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Abstract
Benchmarking file and storage systems onlarge file-

system images is important, but difficult and often in-
feasible. Typically, running benchmarks on such large
disk setups is a frequent source of frustration for file-
system evaluators; the scale alone acts as a strong deter-
rent against using larger albeit realistic benchmarks. To
address this problem, we develop David: a system that
makes it practical to run large benchmarks using modest
amount of storage or memory capacities readily available
on most computers. David creates a “compressed” ver-
sion of the original file-system image by omitting all file
data and laying out metadata more efficiently; an online
storage model determines the runtime of the benchmark
workload on the original uncompressed image. David
works under any file system as demonstrated in this pa-
per with ext3 and btrfs. We find that David reduces stor-
age requirements by orders of magnitude; David is able
to emulate a 1 TB target workload using only an 80 GB
available disk, while still modeling the actual runtime ac-
curately. David can also emulate newer or faster devices,
e.g., we show how David can effectively emulate a multi-
disk RAID using a limited amount of memory.

1 Introduction

File and storage systems are currently difficult to bench-
mark. Ideally, one would like to use a benchmark work-
load that is a realistic approximation of a known appli-
cation. One would also like to run it in a configuration
representative of real world scenarios, including realistic
disk subsystems and file-system images.

In practice, realistic benchmarks and their realistic
configurations tend to be much larger and more com-
plex to set up than their trivial counterparts. File system
traces (e.g., from HP Labs [17]) are good examples of
such workloads, often being large and unwieldy. Devel-
oping scalable yet practical benchmarks has long been
a challenge for the storage systems community [16]. In
particular, benchmarks such as GraySort [1] and SPEC-
mail2009 [22] are compelling yet difficult to set up and
use currently, requiring around 100 TB for GraySort and
anywhere from 100 GB to 2 TB for SPECmail2009.

Benchmarking on large storage devices is thus a fre-
quent source of frustration for file-system evaluators; the
scale acts as a deterrent against using larger albeit realis-
tic benchmarks [24], but running toy workloads on small
disks is not sufficient. One obvious solution is to contin-
ually upgrade one’s storage capacity. However, it is an
expensive, and perhaps an infeasible solution to justify
the costs and overheads solely for benchmarking.

Storage emulators such as Memulator [10] prove ex-
tremely useful for such scenarios – they let us prototype
the “future” by pretending to plug in bigger, faster stor-
age systems and run real workloads against them. Mem-
ulator, in fact, makes a strong case for storage emulation
as the performance evaluation methodology of choice.
But emulators are particularly tough: if they are to be
big, they have to use existing storage (and thus are slow);
if they are to be fast, they have to be run out of memory
(and thus they are small).

The challenge we face is how can we get the best of
both worlds? To address this problem, we have devel-
oped David, a “scale down” emulator that allows one
to run large workloads byscaling downthe storage re-
quirements transparently to the workload. David makes
it practical to experiment with benchmarks that were oth-
erwise infeasible to run on a given system.

Our observation is that in many cases, the benchmark
application does not care about the contents of individ-
ual files, but only about the structure and properties of
the metadata that is being stored on disk. In particular,
for the purposes of benchmarking, many applications do
not write or read file contents at all (e.g., fsck); the ones
that do, often do not care what the contents are as long as
somevalid content is made available (e.g., backup soft-
ware). Since file data constitutes a significant fraction
of the total file system size, ranging anywhere from 90
to 99% depending on the actual file-system image [3]
avoiding the need to store file data has the potential to
significantly reduce the required storage capacity during
benchmarking.

The key idea in David is to create a “compressed” ver-
sion of the original file-system image for the purposes of
benchmarking. In the compressed image, unneeded user



data blocks are omitted using novel classification tech-
niques to distinguish data from metadata at scale; file
system metadata blocks (e.g., inodes, directories and in-
direct blocks) are stored compactly on the available back-
ing store. The primary benefit of the compressed image
is to reduce the storage capacity required to run any given
workload. To ensure that applications remain unaware of
this interposition, whenever necessary, David syntheti-
cally generates file data on the fly; metadata I/O is redi-
rected and accessed appropriately. David works under
any file system; we demonstrate this using ext3 [25] and
btrfs [26], two file systems very different in design.

Since David alters the original I/O patterns, it needs
to model the runtime of the benchmark workload on the
original uncompressed image. David uses an in-kernel
model of the disk and storage stack to determine the
run times of all individual requests as they would have
executed on the uncompressed image. The model pays
special attention to accurately modeling the I/O request
queues; we find that modeling the request queues is cru-
cial for overall accuracy, especially for applications issu-
ing bursty I/O.

The primary mode of operation of David is thetiming-
accuratemode in which after modeling the runtime, an
appropriate delay is inserted before returning to the ap-
plication. A secondaryspeedupmode is also available
in which the storage model returns instantaneously after
computing the time taken to run the benchmark on the
uncompressed disk; in this mode David offers the poten-
tial to reduce application runtime and speedup the bench-
mark itself. In this paper we discuss and evaluate David
in the timing-accurate mode.

David allows one to run benchmark workloads that re-
quire file-system images orders of magnitude larger than
the available backing store while still reporting the run-
time as it would have taken on the original image. We
demonstrate that David even enables emulation of faster
and multi-disk systems like RAID using a small amount
of memory. David can also aid in running large bench-
marks on storage devices that are expensive or not even
available in the market as it requires only a model of the
non-existent storage device; for example, one can use a
modified version of David to run benchmarks on a hypo-
thetical 1TB SSD.

We believe David will be useful to file and storage
developers, application developers, and users looking to
benchmark these systems at scale. Developers often like
to evaluate a prototype implementation at larger scales
to identify performance bottlenecks, fine-tune optimiza-
tions, and make design decisions; analyses at scale of-
ten reveal interesting and critical insights into the sys-
tem [16]. David can help obtain approximate perfor-
mance estimates within limits of its modeling error. For
example, how does one measure performance of a file

Figure 1: Capacity Savings. Shows the savings in stor-
age capacity if only metadata is stored, with varying file-size
distribution modeled by (µ, σ ) parameters of a lognormal dis-
tribution, (7.53, 2.48) and (8.33, 3.18) for the two extremes.

system on a multi-disk multi-TB mirrored RAID con-
figuration without having access to one? An end-user
looking to select an application that works best at larger
scale may also use David for emulation. For example,
which anti-virus application scans a terabyte file system
the fastest?

One challenge in building David is how to deal with
scale as we experiment with larger file systems contain-
ing many more files and directories. Figure 1 shows the
percentage of storage space occupied by metadata alone
as compared to the total size of the file-system image
written; the different file-system images for this experi-
ment were generated by varying the file size distribution
using Impressions [2]. Using publicly available data on
file-system metadata [4], we analyzed how file-size dis-
tribution changes with file systems of varying sizes.

We found that larger file systems not only had more
files, they also had larger files. For this experiment,
the parameters of the lognormal distribution controlling
the file sizes were changed along the x-axis to gen-
erate progressively larger file systems with larger files
therein. The relatively small fraction belonging to meta-
data (roughly 1 to 10%) as shown on the y-axis demon-
strates the potential savings in storage capacity made
possible if only metadata blocks are stored; David is de-
signed to take advantage of this observation.

For workloads like PostMark,mkfs, Filebench

WebServer, Filebench VarMail, and other mi-
crobenchmarks, we find that David delivers on its
promise in reducing the required storage size while still
accurately predicting the benchmark runtime for both
ext3 and btrfs. The storage model within David is fairly
accurate in spite of operating in real-time within the ker-
nel, and for most workloads predicts a runtime within
5% of the actual runtime. For example, for the Filebench
webserver workload, David provides a 1000-fold reduc-
tion in required storage capacity and predicts a runtime
within 0.08% of the actual.
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Figure 2: Metadata Remapping and Data Squashing
in David. The figure shows how metadata gets remapped and
data blocks are squashed. The disk image above David is the
target and the one below it is theavailable.

2 David Overview

2.1 Design Goals for David

• Scalability: Emulating a large device requires David
to maintain additional data structures and mimic sev-
eral operations; our goal is to ensure that it works well
as the underlying storage capacity scales.

• Model accuracy: An important goal is to model
a storage device and accurately predict performance.
The model should not only characterize the physical
characteristics of the drive but also the interactions un-
der different workload patterns.

• Model overhead: Equally important to being accu-
rate is that the model imposes minimal overhead; since
the model is inside the OS and runs concurrently with
workload execution, it is required to be fairly fast.

• Emulation flexibility: David should be able to emu-
late different disks, storage subsystems, and multi-disk
systems through appropriate use of backing stores.

• Minimal application modification: It should allow
applications to run unmodified without knowing the
significantly less capacity of the storage system under-
neath; modifications can be performed in limited cases
only to improve ease of use but never as a necessity.

2.2 David Design
David exports a fake storage stack including a fake de-
vice of a much higher capacity than available. For the
rest of the paper, we use the termstarget to denote the
hypothetical larger storage device, andavailable to de-
note the physically available system on which David is
running, as shown in Figure 2. It also shows a schematic
of how David makes use of metadata remapping and data
squashing to free up a large percentage of the required
storage space; a much smaller backing store can now ser-
vice the requests of the benchmark.

David is implemented as a pseudo-device driver that

is situated below the file system and above the backing
store, interposing on all I/O requests. Since the driver
appears as a regular device, a file system can be created
and mounted on it. Being a loadable module, David can
be used without any change to the application, file system
or the kernel. Figure 3 presents the architecture of David
with all the significant components and also shows the
different types of requests that are handled within. We
now describe the components of David.

First, the Block Classifier is responsible for classify-
ing blocks addressed in a request as data or metadata
and preventing I/O requests to data blocks from going
to the backing store. David intercepts all writes to data
blocks, records the block address if necessary, and dis-
cards the actual write using the Data Squasher. I/O re-
quests to metadata blocks are passed on to theMetadata
Remapper.

Second, the Metadata Remapper is responsible for lay-
ing out metadata blocks more efficiently on the backing
store. It intercepts all write requests to metadata blocks,
generates a remapping for the set of blocks addressed,
and writes out the metadata blocks to the remapped loca-
tions. The remapping is stored in the Metadata Remap-
per to service subsequent reads.

Third, writes to data blocks are not saved, but reads to
these blocks could still be issued by the application; in
order to allow applications to run transparently, the Data
Generator is responsible for generating synthetic content
to service subsequent reads to data blocks that were writ-
ten earlier and discarded. The Data Generator contains a
number of built-in schemes to generate different kinds of
content and also allows the application to provide hints
to generate more tailored content (e.g., binary files).

Finally, by performing the above-mentioned tasks
David modifies the original I/O request stream. These
modifications in the I/O traffic substantially change the
application runtime rendering it useless for benchmark-
ing. The Storage Model carefully models the (potentially
different) target storage subsystem underneath to predict
the benchmark runtime on the target system. By doing
so in an online fashion with little overhead, the Storage
Model makes it feasible to run large workloads in a space
and time-efficient manner. The individual components
are discussed in detail in§3 through§6.

2.3 Choice of Available Backing Store
David is largely agnostic to the choice of the backing
store for available storage: HDDs, SSDs, or memory can
be used depending on the performance and capacity re-
quirements of the target device being emulated. Through
a significant reduction in the number of device I/Os,
David compensates for its internal book-keeping over-
head and also for small mismatches between the emu-
lated and available device. However, if one wishes to
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Figure 3:David Architecture. Shows the components of David and the flow of requests handledwithin.

emulate a device much faster than the available device,
using memory is a safer option. For example, as shown
in §6.3, David successfully emulates a RAID-1 configu-
ration using a limited amount of memory. If the perfor-
mance mismatch is not significant, a hard disk as backing
store provides much greater scale in terms of storage ca-
pacity. Throughout the paper, “available storage” refers
to the backing store in a generic sense.

3 Block Classification

The primary requirement for David to prevent data writes
using the Data Squasher is the ability to classify a block
as metadata or data. David provides both implicit and ex-
plicit block classification. The implicit approach is more
laborious but provides a flexible approach to run unmod-
ified applications and file systems. The explicit notifica-
tion approach is straightforward and much simpler to im-
plement, albeit at the cost of a small modification in the
operating system or the application; both are available in
David and can be chosen according to the requirements
of the evaluator. The implicit approach is demonstrated
using ext3 and the explicit approach using btrfs.

3.1 Implicit Type Detection
For ext2 and ext3, the majority of the blocks are stati-
cally assigned for a given file system size and configu-
ration at the time of file system creation; the allocation
for these blocks doesn’t change during the lifetime of the
file system. Blocks that fall in this category include the
super block, group descriptors, inode and data bitmaps,
inode blocks and blocks belonging to the journal; these
blocks are relatively straightforward to classify based on
their on-disk location, or their Logical Block Address
(LBA). However, not all blocks are statically assigned;
dynamically-allocated blocks include directory, indirect
(single, double, or triple indirect) and data blocks. Un-
less all blocks contain some self-identification informa-

tion, in order to accurately classify a dynamically allo-
cated block, the system needs to track the inode pointing
to the particular block to infer its current status.

Implicit classification is based on prior work on
Semantically-Smart Disk Systems (SDS) [21]; an SDS
employs three techniques to classify blocks:direct and
indirect classification, andassociation. With direct clas-
sification, blocks are identified simply by their location
on disk. With indirect classification, blocks are identified
only with additional information; for example, to iden-
tify directory data or indirect blocks, the corresponding
inode must also be examined. Finally, with association,
a data block and its inode are connected.

There are two significant additional challenges David
must address. First, as opposed to SDS, David has
to ensure that no metadata blocks are ever misclassi-
fied. Second, benchmark scalability introduces addi-
tional memory pressure to handle delayed classification.
In this paper we only discuss our new contributions (the
original SDS paper provides details of the basic block-
classification mechanisms).

3.1.1 Unclassified Block Store
To infer when a file or directory is allocated and deallo-
cated, David tracks writes to inode blocks, inode bitmaps
and data bitmaps; to enumerate the indirect and directory
blocks that belong to a particular file or directory, it uses
the contents of the inode. It is often the case that the
blocks pointed to by an inode are written out before the
corresponding inode block; if a classification attempt is
made when a block is being written, an indirect or di-
rectory block will be misclassified as an ordinary data
block. This transient error is unacceptable for David
since it leads to the “metadata” block being discarded
prematurely and could cause irreparable damage to the
file system. For example, if a directory or indirect block
is accidentally discarded, it could lead to file system cor-
ruption.
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To rectify this problem, David temporarily buffers in
memory writes to all blocks which are as yet unclassi-
fied, inside theUnclassified Block Store(UBS). These
write requests remain in the UBS until a classification is
made possible upon the write of the corresponding inode.
When a corresponding inode does get written, blocks that
are classified as metadata are passed on to the Metadata
Remapper for remapping; they are then written out to
persistent storage at the remapped location. Blocks clas-
sified as data are discarded at that time. All entries in the
UBS corresponding to that inode are also removed.

The UBS is implemented as a list of block I/O (bio) re-
quest structures. An extra reference to the memory pages
pointed to by these bio structures is held by David as long
they remain in the UBS; this reference ensures that these
pages are not mistakenly freed until the UBS is able to
classify and persist them on disk, if needed. In order
to reduce the inode parsing overhead otherwise imposed
for each inode write, David maintains a list of recently
written inode blocks that need to be processed and uses
a separate kernel thread for parsing.

3.1.2 Journal Snooping
Storing unclassified blocks in the UBS can cause a strain
on available memory in certain situations. In particular,
when ext3 is mounted on top of David in ordered jour-
naling mode, all the data blocks are written to disk at
journal-commit time but the metadata blocks are written
to disk only at the checkpoint time which occurs much
less frequently. This results in a temporary yet precari-
ous build up of data blocks in the UBS even though they
are bound to be squashed as soon as the corresponding
inode is written; this situation is especially true when
large files (e.g., 10s of GB) are written. In order to en-
sure the overall scalability of David, handling large files
and the consequent explosion in memory consumption is
critical. To achieve this without any modification to the
ext3 filesystem, David performs Journal Snooping in the
block device driver.

David snoops on the journal commit traffic for inodes
and indirect blocks logged within a committed transac-
tion; this enables block classification even prior to check-
point. When a journal-descriptor block is written as part
of a transaction, David records the blocks that are being
logged within that particular transaction. In addition, all
journal writes within that transaction are cached in mem-
ory until the transaction is committed. After that, the in-
odes and their corresponding direct and indirect blocks
are processed to allow block classification; the identified
data blocks are squashed from the UBS and the iden-
tified metadata blocks are remapped and stored persis-
tently. The challenge in implementing Journal Snooping
was to handle the continuous stream of unordered journal
blocks and reconstruct the journal transaction.
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Figure 4:Memory usage with Journal Snooping.

Figure 4 compares the memory pressure with and
without Journal Snooping demonstrating its effective-
ness. It shows the number of 4 KB block I/O requests
resident in the UBS sampled at 10 sec intervals during
the creation of a 24 GB file on ext3; the file system is
mounted on top of David in ordered journaling mode
with a commit interval of 5 secs. This experiment was
run on a dual core machine with 2 GB memory. Since
this workload is data write intensive, without Journal
Snooping, the system runs out of memory when around
450,000 bio requests are in the UBS (occupying roughly
1.8 GB of memory). Journal Snooping ensures that the
memory consumed by outstanding bio requests does not
go beyond a maximum of 240 MB.

3.2 Explicit Metadata Notification
David is meant to be useful for a wide variety of file sys-
tems; explicit metadata notification provides a mecha-
nism to rapidly adopt a file system for use with David.
Since data writes can come only from the benchmark ap-
plication in user-space whereas metadata writes are is-
sued by the file system, our approach is to identify the
data blocks before they are even written to the file sys-
tem. Our implementation of explicit notification is thus
file-system agnostic – it relies on a small modification
to the page cache to collect additional information. We
demonstrate the benefits of this approach using btrfs, a
file system quite unlike ext3 in design.

When an application writes to a file, David captures
the pointers to the in-memory pages where the data con-
tent is stored, as it is being copied into the page cache.
Subsequently, when the writes reach David, they are
compared against the captured pointer addresses to de-
cide whether the write is to metadata or data. Once the
presence is tested, the pointer is removed from the list
since the same page can be reused for metadata writes in
the future.

There are certainly other ways to implement explicit
notification. One way is to capture the checksum of the
contents of the in-memory pages instead of the pointer
to track data blocks. One can also modify the file system
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to explicitly flag the metadata blocks, instead of identi-
fying data blocks with the page cache modification. We
believe our approach is easier to implement, does not re-
quire any file system modification, and is also easier to
extend to software RAID since parity blocks are auto-
matically classified as metadata and not discarded.

4 Metadata Remapping

Since David exports a target pseudo device of much
higher capacity to the file system than the available stor-
age device, the bio requests issued to the pseudo device
will have addresses in the full target range and thus need
to be suitably remapped. For this purpose, David main-
tains a remap table called Metadata Remapper which
maps “target” addresses to “available” addresses. The
Metadata Remapper can contain an entry either for one
metadata block (e.g., super block), or a range of metadata
blocks (e.g., group descriptors); by allowing an arbitrary
range of blocks to be remapped together, the Metadata
Remapper provides an efficient translation service that
also provides scalability. Range remapping in addition
preserves sequentiality of the blocks if a disk is used as
the backing store. In addition to the Metadata Remapper,
a remap bitmapis maintained to keep track of free and
used blocks on the available physical device; the remap
bitmap supports allocation both of a single remapped
block and a range of remapped blocks.

The destination (or remapped) location for a request
is determined using a simple algorithm which takes as
input the number of contiguous blocks that need to be
remapped and finds the first available chunk of space
from theremap bitmap. This can be done statically or at
runtime; for the ext3 file system, since most of the blocks
are statically allocated, the remapping for these blocks
can also be done statically to improve performance. Sub-
sequent writes to other metadata blocks are remapped dy-
namically; when metadata blocks are deallocated, corre-
sponding entries from the Metadata Remapper and the
remap bitmap are removed. From our experience, this
simple algorithm lays out blocks on disk quite efficiently.
More sophisticated allocation algorithms based on local-
ity of reference can be implemented in the future.

5 Data Generator

David services the requirements of systems oblivious to
file content with data squashing and metadata remapping.
However, many real applications care about file content;
the Data Generator with David is responsible for gener-
ating synthetic content to service read requests to data
blocks that were previously discarded. Different systems
can have different requirements for the file content and
the Data Generator has various options to choose from;

figure 5 shows some examples of the different types of
content that can be generated.

Many systems that read back previously written data
do not care about thespecificcontent within the files as
long as there issomecontent (e.g., a file-system backup
utility, or the Postmark benchmark). Much in the same
way as failure-oblivious computing generates values to
service reads to invalid memory while ignoring invalid
writes [18], David randomly generates content to service
out-of-bound read requests.

Some systems may expect file contents to have valid
syntax or semantics; the performance of these systems
depend on the actual content being read (e.g., a desk-
top search engine for a file system, or a spell-checker).
For such systems, naive content generation would either
crash the application or give poor benchmarking results.
David produces valid file content leveraging prior work
on generating file-system images [2].

Finally, some systems may expect to read back data
exactly as they wrote earlier (i.e., a read-after-write or
RAW dependency) or expect a precise structure that can-
not be generated arbitrarily (e.g., a binary file or a con-
figuration file). David provides additional support to run
these demanding applications using theRAW Store, de-
signed as a cooperative resource visible to the user and
configurable to suit the needs of different applications.

Our current implementation of RAW Store is very sim-
ple: in order to decide which data blocks need to be
stored persistently, David requires the application to sup-
ply a list of the relevant file paths. David then looks up
the inode number of the files and tracks all data blocks
pointed to by these inodes, writing them out to disk us-
ing the Metadata Remapper just as any metadata block.
In the future, we intend to support more nuanced ways to
maintain the RAW Store; for example, specifying direc-
tories instead of files, or by usingMemoization[14].

For applications that must exactly read back a signif-
icant fraction of what they write, the scalability advan-
tage of David diminishes; in such cases the benefits are
primarily from the ability to emulate new devices.

6 Storage Model and Emulation

Not having access to the target storage system requires
David to precisely capture the behavior of the entire stor-
age stack with all its dependencies through a model. The
storage system modeled by David is thetarget system
and the system on which it runs is theavailablesystem.
David emulates the behavior of the target disk by send-
ing requests to the available disk (for persistence) while
simultaneously sending thetarget request streamto the
Storage Model; the model computes the time that would
have taken for the request to finish on the target system
and introduces an appropriate delay in the actual request

6



rand.txt pangrams.txt compress.pdf config.RAW
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%PDF−1.4
%<C7>[]
5 0 obj
<</Length 6 0 R/Filter
/FlateDecode>>
stream
x<9C><CD>]%<B7>q
<8D><H7><A0><80>
trailer << /Size 75 /Root
1 0 R /Info 2 0 R /ID>>
startxref 1052 %%EOF

umask 027
if ( ! $?TERM )

if ($TERM==unknown)
 then set noglob;

$TERM"‘; unset noglob 
endif
if($TERM==unknown)
 goto loop endif

eval ‘tset −s −r −Q"?

   then  setenv TERM
endif

the quick brown fox
jumps over the lazy dog

a quick movement of
the enemy will
jeopardize six gunboats

the jaded zombies acted
quietly but kept driving
their oxen forward

Figure 5:Examples of content generation by Data Generator.The figure shows a randomly generated text file, a text file
with semantically meaningful content, a well-formatted PDF file, and a config file with precise syntax to be stored in the RAW Store.

Parameter H1 H2 Parameter H1 H2

Disk size 80 GB 1 TB Cache segments 11 500
Rotational Speed 7200 RPM 7200 RPM Cache R/W partition Varies Varies
Number of cylinders 88283 147583 Bus Transfer 133 MBps 133 MBps
Number of zones 30 30 Seek profile(long) 3800+(cyl*116)/103 3300+(cyl*5)/106

Sectors per track 567 to 1170 840 to 1680 Seek profile(short) 300+
√

(cyl∗2235) 700+
√

cyl
Cylinders per zone 1444 to 1521 1279 to 8320 Head switch 1.4 ms 1.4 ms
On-disk cache size 2870 KB 300 MB Cylinder switch 1.6 ms 1.6 ms
Disk cache segment 260 KB 600 KB Dev driver req queue∗ 128-160 128-160
Req scheduling∗ FIFO FIFO Req queue timeout∗ 3 ms (unplug) 3 ms (unplug)

Table 1: Storage Model Parameters in David. Lists important parameters obtained to model disks Hitachi
HDS728080PLA380 (H1) and Hitachi HDS721010KLA330 (H2).∗denotes parameters of I/O request queue (IORQ).

stream before returning control. Figure 3 presented in§2
shows this setup more clearly.

As a general design principle, to support low-overhead
modeling without compromising accuracy, we avoid us-
ing any technique that either relies on storing empiri-
cal data to compute statistics or requires table-based ap-
proaches to predict performance [6]; the overheads for
such methods are directly proportional to the amount
of runtime statistics being maintained which in turn de-
pends on the size of the disk. Instead, wherever applica-
ble, we have adopted and developed analytical approxi-
mations that did not slow the system down; our resulting
models are sufficiently lean while being fairly accurate.

To ensure portability of our models, we have refrained
from making device-specific optimizations to improve
accuracy; we believe current models in David are fairly
accurate. The models are also adaptive enough to be eas-
ily configured for changes in disk drives and other pa-
rameters of the storage stack. We next present some de-
tails of the disk model and the storage stack model.

6.1 Disk Model
David’s disk model is based on the classical model pro-
posed by Ruemmler and Wilkes [19], henceforth referred
as the RW model. The disk model contains informa-
tion about the disk geometry (i.e., platters, cylinders and
zones) and maintains the current disk head position; us-
ing these sources it models the disk seek, rotation, and
transfer times for any request. The disk model also keeps
track of the effects of disk caches (track prefetching,
write-through and write-back caches). In the future, it

will be interesting to explore using Disksim for the disk
model. Disksim is a detailed user-space disk simulator
which allows for greater flexibility in the types of device
properties that can be simulated along with their degree
of detail; we will need to ensure it does not appreciably
slow down the emulation when used without memory as
backing store.

6.1.1 Disk Drive Profile
The disk model requires a number of drive-specific pa-
rameters as input, a list of which is presented in the first
column of Table 1; currently David contains models for
two disks: the Hitachi HDS728080PLA380 80 GB disk,
and the Hitachi HDS721010KLA330 1 TB disk. We
have verified the parameter values for both these disks
through carefully controlled experiments. David is en-
visioned for use in environments where the target drive
itself may not be available; if users need to model addi-
tional drives, they need to supply the relevant parameters.
Disk seeks, rotation time and transfer times are modeled
much in the same way as proposed in the RW model. The
actual parameter values defining the above properties are
specific to a drive; empirically obtained values for the
two disks we model are shown in Table 1.

6.1.2 Disk Cache Modeling
The drive cache is usually small (few hundred KB to a
few MB) and serves to cache reads from the disk me-
dia to service future reads, or to buffer writes. Unfortu-
nately, the drive cache is one of the least specified com-
ponents as well; the cache management logic is low-level
firmware code which is not easy to model.

7



David models the number and size of segments in the
disk cache and the number of disk sector-sized slots in
each segment. Partitioning of the cache segments into
read and write caches, if any, is also part of the informa-
tion contained in the disk model. David models the read
cache with a FIFO eviction policy. To model the effects
of write caching, the disk model maintains statistics on
the current size of writes pending in the disk cache and
the time needed to flush these writes out to the media.
Write buffering is simulated by periodically emptying a
fraction of the contents of the write cache during idle
periods of the disk in between successive foreground re-
quests. The cache is modeled with a write-through policy
and is partitioned into a sufficiently large read cache to
match the read-ahead behavior of the disk drive.

6.2 Storage Stack Model
David also models the I/O request queues (IORQs) main-
tained in the OS; Table 1 lists a few of its impor-
tant parameters. While developing the Storage Model,
we found that accurately modeling the behavior of the
IORQs is crucial to predict the target execution time cor-
rectly. The IORQs usually have a limit on the maximum
number of requests that can be held at any point; pro-
cesses that try to issue an I/O request when the IORQ is
full are made to wait. Such waiting processes are wo-
ken up when an I/O issued to the disk drive completes,
thereby creating an empty slot in the IORQ. Once wo-
ken up, the process is also granted privilege to batch a
constant number of additional I/O requests even when
the IORQ is full, as long as the total number of requests
is within a specified upper limit. Therefore, for applica-
tions issuing bursty I/O, the time spent by a request in the
IORQ can outweigh the time spent at the disk by several
orders of magnitude; modeling the IORQs is thus crucial
for overall accuracy.

Disk requests arriving at David are first enqueued into
a replica queuemaintained inside the Storage Model.
While being enqueued, the disk request is also checked
for a possiblemergewith other pending requests: a com-
mon optimization that reduces the number of total re-
quests issued to the device. There is a limit on the num-
ber of disk requests that can be merged into a single disk
request; eventually merged disk requests are dequeued
from thereplica queueand dispatched to the disk model
to obtain the service time spent at the drive. Thereplica
queueuses the same request scheduling policy as the tar-
get IORQ.

6.3 RAID Emulation
David can also provide effective RAID emulation. To
demonstrate simple RAID configurations with David,
each component disk is emulated using a memory-
backed “compressed” device underneath software RAID.

David exports multiple block devices with separate ma-
jor and minor numbers; it differentiates requests to dif-
ferent devices using the major number. For the pur-
pose of performance benchmarking, David uses a sin-
gle memory-based backing store for all the compressed
RAID devices. Using multiple threads, the Storage
Model maintains separate state for each of the devices
being emulated. Requests are placed in a single request
queue tagged with a device identifier; individual Storage
Model threads for each device fetch one request at a time
from this request queue based on the device identifier.
Similar to the single device case, the servicing thread cal-
culates the time at which a request to the device should
finish and notifies completion using a callback.

David currently only provides mechanisms for simple
software RAID emulation that do not need a model of a
software RAID itself. New techniques might be needed
to emulate more complex commercial RAID configura-
tions, for example, commercial RAID settings using a
hardware RAID card.

7 Evaluation

We seek to answer four important questions. First, what
is the accuracy of the Storage Model? Second, how ac-
curately does David predict benchmark runtime and what
storage space savings does it provide? Third, can David
scale to large target devices including RAID? Finally,
what is the memory and CPU overhead of David?

7.1 Experimental Platform
We have developed David for the Linux operating sys-
tem. The hard disks currently modeled are the 1 TB
Hitachi HDS721010KLA330 (referred to asD1TB) and
the 80 GB Hitachi HDS728080PLA380 (referred to as
D80GB); table 1 lists their relevant parameters. Unless
specified otherwise, the following hold for all the experi-
ments: (1) machine used has a quad-core Intel processor
and 4GB RAM running Linux 2.6.23.1 (2) ext3 file sys-
tem is mounted in ordered-journaling mode with a com-
mit interval of 5 sec (3) microbenchmarks were run di-
rectly on the disk without a file system (4) David predicts
the benchmark runtime for a targetD1TB while in fact
running on the availableD80GB (5) to validate accuracy,
David was instead run directly onD1TB.

7.2 Storage Model Accuracy
First, we validate the accuracy of Storage Model in pre-
dicting the benchmark runtime on the target system.
Since our aim is to validate the accuracy of the Stor-
age Model alone, we run David in amodel onlymode
where we disable block classification, remapping and
data squashing. David just passes down the requests that
it receives to the available request queue below. We run

8



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

F
ra

ct
io

n 
of

 I/
O

s

Time in units of 1 us

Sequential Reads [ Demerit: 24.39 ]

Measured
Modeled

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

F
ra

ct
io

n 
of

 I/
O

s

Time in units of 100 us

Random Reads [ Demerit: 5.51 ]

Measured
Modeled

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

F
ra

ct
io

n 
of

 I/
O

s

Time in units of 100 us

Sequential Writes [ Demerit: 0.08 ]

Measured
Modeled

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

F
ra

ct
io

n 
of

 I/
O

s

Time in units of 100 us

Random Writes [ Demerit: 0.02 ]

Measured
Modeled

Figure 6:Storage Model accuracy for Sequential and Random Reads and Writes. The graph shows the cumulative
distribution of measured and modeled times for sequential and random reads and writes.

Figure 7: Storage Model accuracy. The graphs show the cumulative distribution of measured andmodeled times for the
following workloads from left to right: Postmark, Webserver, Varmail and Tar.

Implicit Classification – Ext3 Explicit Notification – Btrfs
Benchmark Original David Storage Original David Runtime Original David Runtime
Workload Storage Storage Savings Runtime Runtime Error Runtime Runtime Error

(KB) (KB) (%) (Secs) (Secs) (%) (Secs) (Secs) (%)

mkfs 976762584 7900712 99.19 278.66 281.81 1.13 - - -
imp 11224140 18368 99.84 344.18 339.42 -1.38 327.294 324.057 0.99
tar 21144 628 97.03 257.66 255.33 -0.9 146.472 135.014 7.8

grep - - - 250.52 254.40 1.55 141.960 138.455 2.47
virus scan - - - 55.60 47.95 -13.75 27.420 31.555 15.08

find - - - 26.21 26.60 1.5 - - -
du - - - 102.69 101.36 -1.29 - - -

postmark 204572 404 99.80 33.23 29.34 -11.69 22.709 22.243 2.05
webserver 3854828 3920 99.89 127.04 126.94 -0.08 125.611 126.504 0.71
varmail 7852 3920 50.07 126.66 126.27 -0.31 126.019 126.478 0.36

sr - - - 40.32 44.90 11.34 40.32 44.90 11.34
rr - - - 913.10 935.46 2.45 913.10 935.46 2.45
sw - - - 57.28 58.96 2.93 57.28 58.96 2.93
rw - - - 308.74 291.40 -5.62 308.74 291.40 -5.62

Table 2:David Performance and Accuracy. Shows savings in capacity, accuracy of runtime prediction,and the overhead
of storage modeling for different workloads. Webserver andvarmail are generated using FileBench; virus scan using AVG.

David on top ofD1TB and set the target drive to be the
same. Note that the available system is thesameas the
target system for these experiments since we only want
to compare the measured and modeled times to validate
the accuracy of the Storage Model. Each block request
is traced along its path from David to the disk drive and
back. This is done in order to measure the total time that
the request spends in the available IORQ and the time
spent getting serviced at the available disk. These mea-
sured times are then compared with the modeled times
obtained from the Storage Model.

Figure 6 shows the Storage Model accuracy for four
micro-workloads: sequential and random reads, and se-
quential and random writes; these micro-workloads have

demerit figures of 24.39, 5.51, 0.08, and 0.02 respec-
tively, as computed using the Ruemmler and Wilkes
methodology [19]. The large demerit for sequential reads
is due to a variance in the available disk’s cache-read
times; modeling the disk cache in greater detail in the fu-
ture could potentially avoid this situation. However, se-
quential read requests do not contribute to a measurably
large error in the total modeled runtime; they often hit
the disk cache and have service times less than 500 mi-
croseconds while other types of disk requests take around
20 to 35 milliseconds to get serviced. Any inaccuracy in
the modeled times for sequential reads is negligible when
compared to the service times of other types of disk re-
quests; we thus chose to not make the disk-cache model
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more complex for the sake of sequential reads.
Figure 7 shows the accuracy for four different macro

workloads and application kernels: Postmark [13], web-
server (generated using FileBench [15]), Varmail (mail
server workload using FileBench), and a Tar workload
(copy and untar of the linux kernel of size 46 MB).

The FileBench Varmail workload emulates an NFS
mail server, similar to Postmark, but is multi-threaded
instead. The Varmail workload consists of a set of
open/read/close, open/append/close and deletes in a
single directory, in a multi-threaded fashion. The
FileBench webserver workload comprises of a mix of
open/read/close of multiple files in a directory tree. In
addition, to simulate a webserver log, a file append oper-
ation is also issued. The workload consists of 100 threads
issuing 16 KB appends to the weblog every 10 reads.

Overall, we find that storage modeling inside David is
quite accurate for all workloads used in our evaluation.
The total modeled time as well as the distribution of the
individual request times are close to the total measured
time and the distribution of the measured request times.

7.3 David Accuracy
Next, we want to measure how accurately David predicts
the benchmark runtime. Table 2 lists the accuracy and
storage space savings provided by David for a variety of
benchmark applications for both ext3 and btrfs. We have
chosen a set of benchmarks that are commonly used and
also stress various paths that disk requests take within
David. The first and second columns of the table show
the storage space consumed by the benchmark workload
without and with David. The third column shows the
percentage savings in storage space achieved by using
David. The fourth column shows the original bench-
mark runtime without David onD1TB. The fifth column
shows the benchmark runtime with David onD80GB. The
sixth column shows the percentage error in the predic-
tion of the benchmark runtime by David. The final three
columns show the original and modeled runtime, and the
percentage error for the btrfs experiments; the storage
space savings are roughly the same as for ext3. Thesr,
rr , sw, andrw workloads are run directly on the raw de-
vice and hence are independent of the file system.

mkfscreates a file system with a 4 KB block size over
the 1 TB target device exported by David. This workload
only writes metadata and David remaps writes issued by
mkfssequentially starting from the beginning ofD80GB;
no data squashing occurs in this experiment.

impcreates a realistic file-system image of size 10 GB
using the publicly available Impressions tool [2]. A total
of 5000 regular files and 1000 directories are created with
an average of 10.2 files per directory. This workload is
a data-write intensive workload and most of the issued
writes end up being squashed by David.
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Figure 8: Storage Space Savings and ModelAccu-
racy. The “Space” lines show the savings in storage space
achieved when using David for theimpressionsworkload with
file-system images of varying sizes until 800GB; “Time” lines
show the accuracy of runtime prediction for the same workload.
WOD: space/time without David,D: space/time with David.

tar uses the GNU tar utility to create a gzipped archive
of the file-system image of size 10 GB created byimp;
it writes the newly created archive in the same file sys-
tem. This workload is a data read and data write inten-
sive workload. The data reads are satisfied by the Data
Generator without accessing the available disk, while the
data writes end up being squashed.

grep uses the GNU grep utility to search for the ex-
pression “nothing” in the content generated by bothimp
andtar. This workload issues significant amounts of data
reads and small amounts of metadata reads.virus scan
runs the AVG virus scanner on the file-system image cre-
ated byimp. find anddu run the GNU find and GNU du
utilities over the content generated by bothimp andtar.
These two workloads are metadata read only workloads.

David works well under both the implicit and ex-
plicit approaches demonstrating its usefulness across file
systems. Table 2 shows how David provides tremen-
dous savings in the required storage capacity, upwards of
99% (a 100-fold or more reduction) for most workloads.
David also predicts benchmark runtime quite accurately.
Prediction error for most workloads is less than 3%, al-
though for a few it is just over 10%. The errors in the
predicted runtimes stem from the relative simplicity of
our in-kernel Disk Model; for example, it does not cap-
ture the layout of physical blocks on the magnetic media
accurately. This information is not published by the disk
manufacturers and experimental inference is not possible
for ATA disks that do not have a command similar to the
SCSImode page.

7.4 David Scalability
David is aimed at providing scalable emulation using
commodity hardware; it is important that accuracy is
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Num Disks Rand R Rand W Seq R Seq W
Measured

3 232.77 72.37 119.29 119.98
2 156.76 72.02 119.11 119.33
1 78.66 71.88 118.65 118.71

Modeled
3 238.79 73.77 119.44 119.40
2 159.36 72.21 119.16 119.21
1 79.56 72.15 118.95 118.83

Table 3: David Software RAID-1 Emulation. Shows
IOPS for a software RAID-1 setup using David with memory as
backing store; workload issues 20000 read and write requests
through concurrent processes which equal the number of disks
in the experiment. 1 disk experiments run w/o RAID-1.

not compromised at larger scale. Figure 8 shows the
accuracy and storage space savings provided by David
while creating file-system images of 100s of GB. Using
an available capacity of only 10 GB, David can model the
runtime of Impressions in creating a realistic file-system
image of 800 GB; in contrast to the linear scaling of the
target capacity demanded, David barely requires any ex-
tra available capacity. David also predicts the benchmark
runtime within a maximum of 2.5% error even with the
huge disparity between target and available disks at the
800 GB mark, as shown in Figure 8.

The reason we limit these experiments to a target ca-
pacity of less than 1 TB is because we had access to only
a terabyte sized disk against which we could validate the
accuracy of David. Extrapolating from this experience,
we believe David will enable one to emulate disks of 10s
or 100s of TB given the 1 TB disk.

7.5 David for RAID
We present a brief evaluation and validation of software
RAID-1 configurations using David. Table 3 shows a
simple experiment where David emulates a multi-disk
software RAID-1 (mirrored) configuration; each device
is emulated using a memory-disk as backing store. How-
ever, since the multiple disks contain copies of the same
block, a single physical copy is stored, further reducing
the memory footprint. In each disk setup, a set of threads
which equal in number to the number of disks issue a to-
tal of 20000 requests. David is able to accurately emulate
the software RAID-1 setup upto 3 disks; more complex
RAID schemes are left as part of future work.

7.6 David Overhead
David is designed to be used for benchmarking and not
as a production system, thus scalability and accuracy are
the more relevant metrics of evaluation; we do however
want to measure the memory and CPU overhead of us-
ing David on the available system to ensure it is prac-
tical to use. All memory usage within David is tracked
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Figure 9: David CPU and Memory Overhead. Shows
the memory and percentage CPU consumption by David while
creating a 10 GB file-system image usingimpressions. WOD
CPU: CPU without David,SM CPU: CPU with Storage Model
alone, D CPU: total CPU with David, SM Mem: Storage
Model memory alone,D Mem: total memory with David.

using several counters; David provides support to mea-
sure the memory usage of its different components using
ioctls. To measure the CPU overhead of the Storage
Model alone, David is run in themodel-onlymode where
block classification, remapping and data squashing are
turned off.

In our experience with running different workloads,
we found that the memory and CPU usage of David is
acceptable for the purposes of benchmarking. As an ex-
ample, Figure 9 shows the CPU and memory consump-
tion by David captured at 5 second intervals while cre-
ating a 10 GB file-system image using Impressions. For
this experiment, the Storage Model consumes less than 1
MB of memory; the average memory consumed in total
by David is less than 90 MB, of which the pre-allocated
cache used by the Journal Snooping to temporarily store
the journal writes itself contributes 80 MB. Amount of
CPU used by the Storage Model alone is insignificant,
however implicit classification by the Block Classifier
is the primary consumer of CPU using 10% on average
with occasional spikes. The CPU overhead is not an is-
sue at all if one uses explicit notification.

8 Related Work

Memulator [10] makes a great case for why storage em-
ulation provides the unique ability to explore nonexistent
storage components and take end-to-end measurements.
Memulator is a “timing-accurate” storage emulator that
allows a simulated storage component to be plugged
into a real system running real applications. Memula-
tor can use the memory of either a networked machine or
the local machine as the storage media of the emulated
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disk, enabling full system evaluation of hypothetical stor-
age devices. Although this provides flexibility in device
emulation, high-capacity devices requires an equivalent
amount of memory; David provides the necessary scala-
bility to emulate such devices. In turn, David can benefit
from the networked-emulation capabilities of Memula-
tor in scenarios when either the host machine has limited
CPU and memory resources, or when the interference of
running David on the same machine competing for the
same resources is unacceptable.

One alternate to emulation is to simply buy a larger ca-
pacity or newer device and use it to run the benchmarks.
This is sometimes feasible, but often not desirable. Even
if one buys a larger disk, in the future they would need
an even larger one; David allows one to keep up with this
arms race without always investing in new devices. Note
that we chose 1 TB as the upper limit for evaluation in
this paper because we could validate our results for that
size. Having a large disk will also not address the issue
of emulating much faster devices such as SSDs or RAID
configurations. David emulates faster devices through an
efficient use of memory as backing store.

Another alternate is to simulate the storage component
under test; disk simulators like Disksim [7] allow such an
evaluation flexibly. However, simulation results are often
far from perfect [9] – they fail to capture system depen-
dencies and require the generation of representative I/O
traces which is a challenge in itself.

Finally, one might use analytical modeling for the stor-
age devices; while very useful in some circumstances,
it is not without its own set of challenges and limita-
tions [20]. In particular, it is extremely hard to capture
the interactions and complexities in real systems. Wher-
ever possible, David does leverage well-tested analytical
models for individual components to aid the emulation.

Both simulation and analytical modeling are comple-
mentary to emulation, perfectly useful in their own right.
Emulation does however provide a reasonable middle
ground in terms of flexibility and realism.

Evaluation of how well an I/O system scales has been
of interest in prior research and is becoming increas-
ingly more relevant [28]. Chen and Patterson proposed
a “self-scaling” benchmark that scales with the I/O sys-
tem being evaluated, to stress the system in meaningful
ways [8]. Although useful for disk and I/O systems,
the self-scaling benchmarks are not directly applicable
for file systems. The evaluation of the XFS file sys-
tem from Silicon Graphics uses a number of benchmarks
specifically intended to test its scalability [23]; such an
evaluation can benefit from David to employ even larger
benchmarks with greater ease; SpecSFS [27] also con-
tains some techniques for scalable workload generation.

Similar to our emulation of scale in a storage system,
Guptaet al. from UCSD propose a technique calledtime

dilation for emulating network speeds orders of mag-
nitude faster than available [11]. Time dilation allows
one to experiment with unmodified applications running
on commodity operating systems by subjecting them to
much faster network speeds than actually available.

A key challenge in David is the ability to identify data
and meta-data blocks. Besides SDS [21], XN, the stable
storage system for the Xok exokernel [12] dealt with sim-
ilar issues. XN employed a template of metadata trans-
lation functions calledUDFs specific to each file type.
The responsibility of providing UDFs rested with the file
system developer, allowing the kernel to handle arbitrary
metadata layouts without understanding the layout itself.
Specifying an encoding of the on-disk scheme can be
tricky for a file system such as ReiserFS that uses dy-
namic allocation; however, in the future, David’s meta-
data classification scheme can benefit from a more for-
mally specified on-disk layout per file-system.

9 Conclusion

David is born out of the frustration in doing large-scale
experimentation on realistic storage hardware – a prob-
lem many in the storage community face. David makes it
practical to experiment with benchmarks that were oth-
erwise infeasible to run on a given system, by transpar-
ently scaling down the storage capacity required to run
the workload. The available backing store under David
can be orders of magnitude smaller than the target de-
vice. David ensures accuracy of benchmarking results
by using a detailed storage model to predict the runtime.
In the future, we plan to extend David to include support
for a number of other useful storage devices and configu-
rations. In particular, the Storage Model can be extended
to support flash-based SSDs using an existing simulation
model [5]. We believe David will be a useful emulator
for file and storage system evaluation.
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