Can Replicas Converge Across Partitioned Networks?

Brent Byunghoon Kang

Computer Science Division, UC Berkeley
Pair-wise Reconciliation in Optimistic Replication

- Replica updated in any place; Later, converges to a consistent state by reconciling independently accrued updates.

- Typically through random pair-wise update exchanges for high availability. (i.e., anti-entropy)
Cannot Converge across Partitioned Networks
Summary Hash History (SHH)

- **Summary hash** = hash of version history graph
 - \(h\) (predecessor’s summary hash + content hash)
 - Collision resistant hash function: SHA-1
 - E.g., \(S_1 = h(S_0 \| h(V_1))\)
 - \(S_2 = h(S_1 \| h(V_2))\)

- **Summary Hash History (SHH)** uses summary hash as version ID.
 - During Reconciliation, sites exchange SHHs.
 - From an SHH, sites can securely reconstruct the full version history graph
 - From which, each can decide which version is later or both versions are concurrent (conflict).
Convergence across Partitioned Networks with SHH

Site A Site B Site C Site D

\[(x_1) \quad \text{S}_1 \quad \text{S}_2 \quad (x_2) \quad \text{S}_3 \quad \text{S}_4 \quad (x_1) \quad \text{S}_1 \]

\[\begin{array}{cccc}
A & B & C & D \\
1 & 0 & 0 & 0
\end{array} \quad \begin{array}{cccc}
A & B & C & D \\
0 & 1 & 0 & 0
\end{array} \quad \begin{array}{cccc}
A & B & C & D \\
1 & 1 & 0 & 1
\end{array}
\]

write x

\[(x_3) \quad \text{S}_1 \quad \text{S}_2 \quad (x_5) \quad \text{S}_3 \quad \text{S}_4 \quad (x_3) \quad \text{S}_1 \quad \text{S}_2 \quad \text{S}_3 \quad \text{S}_4 \quad \text{S}_5 \]

\[\begin{array}{cccc}
A & B & C & D \\
2 & 1 & 0 & 0
\end{array} \quad \begin{array}{cccc}
A & B & C & D \\
3 & 1 & 0 & 0
\end{array}
\]

All descendants of \(x_3 \) at Site A dominate \(x_3 \) at Site D.
Coincidental Equalities with Vast Cumulative Effects

- **Simulator using CVS trace data**
 - 2281 CVS commit events for 12/1999-4/2002;
 - Total 64 number of users;
 - Inter-commit time: average: 237.8 min median: 34.6 min.

- Every 60sec, two randomly chosen sites perform reconciliation.
- Concurrent versions are merged deterministically.
- Track the result of dominance determination for each reconciliation.
So, the answer is “Yes”, replicas can converge across partitioned networks with SHH.

More information
- http://www.cs.berkeley.edu/~hoon/
- hoon@cs.berkeley.edu
Benefit: Fastest Convergence

- SHH converges faster by producing no false conflicts
 - Capturing coincidental equality
 - Are prevalent due to deterministic merging
- Convergence even in the network partition !!!
 - Each partition can merge into a version
 - SHH captures if these versions are the same or not, instantly without communication.
$S_0 = h(H_0)$

$S_1 = h(S_0|H_1)$

$S_4 = h(S_1|S_2|H_4)$

$h : \text{hash}, \ | : \text{concatenation}$

$H_i = h(V_i), \ S_i = h(S_i's \ parents|H_i)$
Background: Optimistic Replication

- Widely used in distributed systems
 - To achieve increased availability during
 - Network-Partition or Server Failure
 - Useful for collaboration across administrative domain
 - Difficult to set up a shared central server.
 - Bayou, Coda, Ficus, Pangaea, and Usenet.

- Replica updated in any place
 - Later, converges to a consistent state by reconciling independently accrued updates.
 - Typically through random pair-wise update exchanges for high availability. (i.e., anti-entropy)