Applying a Reusable Election Threat Model at the County Level

Eric L. Lazarus
David L. Dill
Jeremy Epstein
Joseph Lorenzo Hall
Motivation

- Legitimacy of government depends on trustworthy elections.
- Potential for *undetected* fraud undermines the basis for trust.
- Elections are extremely attractive targets for fraud.
 - Attackers may be highly motivated.
 - And have access to massive resources.
- Primary responsibility for fraud prevention/detection rests on local election officials.
Scope

- Focused on attempts to steal election without detection.
 - Injecting fraudulent ballots into system.
 - Changing results after ballots are cast.
- Did not consider
 - “Robbery in broad daylight”.
 - Mistakes, breakdowns, etc.
 - Deniable but detected attacks.
 - Vote suppression.
 - Misleading campaigns.
 - Sabotage of campaigns.
 - Etc.
Importance of procedures

- Even the best election technology cannot prevent fraud.
- Optimal procedures are crucial.
 - Physical security of ballots.
 - Auditing (broadly construed).
 - Public observation (to deter insider attacks).
- Achieving an acceptable level of security is *highly nontrivial*.
Systematic Threat Evaluation

- Election security is a tough, complex problem.
- How should scarce resources be allocated?
 - Need *quantitative* comparison of threats and countermeasures.
 - Which threats to address first?
 - At what price?
- Also helps with larger policy debates (e.g., electronic/internet voting).
- *But how can we do it?*
Proposed solution

- Systematic, quantitative threat modeling at the local level.
- Based on (generalized) attack trees (AttackDog tool).
- Major challenge: How to make it feasible?
- Solution: Tailor a generic, reusable threat model to the particular jurisdiction.
- We tested this idea in Marin County, CA, in the November 2010 general election.
Marin County, CA

- Medium-size county (pop. 242,409) just North of San Francisco (across Golden Gate Bridge).
- With very patient and helpful election officials (esp. Elaine Ginnold – THANKS!)
- Uses precinct-count optical scan voting + central count optical scan.
- Lazarus and Hall
 - Interviewed staff.
 - Observed on Election Day.
 - Observed post-election hand audits.
Threat evaluation methodology

- <Figure out how to explain AttackDog concisely>
- Picture of attack tree, with key concepts?
- Goals, and/or nodes, attack steps
- Attacks, attributes, attack cost.
- Reusable parameterizable subtrees.
- “Omit” nodes.
- Defense domain.
- Computing attack cost
- COST CAN BE ANYTHING.
- Distinguish CAPABILITIES from APPLICATION in this case.
Attack Team Size (ATS)

- Metric for attack team cost.
- ATS = number of people knowingly involved in the election fraud.

Justifications

- Major consideration: risk of detection.
 - May thwart goal.
 - May incur penalties.
- Relatively simple (minimizes number of “judgement calls”).
- Not misleadingly precise.
Reusable threat model

- Began with very detailed general threat model.
 - Developed over several years.
 - Learned from Leon County, FL
 - Incorporated aspects of EAC model (TIRA) (Yasinsac).

- Learn jurisdiction-specific details
 - Focus on critical aspects, based on existing tree and knowledge (e.g., auditing, physical security).
 - Observe procedures in practice.
 - Polling place procedures.
 - Ballot transportation and storage.
 - Auditing procedures.

- Set parameters appropriately

- Change model (hopefully, not much).
Model adaptations for Marin

- **Parameters**
 - Estimated # of voters, polling places.
 - # of poll workers/polling place.
 - # of members of each ballot counting team during manual audit.
 - Qualitative parameters (stringency of tamper evidence measures and audit procedures).
 - Election assumptions: Margin of victory, # of votes that can be stolen in a precinct or machine without being obvious.
Model extension

- Ballots are transported from polling places to election office in two stages:
 - Poll workers take ballot boxes to “drop-off centers”.
 - Many boxes are loaded into trucks for transportation to final destination.

- This has an impact on ATS, because small teams have access to many ballots during the second stage of transportation.
Computer security is useless*

- There are infinitely many ways to subvert computer systems with ATS = 1.
- Securing machines is hopeless (from this perspective).
- Only hope for increasing ATS is to use audited “software independent” systems.
- (We did not evaluate computer security in Marin.)

*for increasing ATS
Malware attack

- **Subvert voting technology**
 - Make voting machines cheat using malware.
 - Steps: Write malware, insert malware, evade testing, etc.
 - *Must also defeat California manual auditing process of paper ballots.*
 - Tamper with paper ballots during transportation or storage.
 - Insider attacks on audit process.
 - Non-random precinct choice.
 - Defeat comparison of hand count with committed total.
Vote by mail attacks

- Obvious: Election office insiders could discard ballots (1 insider).

- Less obvious: “Stolen registration” attack
 - Small number of attackers registers many legal but never-registered voters (1 insider at Dep’t. of Moter Vehicles has this info).
 - Requests absentee ballots be sent to various addresses.
 - Small team fills out many ballots and mails them in.
Weighted attack team size

- Alternative metric: Insiders are “more costly” than outsiders on attack team.
 - Rationale: Insiders are harder to recruit, may be more carefully vetted.
 - We tried: 1 insider = 10 outsiders (easy in AttackDog).
 - Shifts low-cost attacks to outsiders
 - Subverting audited ballots – 2 outsiders.
 - Discarding VbM ballots – 10 (1 insider).
 - VbM “registration theft” – 8 outsiders.
Discussion

- Threat evaluation with reusable threat models may be practical.
- Even with paper ballot systems and audit requirements, security is tough.
 - Physical security of ballots.
 - Auditing is very sensitive to procedural details.
- This study is a first step, not a solution.
Future

- Tool improvements
 - More efficient evaluation under multiple scenarios.
 - Better summarization of possible attacks.
 - General “productization”

- Make the problem simpler
 - Simplified elections.
 - Standardized security for election jurisdictions.
 - Individual ballot auditing.
Who should do evaluations

- Independent experts
- using standard threat models
- evaluating standard procedures