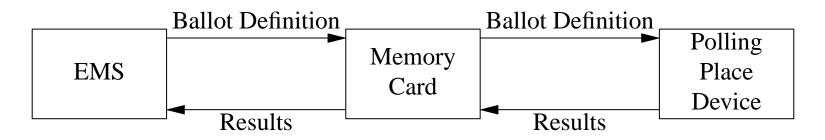
You Go to Elections with the Voting System You Have: Stop-Gap Mitigations for Deployed Voting Systems

J. Alex Halderman *Princeton University* Eric Rescorla *RTFM, Inc.*

Hovav Shacham University of California, San Diego David Wagner University of California, Berkeley

Motivation


- All electronic voting systems studied have serious vulnerabilities
- Election officials have been deploying mitigations
 - Designed under tight time pressure
 - Limited input from security experts
 - Not clear how well these work
- Can we do better?

"With new but realistic procedures; with no changes to existing hardware; and with few and modest changes to existing software, how can we best secure elections?"

Basic Assumptions

- Threats
 - Software will remain vulnerable
 - Hardware will remain only modestly resistant to physical attack
 - Polling places have little physical security
 - Compromise is undetectable and irreversible
- Unfortunate limitations
 - County headquarters is kept physically secure

Main concern is viruses

- All studied systems can be subverted with minimal unsupervised access
- Polling place devices are poorly protected
 - Voters; poll workers; sleepovers
- Subverting a single machine isn't very useful
 - Too expensive to individually subvert every machine
- But viruses allow a single attacker to compromise the entire county

Managing Viral Spread

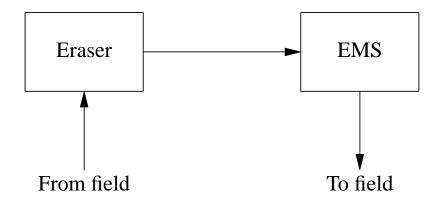
- We can't harden the polling place devices
 - Must assume that they will get infected
 - Objective is to prevent spread
- Vectors
 - EMS, Memory cards, Polling-place networks
- General principle: break dataflow cycles
 - All external machines assumed dirty
 - Avoid connecting dirty machines to clean machines
 - Once a machine is dirty, it's always dirty
 - Build safe(r) replacements for potential vectors
- Need to handle both in and out directions

Election Phases

- Device initialization
- Voting
- Early reporting
- Tabulation
- Auditing

Device Initialization

- Devices need to be programmed before each election
 - Load ballot definitions
 - Zero vote counters
- Generally done with a memory card
 - Program cards with EMS
 - Disseminate cards to field
- Cards get recycled through EMS
- This is an obvious infection vector

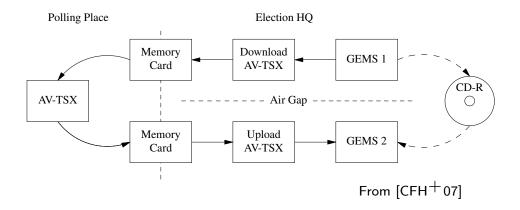

Initialization With Single-Use Memory Cards

- Use a new card for each election
 - Buy fresh cards
 - Initialize with trusted EMS
 - Deploy to field
 - When finished, discard or archive
- Logistical issues
 - Cost: 20-100/card (~10 for CF + adaptor) = 0.10/vote
 - Brittle if cards if are not handled carefully
 - Many systems use custom/legacy cards

Living With Reusable Cards: Initialization Gadgets

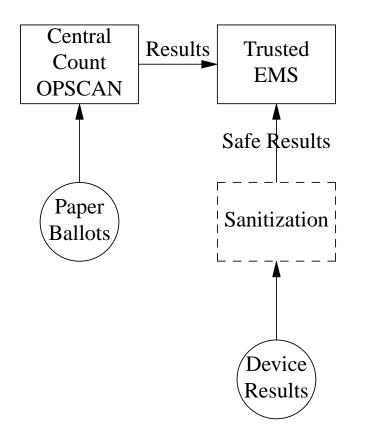
- Instead of an eraser, use a special purpose initialization gadget
 - EMS produces card images on CD
 - Initialization gadget copies CD to card
 - Gadget requires a hardware reset between cards
- Gadgets is not a vector for viral spread (unlike EMS)
 - Even if it has vulnerabilities, the reset clears infection
- No guarantee that malicious cards get cleared
 - Cards *must* be mated to their devices
 - \dots otherwise we get increased infection each cycle
- This is logistically extremely tricky

Why not just erase the cards?


- Recommended by [Cal07a, Cal07b, CFH⁺07]
- Not possible to guarantee erasure
 - "Memory cards" are flash memory + a microcontroller
 - * Some have replaceable firmware
 - * Fake card?
 - What about bugs in the eraser?
- This does not guarantee safety of the EMS

How to build stateless gadgets

- Best case: new hardware
 - Firmware lives in ROM
 - Simple interface with hardware reset
- More likely: single-purpose computers
 - Boot from read-only media
 - We still have to worry about BIOS infection
 - Need to guarantee hard power switch
- What about VMs?
 - Now we're depending on security of the VM [VMw08]


Early Reporting

- Many jurisdictions want election-night results
 - One of the major value propositions of e-voting

- Use a *sacrificial* EMS [CFH⁺07] and wipe after election
- No guarantee of correct results
 - A single infected card can compromise the EMS and all results
- Only safe with single-use cards
 - Requires extraordinarily careful procedures

Tabulation With Sanitization

- Sanitize the results prior to reading into EMS
 - Narrow input envelope
- Tabulate/aggregate the results as normal

Sanitization Options

- Transcribe results tapes
 - Estimated cost: $1-10/tape \rightarrow 0.10/vote$
 - What about latency?
 - * Can this be contracted out?
 - Information density too low to carry shellcode
- OCR?
 - Current tapes cannot be reliably scanned [Fel08a]
 - Maybe add error correction/2-d bar code
- What about vulnerabilities in image processing/OCR code?

Auditing (1)

- Objectives
 - High confidence in accuracy
 - Transparency
 - Preserve vote privacy
- We don't have improvements here
 - Current precinct-based audits are less statistically powerful than we would like
 - * e.g., A 500 precinct election requires 28% auditing to get a 99% confidence level with a 1% margin of victory
- Ballot-based auditing [CHF07] might help for opscan
 - But it's incompatible with current equipment
 - And there are privacy issues
- This is an open problem

Auditing (2)

- DRE with VVPAT
 - Auditing VVPATs is very inconvenient [GB07]
 - Lots of attacks even when a VVPAT is used [Eve07]
 - Some hope for spoiled ballot auditing
 - \ast Not completely worked out yet
 - * Also some attacks [Cra06]
- DRE without VVPAT
 - No practical audit mechanisms
 - Easy for attackers to harmonize electronic records
 - And not clear what to do when they don't match [Fel08b]

Deployment Scenarios (descending order of security)

- Opscan + Electronic ballot markers
 - Scan twice: precinct + central count with harmonization
 - Precinct count plus viral containment
 - Pure central count
- Opscan + DRE for accessibility
 - Do 100% manual recount of VVPAT (DRE as EBM)
- Pure DRE
 - 100% manual recount is impractical
 - Viral containment becomes imperative
 - If no VVPAT recovery seems unlikely

Summary

- Objective is to do the best we can with what we have
- So, how well did we do?
 - Containment of viral spread from polling place devices
 - * But not the other way around!
 - Correct tabulation—even if some devices are compromised
 - Some detection of individual compromised devices
- Residual risks
 - Insider attack still possible
 - Limited ability to recover from DRE compromise
 - Auditing is still more expensive than we would like
- Still plenty more work to do

Questions?

References

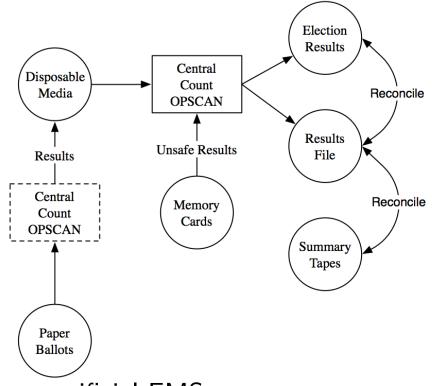
- [Cal07a] California Secretary of State. Withdrawal of Approval of Diebold Election Systems, Inc., GEMS 1.18.24/AccuVote-TSX/AccuVote-OS DRE & Optical Scan Voting System and Conditional Reapproval of Withdrawal of Approval of Diebold Election Systems, Inc., GEMS 1.18.24/AccuVote-TSX/AccuVote-OS DRE & Optical Scan Voting System. Part of [Cal07c], October 2007.
- [Cal07b] California Secretary of State. Withdrawal of Approval of Sequoia Voting Systems, Inc., WinEDS v 3.1.012/AVC Edge/Indsight/OPTECH 400-C DRE & Optical Scan Voting System and Conditional Reapproval of Use of Sequoia Voting Systems, Inc., WinEDS v 3.1.012/AVC Edge/Indsight/OPTECH 400-C DRE & Optical Scan Voting System. Part of [Cal07c], October 2007.
- [Cal07c] California Secretary of State D. Bowen. "Top-To-Bottom" Review of voting machines certified for use in California, 2007. Online: http://sos.ca.gov/elections/elections_vsr. htm.
- [CFH⁺07] Joseph A. Calandrino, Ariel J. Feldman, J. Alex Halderman, David Wagner, Harlan Yu, and William P. Zeller. Source code review of the Diebold voting system. Part of [Cal07c], August 2007.
- [CHF07] Joseph A. Calandrino, J. Alex Halderman, and Edward W. Felten. Machine-assisted election auditing. In Proc. 2007 USENIX/ACCURATE Electronic Voting Technology Workshop (EVT 07), August 2007.

- [Cra06] Ronald E. Crane. Paper Trail Manipulation III. NIST Workshop on Developing an Analysis of Threats to Voting Systems, November 2006. http://vote.nist.gov/threats/ PaperTrailManipulationIII1.pdf.
- [Eve07] Sarah Peterson Everett. The Usability of Electronic Voting Machines and How Votes Can Be Changed Without Detection. PhD thesis, Rice University, 2007.
- [Fel08a] Ed Felten. Evidence of New Jersey Election Discrepancies. http://www. freedom-to-tinker.com/?p=1266, March 2008.
- [Fel08b] Ed Felten. NJ Election Discrepancies Worse Than Previously Thought, Contradict Sequoia's Explanation. http://www.freedom-to-tinker.com/?p=1274, April 2008.
- [GB07] Stephen N. Goggin and Michael D. Byrne. An Examination of the Auditability of Voter Verified Paper Audit Trail (VVPAT) Ballots. In Proc. 2007 USENIX/ACCURATE Electronic Voting Technology Workshop (EVT 07), August 2007.
- [VMw08] VMware. VMware Security Advisory VMSA-2008-0005.1. http://www.vmware.com/ security/advisories/VMSA-2008-0005.html, March 2008.

Bonus Slides

Example: Diebold Virus [CFH+07]

- Voter inserts infected memory card into AV-TSX
- AV-TSX automatically installs new software (Issue 5.2.1)
- Infected AV-TSX writes infected memory card for results
- Infected memory card placed in central office AV-TSX, infecting it
- Infected AV-TSX attacks attached GEMS (running Windows) via network
- Infected GEMS writes infected memory cards for next election
- Infected memory cards inserted into precinct AV-TSXs, infecting them


Network Initialization

- Hart's machines are also initialized via the network
 - Election definitions are on cards
 - Counter resets and cryptographic keys set via network
- Need a stateless network initialization gadget
- eSlate initialization is through the JBC
 - Need to marry eSlates and JBCs to prevent spread through this network

Firmware Updates

- We assume that election officials can verify correctness of firmware distribution
- Conventional procedure is to use a single memory card to update all devices
 - Can't guarantee card contents after first device processed
- Read only cards
 - Needs hardware enforcement
 - Can't trust card firmware
- Use same card management procedures as with initialization
 - Best to bring gadget to the machine
- No guarantees that this fixes compromised machines
 - They can refuse the update

Double-Checking Tabulation

- Tabulate on a sacrificial EMS
- Emit summary results in machine readable format
- Compare results tapes to summary entries
 - This can be done with random sampling