Computational Complexity and Information Asymmetry
in Election Audits with Low-Entropy Randomness

Nadia Heninger
Princeton University
nadiah@cs.princeton.edu

Abstract

We investigate the security of an election audit using a
table of random numbers prepared in advance. We show
how this scenario can be modeled using tools from com-
binatorial graph theory and computational complexity
theory, and obtain the following results: (1) A randomly
generated table can be used to produce a statistically good
election audit that requires less randomness to be gen-
erated in real time by the auditors. (2) It is likely to be
computationally infeasible for an adversary to compute,
given a pre-prepared table of random numbers, how to
minimize their chances of detection in an audit. (3) It is
computationally infeasible to distinguish a truly random
table from a malicious table that has been modified to
decrease the probability of detecting cheating in certain
precincts.

1 Introduction

In this paper, we answer open problems posed by Rescorla
[15] concerning adversarial attacks on auditing schemes
using randomness tables. We show that truly random
tables can enable successful audits, and that it is computa-
tionally infeasible to optimize attacks that attempt to use
the joint distribution of precincts in such tables.

To answer these problems, we introduce an analytic
model for table-based auditing that draws on combina-
torial graph theory. Using our analytic model, we also
show that a book of random numbers generated by an
adversary (rather than a trusted third party) can make pos-
sible difficult-to-detect attacks. Our results are related
to those in a recent paper of Arora et al. [2] on the hard-
ness of detecting certain kinds of malfeasance in financial
derivatives.

Background In a post-election vote tabulation audit,
a subset of precincts, ballots, or other audit units are

selected for a manual recount, and the results are com-
pared to the preliminary election results in order to gain
some measure of confidence in the validity of the elec-
tion. In the following, we will generally discuss selecting
precincts to audit, but from the theoretical perspective of
this paper, the results apply equally to ballots, machines,
or any other sampled element.

In order for the audit to be informative, the set of
precincts should be statistically representative of the elec-
tion as a whole, and difficult to predict beforehand. A
simple, statistically valid method of generating such a
sample is to select audited precincts at random from the
set of all precincts, either uniformly or with probability
weighted by size or other features that need to be normal-
ized over the population.

However, in the context of an election audit, there are
two additional desirable properties: first, that the pro-
cedure used to generate the set of precincts should be
observable, so that the population at large can be sure that
the election audit (and therefore the election) is actually
valid; and second, that the procedure should be efficient in
terms of the human effort required to perform the audit.

To address these goals, a variety of procedures have
been proposed to select precincts for auditing. One is
to use a pseudorandom number generator seeded by a
dice roll [5] or by stock market fluctuations [8]. Since a
cryptographically secure PRNG or randomness extractor
is an involved algorithm and likely requires a computer
to execute, it has been argued that these methods are
not sufficiently observable by an average citizen who
does not understand or trust computers. Even an expert
may find it difficult to verify that hardware or software
implementations work as required.

Several algorithmically simpler methods to produce
randomness have been proposed, including rolling dice
[6, 10, 13] and non-cryptographically secure procedures
that can be executed on a pocket calculator [16].

The difficulty with these physical methods of gener-
ating randomness is that the randomness is expensive,

particularly if one demands a high-quality source of ran-
domness. Dice rolling seems to be an ideal source of
randomness if only a few bits of entropy are required, and
thus methods have been proposed to expand the amount
of randomness produced. One suggested solution is to use
a pre-prepared table of random numbers such as “A Mil-
lion Random Digits” [7] as an intermediary to expand the
random digits [6]. One might roll some dice to generate a
starting position in the table, and then sequentially read
numbers starting from that position until a set of precincts
to be audited has been completed.

Randomness tables and their limits Using a pre-
published table like this can be seen as revealing some
information about the audit before the election has even
occurred. Such a random table seems to be observable,
in the sense from above that a citizen should be able to
examine the table for problems, but the hesitant citizen
might protest that this table by its construction cannot
contain as much randomness as a true random sample.

Rescorla [15] suggested that an adversary planning to
manipulate an election might use the published entropy
source to minimize their chances of detection. He intro-
duces the idea of an adversarial attack on an election
audit with published tables of randomness, and uses simu-
lations to show that an adversary can use this information
to decrease the chances of detection in an audit.

There are several methods an attacker might use to min-
imize their chances of detection. The one explored by
Rescorla is to exploit the normal variance in the occur-
rences of each digit in a table, so that the attacker chooses
a set of precincts to attack from those that occur the least
often. Using the individual distribution of elements, his
simulations show that an attacker can reduce the chance
of detection by as much as 10%, and force an auditor to
audit as many as 50% more precincts to gain the same
level of confidence.

He left the following problems open: Is there an ana-
lytic model for such auditing schemes? And is it possible
for an attacker to exploit the joint distribution of elements
in the table to further decrease chances of detection?

Our results We introduce an analytic model for ran-
domness amplification schemes of this type. Using our
analytic model, we are able to answer the open problems
posed by Rescorla and obtain the following results:

o Truly random tables A reasonably-sized table of ran-
dom numbers that is truly generated at random can
with high probability result in an audit that will de-
tect fraud with any desired confidence level, while
requiring the auditors to generate fewer random bits
on the fly.

However, in order to gain the same level of con-
fidence, such a scheme requires auditing more
precincts than would be necessary had the sample
been generated truly at random.

e Adversarial attacks on tables An adversary cannot
in general efficiently use a pre-published table of
random numbers to decrease chance of detection in
fraud they plan to commit beyond a particular range
of values.

In addition, our analytic model allows us to draw a
connection to another recent application of graph theory
that gained widespread attention: the work of Arora et al.
[2] on the computational hardness of detecting a financial
derivative that has been adversarially constructed to fail.

Using this connection, we are able to pose and answer
an additional question suggested by Rescorla’s work: Can
an adversary construct a table that makes efficient attacks
possible? This is a different model from the one adopted
by Rescorla, which assumed that the randomness table
was honestly chosen, but known to an adversary who
would use it to choose precincts to attack. In this variant
of the attack, the adversary is more powerful, as he first
creates the randomness table used in the audit. The table is
specially constructed so that a small number of precincts
are less likely to be audited and can be corrupted at will.
Because the table he creates is public, however, it can
itself be subject to audits and must not be distinguishable
from random.

Drawing on the connection to [2], we show that a pow-
erful and undetectable attack is possible in this model:

o Adversarially-generated tables An adversary who
has control over the generation of the table of ran-
dom numbers but not the roll of the dice used to
choose an offset can create a malicious “random’
table that is computationally indistinguishable from
a truly random table which decreases the chance of
detecting fraud in a pre-selected set of precincts.

5

We give an example showing how using this sort of
manipulation, an adversary can reduce the probability of
detection of an attack from 60% to 2%.

Our methods We analyze the problem by understand-
ing it as a question about combinatorial graphs. In partic-
ular, it turns out that a good random table will correspond
to a graph with good expansion properties. Such graphs
are often used in theoretical computer science to reduce
the amount of randomness required by a randomized al-
gorithm, and the study of such graphs is an active field of
research which is interesting in its own right. This new
look at the problem of analyzing random tables allows us
to apply tools from the rich theory of expander graphs.

2 Problem statement and mathematical
models

Audit subsets

Precincts D

R

Figure 1: Modeling a table of random numbers using a
bipartite graph. We create one node for each precinct, and
one node for each subset of precincts in the table, and
draw an edge between an auditing subset and a precinct if
the precinct is contained in the auditing subset.

The auditing game Rescorla introduces an “auditing
game” to model the interaction between an attacker who
wishes to cheat in an election without detection, and an au-
ditor who designs an auditing procedure to detect election
abnormalities.

In this game, the attacker selects a subset of precincts
to modify before the election. (For simplicity, we will
talk about precincts, but they could be voting machines
or individual ballots.) The election takes place, and the
auditor selects a set of precincts to audit. If the auditor
selects a precinct that the attacker has modified, then the
attack is detected and the attacker loses the game. In
reality, the fraud could remain undetected through other
means, but this provides a conservative model for the
attacker.

Given a PRNG, a table of random numbers, or other
information about the auditing procedure, the adversary’s
goal is to use this information to minimize the chance of
detection while cheating in as many precincts as possible.

Random number tables The particular scenario we in-
vestigate is that of using a pre-published table of random
numbers to reduce the amount of randomness required
to select a sample of precincts to audit. In the most natu-
ral procedure, dice rolls or another procedure is used to
choose an offset in the table uniformly at random, and
then a sequence of numbers is read from the table. The
sequence of numbers will determine the set of precincts
to audit.

If the number of precincts to be audited is D, the pro-
cedure above is equivalent to publishing the list of D
numbers following each offset in the table.

We will model this procedure using a bipartite graph.
See Figure 1 for an illustration.

On the left side, we have L vertices, one for each
precinct. On the right side, we have R vertices, one for
each audit subset in the table, corresponding to each off-
set. There will be an edge between vertex [and vertex r if
the precinct / is in the audit set corresponding to the offset
of r. We will denote by I'(S) the number of neighbors of
a set S of vertices in the graph. The degree of each vertex
rin R is D, since every audit set contains D precincts, and
the degree of each vertex of L is the number of audit sets
it appears in.

If an offset of the table is chosen uniformly at ran-
dom, then the probability that precinct / will be audited
is proportional to its degree in the graph described above,
Pr[l audited] = T'(1) /R. If cheating or other abnormalities
occurred in a set S of precincts, the probability in our
auditing game that it will be detected is the probability
that any of those precincts is audited. This probability is
proportional to the number of neighbors of the set,

Pr[S audited] = T'(S)/R.
See Figure 2 for an illustration.

Audit subsets

Precincts

R

Figure 2: Using the properties of the graph to calculate
the statistics of the audit. If a random audit sample is
chosen from the nodes on the right, the probability that a
particular precinct (or set of precincts) will be audited is
proportional to the number of its neighbors on the right.

3 Random tables give good audits

The first observation that this setup allows us to make is
that with a properly constructed table of random numbers,
the audit procedure described above will give a sample

of precincts to audit that requires less randomness than
individual dice rolls to select each precinct. Standard
statistical methods can be used to give lower bounds on
the validity of the resulting audit.

However, there is a trade-off to be made: using a table
of random numbers vastly decreases the amount of ran-
domness that needs to be generated on the fly, but in order
to get the same degree of confidence in the audit, more
precincts need to be audited than if one were selecting
precincts to audit truly at random. (Alternatively, one can
audit the same number of precincts as before and adjust
the confidence of the audit downward.)

We adapt methods used in the analysis of expander
graphs to bound the effectiveness of an audit done in this
way.

3.1 Expander bounds

To begin with, we will make the simplifying assumption
that the dice rolls do not select an arbitrary offset in the
table, and instead are used to select an offset at a multiple
of D, so that each of the audit sets in the table corresponds
to a non-overlapping window. (Note that the resulting
book will contain RD entries, and our results can no longer
be directly compared to Rescorla’s.)

Then the bipartite graph constructed above is a ran-
dom bipartite graph, constructed by selecting D random
neighbors on the left for each vertex on the right. It is well-
known that such graphs have good expansion properties,
that is, that all subsets of vertices will have many neigh-
bors. Expander graphs are often used in algorithms in the-
oretical computer science to reduce the amount of random-
ness required by a randomized algorithm, among many
other applications. See [9] for an excellent overview.

In this case, we are examining unbalanced bipartite
graphs, and the effectiveness of the audit is strongly re-
lated to the expansion of the precinct vertices.

Definition 1. A bipartite graph has left expansion c, if
for all sets of vertices S C L of size |S| < a|L|,

(s) > cS|.

where T'(S), the size of the neighborhood of S, is the
number of vertices in R with at least one neighbor in S,
and 0 < a < 1.

Essentially, this definition states that every small subset
of vertices on the left-hand side has a large number of
neighbors on the right-hand side. For a good expander,
the ratio ¢ of neighbors to vertices should be close to the
the average degree of the left-hand vertices.

If we have a lower bound on the expansion of the graph
representing our table, this allows us to calculate an easy
lower bound on the confidence of an audit using that table.

If we would like to detect cheating in at least B precincts
and we know that our graph has expansion at least c, then
any set of B precincts has at least ¢B neighbors in R, and
thus the probability that a randomly selected vertex (audit
set) from R has a neighbor among our B (includes one of
the B to be audited) is at least cB/R.

It is known that asymptotically, a random graph is
likely to be a good expander. Unfortunately, the graph
sizes generated by such proofs are too large to be of use
for a human-run auditing program.

As a first attempt, we can look at existence proofs for
expanders for inspiration. [12, Ch. 5.3], for example,
gives an existence proof via the probabilistic method of
graphs with good right expansion. We adapt this method
for our needs, first to bound the actual probability that a
graph is a good expander, and with a bit more thought to
bound the left expansion instead of right.

Form the graph by connecting each vertex in R to d
random vertices from L, and calculate the probability that
all subsets of vertices S C L of size less than oL (for
0 < o < 1/c¢) have expansion greater than ¢ in R. The
graph will have probability at least 1 — p of being an
expander if

L(R/C)cefd(R/Lfac)elJrc <p/(1 +p).

However, this bound does not give useful numbers for
plausible graph sizes for the application of vote auditing.
(The problem is that ensuring this property for every very
small set introduces a lot of excess in the union bound
we’re using.)

Instead, we will use a weaker notion of expansion, and
ask only that subsets of vertices of a certain fixed size
have expansion c. This results in a lower bound on the
confidence of an audit of that size. In particular, if we
would like to detect cheating that has occurred in at least
s precincts, then if all sets of vertices of size s have at
least cs neighbors in R, our audit will have confidence at
least sc/R of detecting cheating that occurred in at least s
precincts.

We can give a generous bound the probability that every
such subset s has the required expansion. The following
expression calculates a union bound on the probability
that no subset s of L has fewer than cs neighbors. Since
our edges are coming from R, the probability that all of
the s edges are in our desired cs set is the probability that
all the other edges from R land in L — .

I R IL— d(R—cs)
Pr[good expansion] > 1 — () () (S)
s) \cs L

We will do a brief calculation to illustrate the trade-off
between randomness and audit size.

Example 1. We have an election with 5000 precincts,
and wish to guarantee that there were abnormalities in
no more than 5% of precincts with confidence 80%.

In the case of a truly random audit, we should audit at
least 32 precincts to obtain these confidence levels, since

3L 5000 — 250 —i

<02
L% 5000 — i

Thus the number of bits of randomness in this case that
we need to generate is at least

5000
1 275.

Now we compare to the case of a pre-computed table
of random numbers. We’ll imagine that we are provided
with a book that has 200,000d entries, where d will be
the size of the resulting audit.

The confidence of the resulting audit will be
250¢/200000, so we need ¢ = 640. Setting d = 50, the
probability that a randomly constructed graph from above
has our desired c is

1 ()) (2555) ™ > 1 <100

so we will almost certainly have the confidence we
need.

Thus we will need to audit 50 precincts, but the number
of bits of randomness needed to generate the audit sample
from the book is

12200000 < 18.
We note that the calculations above make liberal use of

the union bound, and thus the bounds should be able to
be improved by using more sophisticated methods.

4 Algorithmic attacks

The previous section shows that it is possible to do a

good statistical audit with the help of truly random tables.

However, this does not eliminate the possibility that an
attacker might be able to use the table to optimize an
attack within these parameters. Rescorla [15] discusses
the case of an attacker who calculates the fraction of times
each precinct occurs individually in the audit and attacks
those precincts that occur the least often. He poses the
question of how one might construct an optimal attack.

Using the framework introduced earlier, we see that the
adversary would like to tamper with the set of precincts
that has the fewest neighbors in the graph representing
the table of audit sets; in other words, to find a relatively
small set of vertices in a bipartite graph that has minimum
expansion.

This is a natural combinatorial optimization problem
that arises in many applications, but until recently little

was known about its difficulty. Several recent results
suggest that it may be quite difficult to solve in general.

Very recently, Raghavendra and Steurer [14] outlined
a connection between the problem of approximating the
small-set expansion of a graph and the unique games con-
jecture, a notorious conjecture in algorithms that would
imply strong hardness results for many well-known ap-
proximation problems in combinatorial graph theory [11].
In particular, they conjecture that it is NP-hard to distin-
guish whether the small set expansion of a graph is very
large or very small, and show that their conjecture implies
the unique games conjecture.

Even more recently, Arora, Barak, and Steurer gave
a subexponential time approximation algorithm for the
small-set expansion problem [3]. Given a graph on n
vertices that contains a set of size k with neighborhood
of size ck, in time exp(no(clfﬁ)) poly(n), they can find a
set of k vertices with neighborhood of size at most kcP/3.
The graphs we use in our examples here have thousands
of vertices; thus the stated running time here will only be
feasible for ¢ much smaller than 1; that is, if the graph
contains a shrinking set. Detecting a subset with small
but nonshrinking expansion appears to remain infeasible.

Additionally, the results above are stated for arbitrary
graphs, and our graphs are bipartite. There may be a
solution in some special cases, but as of yet there is no
indication that bipartite graphs should be much easier in
general.

5 Malicious auditing

The difficulty that an adversary has in optimizing an at-
tack strategy is not specific to an attacker. Observe that
the desired outcome of the attacker, to find a subset of
precincts that is unlikely to be audited, is very closely
related to the desired outcome of an auditor, who wishes
to make sure that all subsets of precincts are equally likely
to be audited. If the auditor could calculate subsets of
precincts that were unlikely to be audited, he would be
well on his way to his goal. In fact, it is difficult for
anyone to efficiently verify that the random table has the
randomness properties that are desired.

This means that it is possible to construct a malicious
table of “random” numbers that cannot be efficiently dis-
tinguished from a good, truly random table. Such a table
might be constructed to decrease the probability that an
attack on the election was detected in an audit. In a more
practical sense, it means that there is no efficiently com-
putable way to verify that a table of random numbers is
truly random, or that it has the properties we outlined in
Section 3.

If we are sure that a table was truly generated at random,
then we can as above calculate the probability that such

a table has the properties we want, but if we are handed
a table that was generated opaquely, it is not possible to
verify that it was honestly generated.

This suggests the following attack on our table-aided
vote auditing scheme: an attacker who has control over
the table of random numbers (and knows the assignment
of table entries to precincts) but not the roll of dice used to
later select an offset within the table can create a malicious
table that will decrease the probability of detecting fraud
within a pre-specified set of precincts.

The technique we will use to generate a malicious table
is to place a planted dense subgraph in the bipartite graph
representing the table. Within certain parameters, it is
believed to be computationally difficult to detect such a
graph, and currently there is no good algorithm for doing
s0. The hardness of this k-densest subgraph problem has
been proposed as the basis of a cryptosystem by Apple-
baum et al. [1], and used by Arora et al. [2] to show that it
is possible to construct financial derivatives that are indis-
tinguishable from fair derivatives, but that are designed to
cheat. Currently the best known algorithm for solving the
k-densest subgraph problem is a polynomial-time algo-
rithm giving an O(n'/*) approximation due to Bhaskara
et al. [4].

The problem of computing the densest subgraph is re-
lated to the problem of computing the small-set expansion
of a graph [14]. A dense subgraph limits the expansion of
the vertices in the dense subgraph, and a graph with good
expansion cannot have a very dense subgraph.

In contrast to the attacks outlined by Rescorla, for
which an auditor can try to compensate by decreasing
the estimated confidence of an audit to correspond to the
advantage an attacker might get (in the manner of Section
3), this kind of attack is impossible to predict or compen-
sate for without the secret knowledge of the hidden dense
subgraph.

Arora et al. formalize an asymptotic intractability as-
sumption on the hardness of detecting a planted dense
subgraph in a random graph. Since we are interested in
exploring the ramifications of this assumption for some
concrete families of parameters, we will boldly adapt a
non-asymptotic version of the assumption. For our ver-
sion of the assumption, we have both eliminated asymp-
totic factors in the ratios between the vertex degree inside
and outside of the planted subgraph, as well as apply the
assumption to fixed large graph sizes.

Should an efficient algorithm be found for certain
ranges of values or constants, the precise formulation
of the assumption may need to be changed.

Densest subgraph assumption For large graph sizes,
it is computationally intractable to distinguish between a
graph drawn from distribution

Audit subsets

Precincts ®
P D
(J
[}
l
r
d
L
R

Figure 3: Manipulating the audit by planting a dense sub-
set of edges in the graph. A small subset of the audit sets
are highly connected with a selected subset of precincts;
this means that these precincts appear less often in the
remaining audit sets and are less likely to be audited over-
all.

e % obtained by choosing for every right vertex D
neighbors uniformly at random on the left.

e Z obtained by choosing r vertices from the right and
[vertices on the left, choosing d neighbors for each
of the r vertices at random from the [vertices, and
D — d neighbors at random from the remaining R —
r vertices, and apportioning the edges for vertices
in the R — r vertices remaining so that the degree
distribution remains constant.

for the parameters d ~ VD and r =~ [\/R /L.

In the following analysis, we will compare the at-
tacker’s advantage to the likelihood of detection in a truly
random election, instead of the adversarial case we out-
lined in Section 3. This much simplifies the analysis. It is
also sensible, since the bounds we derived in Section 3 are
a different phenomenon from the type of manipulation we
are exploring here. (In any case, Section 4 shows that an
adversary will have difficulty taking advantage of graph
properties they do not control.)

Recall that the auditing process corresponds to pick-
ing one subset of precincts and auditing that set. The
particular subset corresponds to the left endpoints of the
edges originating from one vertex on the right. The adver-
sary chooses a set of [vertices from the left-hand side to
modify.

In the case of the truly random graph in &%, we can
calculate the expected number of edges from the r vertices
on the right to the / vertices on the leftt:

#edgesr —1:Drl/L.

as well as the expected number of edges from the R —r
remaining vertices to the / vertices on the left.

#edges (R—r)—1:D(R—r)l/L.

Thus the total number of edges into / is DRI /L.

The adversary wins if his corrupted set of / vertices
has no overlap with the audited set, thus the goal of the
planted dense subgraph is to increase the number of edges
from [to a small subset of vertices r, thus decreasing the
total number of audit sets with an overlap with /.

In the case of the planted graph from &2, the number
of edges will be:

#edgesr —1:dr+(D—d)rl/L
=Drl/L+dr(L—1)/L

#edges (R—r) —1:DRI/L— (dr+(D—d)rl/L)
=D[R-r)l/L—dr(L—-1)/L

where the second follows because we construct the

graph to preserve the same average degree for all vertices.

Because the vertex on the right (and thus the audited
set) is chosen uniformly at random, the probability that
the adversary will succeed is precisely the probability that
a random vertex on the right has no neighbors in /.

To simplify the following analysis, we will model the
probability of detection as a balls in bins process and use
the Poisson approximation. Thus if we throw m balls into
n bins, the probability that a particular bin has at least 1
ball is 1 —e~™/".

In this case, we are throwing edges from [into R and
asking what the probability that at least one of the edges
has an endpoint in a randomly selected vertex in R.

For the case of the truly random graph from %, we
have DRI /L edges into R vertex bins, so

Pr[detection] = 1 — e P//E,
For the biased case, the probability of detection will be
the probability that we select a vertex from r times the
probability that the attack is detected in that case, and
similarly for R —r:

Pr[detection] = % (1 — e*(Drl/Lerr(Lf/)/L)/r)

+Rr (1 _ e—(D(R—r)l/L—dr(L—l)/L>/<R—r>)
—1-= (ef(DI/L+d(Lfl)/L))

R (e—<Dz/L—dr<L—z>/<L<Rfr>>>)
It is not clear that this kind of biasing would always

benefit an attacker, but in fact the following lemma shows
that it always will.

Lemma 1. For all x > 0 and all b,
l—e* > 1-— (ﬁef(x‘s'b) + %e*(xfbr/(Rfr))).

In particular, the lemma holds for x = DI/L and
b =dr(L-1)/L.

Proof. Apply the arithmetic geometric mean inequality
and solve.

T oltb) %e—u—br/(ze—r»

=

> /o= (rtb)r g—(x—br/(R=r))(R—r)

_ £ e~ 1x—br o—(R—r)x+br

= e_x

There will be equality when r =R —r. O

Thus it is in the attacker’s advantage to make the differ-
ence between the two terms as large as possible.

We will use our example from earlier to calculate the
difference that this kind of cheating can make.

Example 2. We have L = 5000, [=250, and D = 32.
In the random case, our probability of detecting cheat-
ing (on average this time, and not adversarial) is about

1—e PUL ~0.798.

we have R =
We choose d =

To construct an altered graph,
200,000 and r = I\/R/L = 1581.

5<V32 Then 1 - % (ef(Dl/Hd(Lfl)/L)) _
Rr (ef(Dl/Lfdr(Lfl)/(L(Rfr))) ~ 0.792.

Thus the adversary has lowered his chances of detec-
tion by nearly 1% in a way that is completely undetectable
to any auditor.

Conceptually, this is an important case, as it shows
that the effect can be real even with realistic parameters.
However, the benefit that the adversary derives increases
very strongly as the size of the table increases. A ballot-
based audit might potentially involve a larger necessary
table size. To demonstrate, we will take an election with
100 million voters, potential for 2% fraud, and a book
with 2 million entries.

Example 3. We have L = 100 x 10°%, [=2 x 105, and
D =50.

In the random case, our probability of detecting cheat-
ing is about

1—e Pl ~0.632.

Now let R =2 x 10° and r = I\/R/L = 282843. We
choose d =7 < \/50.

Then 1 — & (ef(Dl/Ler(Lfl)/L))

_R—r (e—(Dl/L—dr(L—l)/(L(R—r)))) ~0.022.

R

That is, the adversary has lowered the chance of detec-
tion from above 60% to about 2%.

It is worth noting that the size of the table is small
enough that it will not be likely to have the good expansion
properties from Section 3.

If the size of the audit book R is increased by a factor
of 10, the attack is largely mitigated, and the probability
of detection falls from 60% to only about 50%. Concep-
tually, increasing or decreasing the size of the book in the
non-adversarial model has no effect on the probability
of detecting randomly located fraud in the audit. It only
affects the adversarial analysis.

This final example is so striking that it seems to call
into question the assumption that detecting such fraud
is computationally intractable. Nevertheless, it does not
seem to open any avenues for a more efficient algorithm
to solve the densest k-subgraph problem.

6 Practical considerations and mitigations

Since the use of a random number table in a post-election
audit is still a hypothetical, there are no existing proce-
dures respecting such a table that we can use to evaluate
the practical difficulty of carrying out the attacks outlined
above.

The simplest mitigation against the attack outlined in
Section 5 would be to use a table that predates the idea of
using such tables to audit elections. If a special-purpose
table is to be generated, however, it should not be difficult
for an attacker to generate suitable entries for a malicious
table. From that point on, the difficulty of supplying such
a table to an unwary government should be no greater
than, for example, convincing a government to use black
box electronic voting machines.

We will discuss several potential mitigations.

Observable randomness generation For such a table
to be trustworthy, the process used to generate it needs
to be trusted and carefully observed throughout the gen-
eration of the table. For a table with millions of entries,
this could be a potentially onerous requirement, and one
that is difficult for the population of voters to verify for
themselves. The introduction to [7] provides an illustra-
tion of the difficulty of generating such numbers through
physical means in 1947.

We note that the procedures used to extract random-
ness from physical sources now (for example, to generate
uniform randomness from the fluctuations of the stock
market or from a quantum oscillator) generally run inputs
of imperfect randomness through a randomness extrac-
tor, a numerical algorithm designed to transform a biased
source of randomness into a truly uniform output. How-
ever, a numerical algorithm that has the desired properties

is a pseudorandom generator, so if the electorate wishes
to avoid having to trust an algorithmic pseudorandom
number generator, we’ve merely complicated the story.

Multiple sources Alternatively, one could let several
different parties generate tables, and combine them to-
gether by, for example, xoring the entries. As long as
each party commits to his entry before seeing any of the
others and at least one of the tables was truly random, the
output of this process remains truly random.

Verifying tables before use Once such a table is in use,
all of its entries should be published in multiple locations,
along with details of the selection procedure whenever
the table is used, to prevent substitution of a malicious
table after generation.

Assigning random IDs to precincts One proposed
strategy to avoid the attack outlined in Section 5 is to
choose a separate assignment of precincts to table entries.
Unfortunately, more randomness is required to choose the
assignment of precincts than would be required to choose
a completely random subset of precincts to audit.

7 Lessons

The attack outlined in Section 5 is almost certainly im-
plausible in a real election. However, it serves to illustrate
the lesson that when assessing the statistical validity of an
audit, it is vitally important to understand all of the inputs
to the process.

Randomness is a powerful tool, but its power relies
on the randomness being properly generated. Once a
sequence of random numbers has been generated, it may
be computationally difficult to verify that the sequence
has all the properties that a truly random sequence should
hold.

In essence, using a table of random numbers in the way
we study in this paper is equivalent to substituting the
table for an algorithmically generated PRNG or random-
ness extractor. In fact, we can use similar tools to analyze
both cases.

The fact that a table of random numbers seems more
“accessible” than a baroque algorithm for generating pseu-
dorandom numbers does not mean it is any more trustwor-
thy; on the contrary, it is much easier to have statistical
confidence in the analysis of an algorithm that has been
designed to be easy to analyze than it is to be confident
that a table of numbers has been properly generated, no
matter how many statistical tests we run on the numbers.

8 Conclusion

The analysis provided in this work allows us to distinguish
several security properties for the use of random tables in
election audits.

On a positive note, the expansion properties of random
graphs can be used to give absolute security that the table
does not contain harmful statistical abnormalities. We
show how random tables can be used in a statistically
sound way to reduce the amount of randomness required
to perform an audit, if one is willing to accept a tradeoff
in either confidence levels or the number of precincts that
must be audited.

On the other hand, the hardness of optimizing an attack
against the audit gives computational security. Even if
a table does not satisfy the absolute security properties
above, an attacker is unlikely to find a bad set to exploit
that an auditor cannot also find. Since the statistics of the
random sample are dependent only on the proportion of
the sample and on the size of the book, this may allow the
use of a table that is smaller than the strict standards of
absolute security might require, since it would be compu-
tationally infeasible to find a weakness.

And finally, the adversarially-designed table gives com-
plete insecurity. A vulnerability can be built into such a
table that is undetectable for anyone who does not know
the secret.

Beware of statisticians bearing gifts.

Acknowledgements

I am grateful to Henry Cohn for help with the calculations,
to Alexandra Kolla and David Steurer for references on
eigenvalues and expansion, and to Hovav Shacham, Eric
Rescorla, Alex Halderman, and the anonymous reviewers
for helpful suggestions and clarifications. This material
is based upon work supported under a National Science
Foundation Graduate Research Fellowship.

References

[1] Benny Applebaum, Boaz Barak, and Avi Wigderson.
Public-key cryptography from different assumptions.
In STOC ’10: Proceedings of the 42nd ACM sympo-
sium on Theory of computing, pages 171-180, New
York, NY, USA, 2010. ACM.

[2] Sanjeev Arora, Boaz Barak, Markus Brunnermeier,
and Rong Ge. Computational complexity and infor-
mation asymmetry in financial products (extended
abstract). Innovations in Computer Science, January
2010.

[3] Sanjeev Arora, Boaz Barak, and David Steurer.
Subexponential algorithms for unique games and
related problems. manuscript, 2010.

[4] Aditya Bhaskara, Moses Charikar, Eden Chlamtac,
Uriel Feige, and Aravindan Vijayaraghavan. Detect-
ing high log-densities: an O(n#) approximation for
densest k-subgraph. In STOC ’10: Proceedings of
the 42nd ACM symposium on Theory of computing,
pages 201-210, New York, NY, USA, 2010. ACM.

[5] Joseph A. Calandrino, J. Alex Halderman, and Ed-
ward W. Felten. In defense of pseudorandom sample
selection. USENIX/ACCURATE Electronic Voting
Technology Workshop 2008, July 2008.

[6] Arel Cordero, David Wagner, and David Dill. The
role of dice in election audits—extended abstract.
IAVoSS Workshop on Trustworthy Elections 2006
(WOTE 2006), June 2006.

[71 RAND Corporation. A Million Random Digits with
100,000 Normal Deviates. American Book Publish-
ers, 2002.

[8] Aleks Esseks, Jeremy Clark, Richard T. Carback
III, and Stefan Popoveniuc. The punchscan voting
system: Vocomp competition submission, 2007.

[9] Shlomo Hoory, Nathan Linial, and Avi Wigderson.
Expander graphs and their applications. Bull. Amer.
Math. Soc., 43:439-561, 2006.

[10] David Jefferson, Elaine Ginnold, Kathleen Mid-
stokke, Kim Alexander, Philip B. Stark, and Amy
Lehmkuhl. Evaluation of audit sampling models
and options for strengthening California’s manual
count. California Secretary of State, July 2007.

[11] Subhash Khot. On the unique games conjecture.
Foundations of Computer Science, Annual IEEE
Symposium on, 0:3, 2005.

[12] Rajeev Motwani and Prabhakar Raghavan. Ran-
domized Algorithms. Cambridge University Press,
1995.

[13] Lawrence Norden, Aaron Burstein, Joseph Lorenzo
Hall, and Margaret Chen. Post-election audits:
Restoring trust in elections. Brennan Center for
Justice at The New York University School of Law
and The Samuelson Law, Technology and Public
Policy Clinic at the University of California, Berke-
ley School of Law (Boalt Hall), August 2007.

[14] Prasad Raghavendra and David Steurer. Graph ex-
pansion and the unique games conjecture. In STOC
’10: Proceedings of the 42nd ACM symposium on

[15]

[16]

Theory of computing, pages 755-764, New York,
NY, USA, 2010. ACM.

Eric Rescorla. On the security of elec-
tion audits with low entropy randomness.
USENIX/ACCURATE/IAVoSS 2009 Electronic
Voting Technology Workshop/ Workshop on Trust-
worthy Elections (EVI/WOTE 2009), August
2009.

Ronald L. Rivest. A “sum of square roots” (SSR)

pseudorandom sampling method for election audits,
2008.

10

