Capture, conversion, and analysis of an intense NFS workload

Eric Anderson
HP Labs

aka Industrial strength NFS tracing
Industrial strength NFS tracing

- Wanted to collect customer NFS traces
- Applying existing techniques failed
- Going to explain how we did it
 - Many incremental improvements
 - Need most of them
 - Details in paper

- Summary:
 - If you take traces, re-read the paper, apply the lessons
 - Our workload is quite different from previous ones
Why do we take traces?

• Understand “real” workloads
 – How many operations occur?
 – How big are the files?
 – How cacheable are they?
 – How sequential are the accesses?
 – What trends are present?

• Evaluate new systems
 – Figure out new possible designs
 – Estimate performance on “real” workloads
Why new traces?

Complete bunk

Existing tools insufficient → Develop new ones
Workloads highly variable → Collect many more traces
Improved tools
Overall trace analysis process

- **Capture**: environment \(\rightarrow\) raw form
- **Conversion**: raw \(\rightarrow\) cooked
- **Analysis/Simulation**: cooked \(\rightarrow\) data
- **Graphing/Reporting**: data \(\rightarrow\) information

Details in paper

Tools, traces are open source
The customer

- Feature animation (movie) company
 - Read models, textures, animation curves
 - Write intermediates and pictures
 - ~3 years/movie
- Dramatis personae:
 - Thousands of clients (render-farm)
 - Tens of NFS servers
 - Twenties of NFS caches
 - Many rack switches
 - Few core routers
Capture (2003)

• Challenge:
 1. Non-intrusive data capture
 2. Parse readdir, etc.
 3. Enable offline conversion
 4. NFS traffic bursts >1Gbit/s
 5. Prefer long capture times (days)

• Solution:
 1. Port mirroring on switch
 2. Full packet capture
 3. Capture to parallel JBOD
 4. Special Linux-specific capture tool (*lindump*)
 5. Dynamic compression via tmpfs buffer
Capture, improved

• 2004: new switches with smaller buffers
 → 10Gb/s network interface card
 In-driver packet capture (*driverdump*)

• 2007: sustained 5Gb/s
 → Special capture card (*endacedump*)
 Integrated dynamic compression
Capture: observed rates

- Measured workload is bursty
- Capture tool can sustain 5Gb/s
- Capture tool can burst up to 7.5Gb/s
Capture: discussion

- No more papers reporting packet drops

Expected data rate, available resources

- **< 1 Gbit/s**
 - Use *lindump* (2003 tool)

- **< 3 Gbit/s**
 - Kernel hacker
 - Implement *driverdump* (2004 tool)

- **< 10 Gbit/s**
 - Capital budget
 - Purchase *endacedump* (2007 tool)
Conversion

- **Challenge:**
 1. Flexible logical representation
 2. Efficient physical representation
 3. Rapid trace conversion
 4. Trace anonymization

- **Solution:**
 1. Relational data model, multiple tables
 2. DataSeries structured serial data format
 3. Two-pass parallelism
 4. Reversible encryption
Analysis techniques

• Challenge:
 1. Huge (50 billion row) data sets
 2. Large intermediates
 3. Many possible grouping options
 4. Bursty, non-normally distributed data

• Solution:
 1. Custom DataSeries analysis
 2. Streaming analysis
 3. Develop efficient data cube
 4. Use approximate quantiles
Graphing/Reporting techniques

- **Challenge:**
 1. Moderate-size summary data
 2. Many possible graphs

- **Solution:**
 1. Store data in SQL database
 2. Select with mercury-plot

Example mercury-plot command:

```
plot quantile as x, value as y from nfs_hostinfo_cube
    where operation = 'read' and direction = 'send'
```
Collect more traces
Analysis: distribution of operation rate

Shows NFS-level burstiness
Validates use of quantiles rather than mean and stddev
Analysis: distribution of file sizes

Each accessed file counted once

Most files are small

Moderately wide size distribution

Horizontal line is NFS read and write size
Analysis: reads in a single group

Each group is the set of reads with a maximum inter-read gap of 30 seconds
Analysis: reads in a single group

Most I/Os all alone
Side effect of many small files.
Occasional large groups (~100 I/Os)
Need cross-file prefetching
Conclusion

- Capture techniques
 - no more packet loss
- Conversion and analysis techniques
 - handle huge datasets on moderate hardware
- Workload is very different:
 - Very intense
 - Small files
- Much more detail and discussion in paper
- Tools and traces open source
Questions?

Author/Speaker: eric.anderson4@hp.com

Software: http://tesla.hpl.hp.com/opensource/

http://iotta.snia.org/traces/list/NFS

Tracing BoF: 8:30-9:30 pm, San Francisco A