-allocate

data there. When no additional space exists, we look for

another allocation range that has enough free space to

absorb the blocks and is in the vicinity of proximal I/O.

In the worst case we inspect up to approximately 100

allocation ranges (given current disk characteristics) for

each group of blocks i.e., all blocks in the staging area

belonging to a single extent and that are logically offset

by the range of proximal I/O. In practice, this number is

much smaller; when we wrote blocks to the staging area,

we typically deallocate the older version of the block on

disk, unless they are kept for snapshots. If we are destag-

ing to an allocation range that had no underlying physical

storage (i.e., we are writing to a sparse extent), we first

allocate a physical extent for the allocation range, and

then allocate the destage blocks within it. Figure 5 illus-

trates the destaging process, showing the layout of data

in both flash memory and disk.

Our allocation algorithm uses two parameters dependent

on disk technology trends: (a) the SPT governs the effi-

cient allocation and serial I/O size and (b) minimal seek

time governs the effective range of proximal I/O. The

first parameter dictates the size of our allocation range,

the second one, expressed in the number of allocation

ranges, provides the flexibility in our allocation deci-



sions during destage operation. The parameters need not

closely follow the technology trends. One adjustment for

every few disk generations is sufficient. The trends are

evolving to our advantage (see discussion in Section 5.4).

4.4 RAID Layer

Our user-level prototype also includes a stand-alone

RAID subsystem, which presents a logical volume ab-

straction to our DLE. This has several benefits compared

to using an off-the-shelf one such as hardware RAID

controller or a software implementation such as the md

block device driver in Linux (our prototype platform).

Our RAID implementation offers fine control over

scheduling requests to individual disks. We use Linux

SCSI generic device (/dev/sg) interface that bypasses

the kernel block device’s buffer cache and the block de-

vice schedulers. Linux can issue SCSI commands di-

rectly to both SCSI/FC and SATA drives thanks to the

libsata layer. Most importantly, our own implementa-

tion more closely emulates the operation of an enterprise-

class RAID layer and includes features that are missing

from the aforementioned RAID implementations.

First, we perform updates either by addition or subtrac-

tion so as to minimize the number of disks engaged in

I/O operations. Second, just like many other RAID sub-

systems [20, 8, 9], we maintain additional information

for every data block, including, a write generation num-

ber for lost write protection and additional data check-

sum. Since SATA disks support only 512-byte sectors,

we must use a separate sector for the additional per-block

information. We use 64 bytes of additional information

per single 4 KB block grouped into one checksum block

for every 63 data blocks, emulating the features of Data

ONTAP [20] running on systems with commodity SATA

disks. Thus, accessing one block above the DLE inter-

face results in two distinct block accesses.

5 Results

We evaluate the effectiveness of proximal I/O using our

DLE prototype. We first study random updates to large

extents comprising a logical volume (LUN) exported by

a storage system. and then analyze serial reads after our

volume has been aged with many small random updates.

5.1 Experimental setup

Our prototype runs as a user-level process on a host with

one dual core 3 GHz Intel CPU under Linux 2.6.24 (from

stock Ubuntu Server 9.04 distribution). We use a 4+1

RAID4 of 1 TB Western Digital RE3 (WD1002FBYS)

SATA drives. We chose these 7200 RPM drives despite

their lower performance compared to their enterprise-

class counterparts because they are more cost effective.

We fill our DLE with 16 MB extents to 89% of its capac-

ity, writing them serially directly to the disks. We then

issue 2000 small (4 KB) random updates per extent, thus

re-allocating half of all blocks we initially wrote. Our

DLE accumulates these updates to an SSD-based staging

area, destaging them to back-end disk each time the stag-

ing area fills. For measuring serial reads after writes, we

read every single extent from our aged DLE (in random

order). These requests for 974 logically serial blocks at

a time (governed by the fan-out of our indirect blocks)

result in several scatter-gather disk I/Os. Figure 5 shows

the layout during the execution of updates.

Before the DLE issues a set of requests to the RAID

layer, we execute random I/Os to each of the constituent

disks so as to avoid “short-stroking” (i.e., generating arti-

ficially short seeks due to using only a subset of the disk

capacity). We wait for the disks complete the random

I/Os and exclude these unrelated I/Os from our analysis.

Executing a set of small updates results in many more in-

dividual disk I/Os than there are requests in the batch —

the RAID layer needs to access the additional checksum

blocks and to perform read-modify-write operations.

5.2 Random updates

The results for the random updates are summarized in

Table 2. Each table row represents measurements with

a different size of the staging area relative to the RAID

group size. We collect statistics for each batch of I/O,

where one batch is the disk I/O generated in destaging

the accumulated changes to a single extent. Thus, a entire

destage operation will generate one batch of I/O for each

extent with at least one block in the staging area. We

measure the mean response time and the number of user

updates for each batch (columns 2 and 3). These times

reflect the disk activity (i.e., the operations on the data).

The DLE and extent metadata are updated on the SSDs,

on average, with fewer than three I/Os for each batch.

Since the SSD I/O service time is much smaller, the disk

I/O dominates the batch response time.

We collect the service time for each disk I/O (computed

as the difference between the completions of the last two

I/Os). We list the mean number of disk I/Os (reads and

writes across all five drives) in column 4. Column 5

shows the I/O amplification, the mean number of disk

I/Os needed for each user-initiated update. Column 6

shows the equivalent number of disk I/Os serviced per

revolution. Finally, we show for the data and parity disks

the mean number of I/Os, per-I/O service time, and the

resulting disk utilization.



Flash memory (SSD)
extent & other metadata

(a) Initial setup with sequentially written extents.

RAID group (HDDs)
updates in 
staging area

(b) Aged layout with updates still in the Flash memory staging area.

Figure 5: An example of block allocation in the prototype DLE. Initially, extents are written out directly to the RAID group. The

Flash memory (SSD) holds extent and DLE metadata. Random updates are first put into the Flash staging area. As the layout ages,

the extents are no longer contiguously laid out. However, the DLE maintains the proximity of the related blocks of the same extent

by “pluging” holes in the layout created by overwrites two destage operations.

Stage

Area

Resp.

time

User

writes

Disk

I/Os

I/O

ampl.

I/Os

p. rev.

Data disks Parity disk

I/Os ST Util. I/Os ST Util.

Baseline 16.8 ms 1 8 8x 2.0 4 4.2 97% 4 4.2 97%

1% 129.5 47.5 295.3 6.2x 5.3 43.3 2.0 65% 122.0 1.0 91%

2% 155.0 85.2 465.3 5.5x 7.2 66.1 1.4 61% 201.1 0.7 93%

3% 182.9 119.7 614.8 5.1x 8.1 86.2 1.2 57% 269.9 0.6 94%

4% 227.6 149.3 723.7 4.8x 7.7 99.8 1.1 47% 324.3 0.6 86%

5% 235.9 179.1 847.6 4.7x 8.7 117.0 1.0 48% 379.8 0.6 95%

6% 278.4 226.1 1014.7 4.5x 9.0 136.3 0.9 44% 469.3 0.6 97%

7% 315.4 259.5 1151.5 4.4x 9.0 155.6 0.9 42% 529.2 0.6 97%

8% 320.9 254.8 1166.7 4.6x 8.7 163.5 0.8 43% 512.6 0.6 96%

Table 2: Random updates for various sizes of the staging area. Resp. time is the response time of the batch of user I/Os being

destaged and ST is the the per disk I/O service time, both reported in milliseconds. I/O ampl. is the ratio of disk I/Os to user writes.

The I/Os per revolution represents the number of I/Os serviced by a drive averages across both data and parity disks. The base data

represents a system without staging area, whereby every user write results in RMW at the RAID back-end.

In our baseline data, we show the performance when a

batch contains exactly one block. This has a latency of

16.8 ms, and results in 8 separate disk I/Os (an I/O ampli-

fication of 8×). Writing a single block to RAID4 results

in 4 individual disk I/Os—a read and write of both the

data disk and the parity disk. Updating the checksum

incurs an additional 4 I/Os.

Next, we explore how our write allocation, coupled with

1% of staging area, leverages proximal I/O to improve

the efficiency of disk accesses. We observe that, on av-

erage, 47.5 user updates result in 295.3 disk I/Os for a

6.2× amplification that are serviced in 139.5 ms. The

per-I/O service time for the data and parity disk is thus

2.0 ms and 1.0 ms respectively. Even though the RAID4

parity disk is more efficient, it has to service many more

I/Os and thus is the bottleneck.

Since the batch of I/Os is serviced by proximal I/O, we

can retire on average 5.3 I/Os per revolution. Yet, as

shown in Figure 1, we were only able to retire 1.9 I/Os

per revolution in a strand of 8 requests (17.1 ms to retire

8 read requests with 4 ms rotational time). We achieve

this improvement because of the greater I/O density; we

are writing strands that contain many more blocks, typi-

cally within a single track or two. Also, the RAID layer

must also update the checksum block for data blocks that

are being written out. This further increases the number

of disk I/Os, but also the I/O density — for most data

blocks the checksum block is on the same track. For the

same reason, we also see only a 6.2× write amplification

(instead of 8×); we need to access the same checksum

block only once for several data block updates.

As the size of the staging area increases, the batch size

increases (from 47.5 to 369.7 updates for staging area

of 1% and 10% respectively) and the destage operation

for each batch becomes more efficient. The I/O amplifi-

cation decreases from 6.2× to 4.5× and the number of

disk I/Os serviced per revolution grows from 5.3 to 8.6.



5.3 Serial reads after random updates

Table 3 shows the results for sequential reads from an

aged layout as depicted in Figure 5(b). Our system reads

up to 974 logically consecutive blocks. Given the ex-

tent sizes, our DLE requests on average 819.2 blocks

that are returned with a mean response time of 9.5 ms.

This translates to effective bandwidth of 86.2 MB/s per

disk (345 MB / 4 data disks in RAID group). Because

of fragmented layout, the request for up to 974 logical

blocks results in a batch of 47.5 logically sequential runs

of blocks issued to the RAID group that are further bro-

ken into individual per-disk I/Os. Because of striping

and the need to access the checksum block in addition to

the data blocks, each disk services on average 20.7 in-

dividual I/O requests. Given the 1 MB stripe unit size

on our RAID setup, the original request for 974 logically

sequential blocks is typically serviced by three disks.

We repeated the same experiment on the non-aged data

layout depicted in Figure 5(a) where extents are laid out

on physically contiguous disk sectors. We measured

mean response time of 9.2 ms, which translated to per-

disk bandwidth of 89 MB/s. Thus, sequential reads after

random updates on our system are within 3% of the the

best-case scenario of physically contiguous layout.

Finally, we evaluated the performance of serial reads af-

ter random updates with write-anywhere-style allocation.

In our system, we induced this behavior by eliminating

the staging area and writing out data by greedily plug-

ging the holes created by deletes of earlier versions of

the data (we did not implement an LFS-style segment

cleaner). In this setup, logically serial data increasingly

dispersed over the disk over time, resulting in dramati-

cally lower bandwidth compared to the baseline case.

5.4 System cost and technology trends

Lowering overall cost is one of the driving forces behind

changing the internal architecture and design of commer-

cial enterprise-scale storage systems. The adjustments to

the write allocation policies presented here coupled with

deployment of some additional device(s) for the stag-

ing area is but one example of such force. Making the

prevalent access pattern (e.g., the serial read after random

write described here) more efficient allows the system to

run workloads with larger I/O demand for the same dol-

lar cost. We now explore the trade off between the cost of

additional hardware for the staging area and the resulting

improvement in the back-end disk I/O capacity.

Consider the WD1002FBYS disk drive we used in our

experiments. It has a measured average seek time of

7.5 ms and rotational speed of 7,200 RPM. With the time

of 8.4 ms for a single rotation, the mean time to service

Per disk statistics

Read BW Diff I/Os Util.

Baseline 89.0 MB/s 11.7 85%

Aged layout 86.2 MB/s -3% 20.7 82%

Write-anywhere 2.6 MB/s -97% 210.2 85%

Aged layout reads – detailed statistics

mean min max

Request response time (ms) 9.5 6.5 32.9

Request size (4 KB blocks) 819.2 200 974

Requests per batch 43.9 28 114

Span of blocks 1002.8 914 1008

Number of I/Os per disk 20.7 2 58

Per-disk resp. time (ms) 8.8 0.9 32.8

Aged layout – read response time quantiles

10% 20% 30% 40% 50% 60% 70% 80% 90% 95%

7.4 7.5 7.6 7.7 7.9 8.1 8.4 22.1 27.8 31.9

Table 3: Serial reads after random updates.

a random I/O is 11.7 ms. Thus our drive can perform 86

random IOPS. With a street price of $130, this means we

are paying $1.52 per IOPS. Now consider the effects of

adding 1% of capacity as a flash staging area. Table 2

shows that in this configuration we can write 5.3 blocks

in a single revolution. Adding an average seek means

that our system performs 5.3 writes in 15.9 ms, or 3 ms

per write. This is equivalent to 333 random IOPS, an

improvement of 289% over the basic disk solution.

Adding the flash staging area increases the cost of the

system. With cost of flash at $3.13/GB, based on a

160 GB Intel X25 SSD with a street price of $500, a 1%

staging area for our 1 TB drive requires 10 GB of flash,

increasing our cost by $31.30, to a total of $161.30 for a

configuration capable of 333 random IOPS. Thus, in our

system, the cost is $0.48 per IOPS, less then a third of

the per IOPS cost of the raw disk drive.

With our system, we pay an extra 25% to add a flash

staging area and in return we get nearly a 3× perfor-

mance increase on random writes, while preserving near

sequential on-disk layout.2 Note that these numbers are

pessimistic. They assume that the staging area is scaled

to the entire disk-based storage capacity. In reality, the

staging area need only be 1% of the write working set,

further reducing the flash costs.

We conclude by considering the impact of technology

trends on the effectiveness of proximal I/O. The disk

trends are in our favor. Growing areal media densities

2These numbers are shown here only to illustrate our point. our

simplified model considers only the cost of individual devices. Also,

we ignore many practical system issues such as RAID group size, etc.



(i.e., the increase in both SPT and track density), increase

the span of LBNs over which proximal I/O will be ef-

fective. Larger span gives more options to our system

to lay out its data. Similarly, as the flash memory cost

decreases, the relative size of the deployed staging area

may likely increase relative to the disk storage capacity.

This will also increase the effectiveness of our destage

process. In the end however, the ratio of flash memory to

disk capacity will be driven by customer needs and their

ability to get the right performance for the least cost.

6 Related Work

Our work explores the design principles for a data lay-

out suitable for the SRARW workload while leveraging

a more efficient disk access pattern. We review some ad-

ditional related work not mentioned earlier in the paper.

Our data layout is similar in principle to the data jour-

nalling mode employed by some journalling file sys-

tems [5, 26, 32]. As in those systems, we write data

initially to a designated staging area (journal, separate

device etc.) and later on destage them to their final loca-

tion. The difference in our approach, which utilizes prox-

imal I/O, is that the efficiency of our destage operation

is much much higher; journalling file systems typically

write to a specific location on the disk constrained by

their “overwrite-in-place” policy. In contrast, we destage

data with fewer constraints offered by the span of blocks

in proximal I/O. Additionally, we can consider the best

location with respect to the related data and thus make

the write operations more efficient.

The Disk Caching Disk (DCD) [24] explored a differ-

ent technique for using write caching to improve stor-

age system performance. DCD aggregates small writes

on a separate caching disk, achieving serial performance

when flushing dirty data from the buffer cache. During

idle periods it destages data from the cache disk to its

home on the primary disk. This design improves the la-

tency of small writes, but does not leverage proximal I/O

to achieve better I/O efficiency. A similar technique has

also been used in database systems [16].

The idea of proximal I/O combines and expands on the

observations about (1) efficient disk access across ad-

jacent tracks with minimal positioning cost [30] and

(2) minimal positioning cost when seeking across an

ever-increasing range of cylinders [31]. Unlike semi-

sequential access, however, proximal I/O does not re-

quire detailed knowledge of disk geometry or specialized

device interface that provides the position of the next

semi-sequential block relative to the current position; it

works on systems with standardized interfaces (SATA or

SCSI) and off-the-shelf commodity disk drives.

Our DLE design relies on write-anywhere allocation,

similar to LFS [27], WAFL [19] and related designs

such as ZFS [22] and btrfs [3]. Like these systems, it

never overwrites old data in place, making it possible

to preserve older versions of data, or snapshots, with

minimal I/O overhead. Traditional write-anywhere file

systems batch temporally related dirty data for efficient

disk writes. Thus logical data locality is lost, requir-

ing segment cleaning [27] or other defragmentation tech-

niques [15] to re-establish sequential layout. In contrast,

our DLE allocates data close to logically related on-disk

data, preserving logical locality with proximalI/O plus

the staging area to achieve efficient write performance.

The Loge [17] disk controller represents another varia-

tion of write-anywhere; it virtualizes block addresses so

that it can write incoming data at the free locations near-

est to the current disk head location. However, the work

does not target SRARW workloads; it explicitly assumed

that randomly written data would also be randomly read.

In principle, many aspects of our DLE design could be

implemented in a Loge-like disk controller rather than in

a file system, although it would loose the semantic infor-

mation about which blocks of data are logically related

and are likely to be read together. Moreover, our design

does not require detailed knowledge of disk head posi-

tion and thus is time-invariant.

Appendix A: Proximal I/O model

Our objective is to find the expected number of revolu-

tions needed to serve D requests in a strand. Recall that

a strand is a collection of proximal I/Os that are sent

together to a disk and that are close enough such that

servicing any one of the requests incurs a minimal seek

equivalent to head/track switch time.

Assume there are SPT sectors per track and D requests,

each of size S sectors, and a seek between each request in

the strand equivalent to head switch time, H. We express

H in terms of the number of sectors that pass by the disk

head during track switch. We can formulate the problem

of finding the expected number of revolutions in terms

of binning requests into B bins. Each request of size S is

then randomly placed into any one of the K slots along a

circular track. This is analogous to a roulette wheel with

K slots and D balls spun simultaneously.

With such a formulation, if two balls (i.e., requests on

different tracks) fall into the same bin, that is, if they are

within K × S/H slots, the disk arm cannot service those

requests in a single revolution and we get

B =
SPT

H
=

K ×S

H
.



Let’s express the probability, Q1, that no two requests are

in the same bin. This is analogous to the probability that

no extra revolutions are required when servicing a sched-

ule of D requests in a strand. This can be solved by the

birthday paradox problem, where we look for the proba-

bility that no two people out of a group of n people in a

room have a birthday on the same day out of b possible,

and equally likely, birthdays.

Q1 =
b!

(b−n)!bn

Using our analogy, we have B bins, which is equivalent

to the b possible birthdays, and D, the number of requests

in a strand, is the number of people, n. This is equivalent

to not using any extra revolutions (since each request is

in a separate bin) when servicing the D requests.

We can now calculate the probability that at least one

extra revolution will be required as

P1 = 1−Q1.

More generally, the probability that a birthday is shared

by exactly k (and no more) people is expressed as [33]

Qk(n,b) =

⌊n/k⌋

∑
i=1

(

n!b!

biki!(k!)i(n− ik)!(b− i)!

k−1

∑
j=1

Qk−1
(b− i)n−ik

bn−ik

)

This is equivalent to the probability of servicing a given

strand in k revolutions or using exactly k−1 extra revo-

lutions. This assumes that each request landed on a sep-

arate track and requires a track switch when servicing it.

The probability that we will require at least k extra revo-

lutions in servicing a request (or that k+1 or more people

share a birthday in our analogy), we have

Pk = 1−
k

∑
i=1

Qi

Now let’s express the probability that we will not use

any extra revolutions when servicing a strand as a func-

tion of number of sectors, H, that pass by during track

switch time. With values for the Seagate Cheetah 15K.5

disk’s first zone we have SPT = 1200, track switch time

0.475 ms, H = SPT ×⌈0.475 ms/4 ms⌉ = 142, and the

number of bins B = 8.45. Therefore, we set ⌊B⌋ = 8,

meaning that this disk can at best schedule 8 proximal

I/Os in a revolution when the requests are properly offset

from each other. With strand where D = 8, the probabil-

ity of not using any extra revolutions is close to zero.

We express the expected number of revolutions for ser-

vicing a strand of D requests as

E[Revs] =
1

2
+

D

∑
i=1

iQi(D,SPT/H)

For D = 8, we get E[Revs] = 3.4, assuming that each

request lands on a separate track. Normalized (or per-

request) number of revolutions is then 0.43.

Next, we assume eight requests in a strand even though

this disk can service at best six in a single revolution. We

choose the value of eight because it gives, on average,

12% lower per-request service time compared to a strand

with D = 6. Adding an initial average seek of 3.5 ms

for each strand, the per-request service time is 2.16 ms

or 17.26 ms for the entire strand of D = 8 with variance

σ2 = 9 ms. This comes to within 1% of the measured

mean service time of 17.14 ms with σ2 = 9.6 ms.

Finally, we examine the probability of using exactly one,

two, three, and so on, revolutions when servicing a strand

of D = 8 requests. From our model, the most prevalent

value is two extra revolutions (three in total). When D =
6 (with H ≈ 7 for our disk), the probability of not using

any additional revolutions is still only 0.02.
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