
Verification-Centric Realization of Electronic Vote Counting

Joseph R. Kiniry, Dermot Cochran, and Patrick E. Tierney
School of Computer Science and Informatics

University College Dublin
Belfield, Dublin 4, Ireland

Abstract

Activist computer scientists, including some of the au-
thors of this paper, have been working against the adop-
tion by governments of commercial, proprietary, inse-
cure, poorly designed and implemented voting systems
the world-over. And, while we mainly work to accom-
plish our goals by educating citizens and communicat-
ing with the press, we also must propose solutions to the
problems of trustworthy e-voting. If a computer-based
voting system is to ever be adopted, that system must be
demonstrably of extremely high quality. This paper dis-
cusses a methodology and a set of tools we have used
to implement a vote counting plugin, for an experimen-
tal computer-based voting system using applied formal
methods.

1 Introduction

Regardless of the concerns raised by experts and ac-
tivists, governments are adopting computer-based tech-
nology for e-voting. Researchers and activists concerned
about this situation fall in two overlapping camps: re-
searchers that are struggling against the adoption of poor
process, technology, and implementation in computer-
based voting, and researchers that are proposing new
techniques, theories, technologies to solve some of
the computer-based voting challenges. Our work falls
broadly into both of these camps, but this work in par-
ticular focuses on the latter, as we propose a concrete
software platform and software engineering process for
trustworthy e-voting research.

Computer-based voting, from a mathematical and
computer science point-of-view, is full of interesting
algorithmic challenges—challenges that are sometimes
radically different than those that we understand in
other domains. For example, in many voting systems
the anonymity of the voter must be preserved, but we
must guarantee that the legitimate ballot of the voter is

counted.
If a computer-based technology is used in trustworthy

voting, then the software system must be of extremely
high quality. There are a variety of techniques for con-
structing a very high quality system, e.g., model-based
design, rigorous unit testing, and formal verification, to
name a few. Therefore, usable, practical best-practices in
rigorous software development, especially as applied to
a real, concrete, trustworthy computer-based voting sys-
tem, are very relevant today.

The work described in this article is useful to re-
searchers because it provides a concrete foundation for
future trustworthy voting experimentation. On the other
hand, this research is useful to governments and their
experts because it provides concrete evidence that mod-
ern verification-centric software development with for-
mal methods is achievable without significant cost or
time.

1.1 KOA: A (Remote, Trustworthy) Voting
Architecture for Voting Research

The KOA system, originally developed for and released
by the Dutch government, can be used as both a stan-
dard kiosk-based computer-based voting system as well
as a remote telephone and Internet-based voting system.
It has a general-purpose voting system-independent core
and a “plugin” model for supporting various voting sys-
tems like the list-based system of Holland or Ireland’s
Proportional Representation - Single Transferable Vote
(PR-STV) based system [7].

As mentioned previously, this software system is only
meant to provide a very high-quality, extensible research
platform for computer-based voting — it is not meant
to be used in any governmental elections. To highlight
this extensibility, as well as to provide evidence that
a verification-centric software engineering methodology
results in a software system of very high quality, the Irish
voting system has been formally specified and verified.

2 Verification-Centric
Software Development

The following summary is organized from a process-
centric point-of-view. Each stage in the (mostly linear)
development process is described. After describing the
various aspects of our verification-centric process, we
discuss the Irish voting case study that uses this method-
ology.

2.1 Analysis

The first stage of our process is to perform domain anal-
ysis. The distinct core concepts of the domain that we
are trying to model are identified, usually while inter-
acting as a group, and sometimes with domain experts
present. Considering input from several parties eluci-
dates different perspectives on the system and helps the
group find agreement on which concepts are core, how
to define these concepts, and how these concepts relate
to one another.

We use a language called “Extended Business Object
Notation” (or EBON for short) to describe our system
at this early stage [15]. EBON is a system specifica-
tion language akin to UML that differs in several key
respects [8, 9]. Contrary to UML, EBON has a rela-
tively small number of charts and diagrams, a simple se-
mantics, a graphical and human-readable textual syntax,
and it is easy to maintain consistency between an EBON
specification and a concrete realization of that specifica-
tion.

2.2 Design

After high-level analysis is complete, we move on to
defining medium-level contracts using EBON. During
this design stage, we identify inheritance relationships
between classes, client-supplier relationships between
classes, specify the formal semantics of features and
constraints, and identify interesting scenarios in which
classes interact.

Because we specify classes with invariants and asser-
tions like pre- and postconditions, we are following a
strict design-by-contract approach to program construc-
tion. This methodology is further emphasized below
when we discuss our implementation strategy.

Scenarios, which are similar to UML’s use cases, iden-
tify interesting interactions between classes. Scenarios
are used to concretely identify and create module- and
subsystem-level unit tests during implementation and
testing.

2.3 Specification

Next, our medium-level specifications are made concrete
in a popular specification language called the Java Mod-
eling Language (JML).

The Java Modeling Language. The Java Modeling
Language (JML) is a formal behavioral specification lan-
guage for Java [11, 12]. Effectively, it is a small exten-
sion to the Java programming language that uses annota-
tions embedded in special comments to formally express
properties of a Java class or interface.

JML is used at two levels. At a high level one uses
JML to describe a mathematical model-based specifica-
tion (the “Modeling” of JML) of a software system sys-
tem. JML models are functional, executable, formally
specified and verified constructs like sets, sequences,
bags, maps, etc. At a lower level JML is used to describe
a concrete software architecture with familiar constructs
like invariants, preconditions, postconditions, etc.

To connect these two levels, a specifier describes a
functional or relational refinement relating the high level
model-based specification and the low level, contract-
based, description of the implementation.

We use JML not just because of our local expertise and
involvement in the JML community, but because there
is a large range of powerful tools that understand JML,
some of which we discuss below [1, 13].

For example, we compile JML specification into run-
time checks, we generate (tens of thousands of) unit tests
from JML specifications, and we formally verify that
Java method implementations fulfill their contracts ex-
pressed in JML.

Refinement between EBON and JML. At the present
time we initially refine from EBON specifications to
JML by hand, translating EBON classes into concrete
Java primitive types, pre-provided JML model classes,
new JML models, and concrete Java modules (classes
and interfaces). We maintain the connection between
the specification layers by using a combination of sim-
ple scripts and a development process that emphasizes
manual inspection and specification conformance check-
ing.

During this refinement phase concrete choices of data
representation are made by identifying which EBON
classes should be full-fledged Java types, and how these
Java types should relate to each other. E.g, if two classes
inherit from each other in EBON, then they must inherit
from each other in the JML/Java architecture.

2

2.4 Implementation
After a model-based specification is written in JML and
medium-level EBON contracts are refined into JML con-
tracts on a Java modules, the implementation of the sys-
tem commences. Because we use JML, our specifica-
tions are formal and executable, and our implementation
is testable against, and verifiable with respect to, the JML
specification using tools such as the JML tool suite and
ESC/Java2 [2, 10] (discussed below). This combination
of tools and techniques provides a high level of confi-
dence that the software system implements the require-
ments correctly.

Our implementation strategy is, generally, to imple-
ment the constructors, factories, and initializers first, as
these features let one focus on invariants and the initial
state of objects. Next, we focus on the easiest/smallest
“leaf” methods—methods like basic getters and setters,
overridden base methods from java.lang.Object,
etc. We then move up the chain of methods, aiming to
tackle less complex methods before more complex ones,
implementing methods deeper in the expected call stack
of the application.

It is important to note that we do not need to imple-
ment the whole system, or even a whole class, before
checking the correctness of method implementations.
Firstly, we unit test methods early and independently as
soon as we have constructors and factories implemented.
And secondly, extended static checking is modular, as
each method body is checked independently of any other
method body. Thus, unit tests and ESC/Java2 are run
very frequently, typically after only a few new lines of
code are written.

2.5 Testing
Testing includes manual development of automated tests
at the method, class, component, and subsystem levels,
and automatic generation of tests at the method and con-
structor level.

JML-JUnit. The JML-JUnit tool is used to generate
test cases from the JML specification [3]. This testing
methodology uses method specifications as test oracles
and focuses on unit testing methods and constructors in-
dependently. Test data generators are written for all types
in the system by manually identifying “interesting” data
values in the whole system-under-test.

2.6 Verification
In addition to the testing, the implementation is verified
with respect to the JML specifications. Whereas testing
covers a finite number of data values, verification is used

to prove check the logical correctness of the implemen-
tation.

The Extended Static Checking tool for Java.
ESC/Java2 is a modular static verification tool that
checks for common runtime errors and verifies that a
Java method implementation conforms to its JML spec-
ification. ESC/Java2 translates program source and its
specifications into verification conditions that are passed
to one of several automated and interactive theorem
prover, which in turn either verify that no problems are
found or generate a counterexample indicating a poten-
tial bug. The tool and its built-in provers operate auto-
matically with reasonable performance—most methods
are checked in less than a handful of seconds.

Now that we have reviewed the our verification-centric
process and methodology, a case study focusing on the
Irish voting system is discussed.

3 A Case Study: The Irish Voting System

The Irish voting system represents an interesting case
study for applied formal methods because Ireland’s PR-
STV voting system is non-trivial and, given we are work-
ing in an Irish university, it has local relevance.

3.1 Informal Analysis and Specification

A voting system consists of several interrelated concepts.
There is either one or more positions to be filled by elec-
tion, or an outcome to be decided by referendum. This
case study is concerned with the voting system for Irish
general elections.

In Irish elections, there are a number of seats to be
filled in each constituency. There are almost always more
candidates than seats, and there are a large number of
registered voters. Each voter casts a ballot using the PR-
STV system, and those ballot papers are counted using an
process (an algorithm) that is defined by Irish law. The
voting algorithm is iterative, requiring that a decision is
made at each iteration either to deem a candidate elected,
or to eliminate a candidate with lowest votes received.

These concepts are represented by EBON classes or
Java types in the specification: Ballot, Ballot Box, Can-
didate, Decision, Election Algorithm, Election Details,
and Election Results.

3.2 Formal Specification

Votáil is the Irish word for Voting. The Votáil specifica-
tion is a JML specification for the Irish vote counting
system [4]. This formal specification is derived from

3

the complete functional specification for the Dáil elec-
tion count algorithm [5, 6].

Thirty nine formal assertions are identified in the
Commentary on Count Rules published by the Irish De-
partment of Environment and Local Government. Each
assertion expressed in JML is identified by a Javadoc
comment. In addition, a state machine is specified so
as to link all of the assertions together. Java classes are
specified for the vote counting algorithm, e.g., to rep-
resent the ballot papers and to represent the candidates.
Concrete examples of how the methodology was applied
will clarify this work.

3.3 Detailed Example
We summarize a detailed example of specification of a
Java method in Votáil. Each method is specified with En-
glish by using both an extended version of Javadoc, used
to encode the EBON informal specifications, and JML to
express detailed formal specifications. JML specification
encode not only functional behavior, but also safety and
progress properties of the voting system.

Example of a formal requirement. For an example of
a formal requirement, we look to Section 5, item 2 on
page 18 of the Count Requirements and Commentary on
Count Rules [5] which states:

The distribution of the only or the largest avail-
able surplus is mandatory if it - or, where
there is more than one surplus, the sum of
the surpluses - could possibly do any of the
following:-

Elect a continuing candidate. This condition
is satisfied if the (sum of the) surplus(es) and
the votes of the highest continuing candidate
equals or exceeds the quota;

Save the lowest candidate from exclusion. This
condition is satisfied if the (sum of the) sur-
plus(es), together with the sum of the votes of
the lowest continuing candidate, is equal to or
greater than the number of votes credited to the
second lowest continuing candidate; . . .

The requirement is translated into EBON as follows:

If the number of continuing candidates is equal
to the number of seats remaining unfilled, or
the number of continuing candidates exceeds
by one the number of unfilled seats or there
is one unfilled seat, then do not distribute any
surplus unless it could allow one or more can-
didates with at least one vote to save their de-
posits.

Finally, this requirement is formally specified in
the architecture as JML pre/postconditions for the
distributeSurplus method shown in Figure 1.

Note again how each high-level requirement or con-
straint is specified both in formal natural language (akin
to “legal English”) and in one or more formal assertions.

The Votáil specification is type checked and checked
for consistency using ESC/Java2.

4 Testing the Specification by
Partial Implementation

As is already obvious, we follow a strict design-
by-contract approach to system design and develop-
ment [14]. Thus, we have a fairly strict set of program-
ming style standards and a process that restricts a pro-
grammer’s ability to make changes to the system that are
not tested, verified, and properly specified.

4.1 Implementation Strategy

Incremental extended static checking. ESC/Java2 is
used to ensure that the specifications for each class,
method, and field were strictly adhered to. Recall that
ESC/Java2 is reasoning about all code paths simultane-
ously, modularly, and statically.

4.2 Testing Strategy

As discussed earlier, JML-JUnit automatically generates
an extensive unit test suite.

Many of the “interesting” data values necessary for
testing are identified quickly due to the fact that arrays
are used frequently in the system. Therefore, values like
0, 1 and the length of each array were very useful. Other
values that were used were already specified in the con-
tracts, such as maximum possible rounds of counting.
Some other values identified are the maximum values of
Java primitive types like integers and longs.

For each value added to the test data, the number of
tests increases by between 100 to 1000 tests depending
on the complexity and size method being tested. For
example, by adding one extra data value while testing
the method Ballot.load(), the number of tests in-
creased by over 700 tests.

JML-JUnit has been very useful and provided exten-
sive information about how the system works and per-
forms. The fact that the JML specifications are also
tested adds precision to the testing and helps us identify
problems with both the implementation and the specifi-
cations. By continually adding particular data values, we
aim to have 100% test coverage of the system.

4

/**
* Distribute the surplus votes.

*
* @param candidateWithSurplus the candidate whose surplus is to be distributed.

* @design The highest surplus must be distributed if the total surplus could

* save the deposit of a candidate or change the relative position of

* the two lowest continuing candidates, or would be enough to elect the

* highest continuing candidate.

* @see requirements 14-18, section 5, item 2, page 18

* @see requirement 8, section 4, item 2, page 15 */
/*@ requires getSurplus(candidateWithSurplus) > 0;

@ requires state == COUNTING;
@ requires numberOfContinuingCandidates > remainingSeats;
@ requires (numberOfContinuingCandidates > remainingSeats + 1) ||
@ (sumOfSurpluses + lowestContinuingVote > nextHighestVote) ||
@ (numberOfEqualLowestContinuing > 1);
@ requires remainingSeats > 0;
@ requires (remainingSeats > 1) ||
@ ((highestContinuingVote <
@ sumOfOtherContinuingVotes + sumOfSurpluses) &&
@ (numberOfEqualHighestContinuing == 1));
@ requires getSurplus (candidateWithSurplus) == highestSurplus;
@ requires (sumOfSurpluses + highestContinuingVote >= quota) ||
@ (sumOfSurpluses + lowestContinuingVote > nextHighestVote) ||
@ (numberOfEqualLowestContinuing > 1) ||
@ ((sumOfSurpluses + lowestContinuingVote >= depositSavingThreshold) &&
@ (lowestContinuingVote < depositSavingThreshold));
@ ensures getSurplus (candidateWithSurplus) == 0;
@*/

/** @see requirement 9, section 4, item 3, page 16 */
/*@ ensures countNumber == \old (countNumber) + 1;

@ ensures (state == COUNTING) || (state == FINISHED);
@*/

/** @see requirement 2, section 3, item 3, page 12 */
/*@

@ ensures totalVotes == nonTransferableVotes +
@ (\sum int i; 0 <= i && i < totalCandidates;
@ candidateList[i].getTotalVote());
@*/

protected void distributeSurplus(/*@ non_null @*/ ie.koa.Candidate candidateWithSurplus);

Figure 1: JML Specification of the distributeSurplus method.

4.3 Observations

The main errors in specifications that have been discov-
ered are concentrated on arrays that had no upper bounds
specified for them. Also, we discover that some speci-
fications are too weak to verify the class invariants. To
solve these problems we correct and strengthen the spec-
ifications, and use helper methods (methods that need not
maintain class invariants).

One of the invariants in the system specifies that ran-
dom numbers must be unique e.g. to simulate random
shuffling of ballot papers. This invariant which is part of
both the Candidate and Ballot classes, is the source
of many errors reported by ESC/Java2.

//@ public constraint
//@ \old(lastSetAddedCountNumber) <
//@ lastSetAddedCountNumber;

For example, there is a bug in this constraint assertion,
as it must hold for all methods (pure or otherwise), and
the JML reference manual indicates that constraints gen-
erally are reflexive and transitive, and ‘<’ is not reflexive.
To correct this constraint, the ‘<’ operator is replaced by
‘<=’.

As another example, the addVote() and
removeVote() methods need to have the following
precondition:

//@ requires 0 <= numberOfVotes;

This precondition is added to set a lower bound on the
variable numberOfVotes to ensure that the invariant

//@ public invariant
//@ (\forall int i; 0 < i && i < MAXCOUNT;
//@ 0 <= votesAdded[i]);

is always valid.

5

5 Conclusions

Because computer-based voting (a) is full of interesting
algorithmic and security challenges, (b) is an application
area ripe for the use of formal methods, and (c) is hav-
ing a dramatic broad impact on society today, we have
chosen to work with governments and independently on
a computer-based voting system. We believe that gov-
ernments should use our work as a benchmark against
which to compare other trustworthy voting system. We
offer researchers a well-documented verification-centric
process, a set of techniques and tools for rigorously de-
veloping quality software, and, as a case study and foun-
dation for future research, an open source trustworthy
voting system developed with these tools and techniques.

While integrating the Votáil subsystem into the KOA
system, and prior to/during the new full FLOSS founda-
tion release of KOA, a number of new pieces of English
documentation and functional specification must be writ-
ten. We hope that the availability of such documentation
and specifications will provide additional motivation for
electronic and remote voting researchers and developers
to seriously consider the KOA system as a foundation for
their work. While some practitioners cringe at the “look-
and-feel” of formal specifications, they are necessary for
obtaining full-blown verification. In response to this
challenge, exploratory research is underway to bridge
the gap between detailed specifications and higher-level,
more readable domain specific languages for voting.

We intend for KOA to be the first formally specified
and verified remote and local voting system available in
the world, and furthermore it is available under the GPL
license. It is unclear how to compare such a system to
the current commercial and FLOSS voting systems be-
ing proposed by others, given that none of them, to our
knowledge, even write formal specifications, let alone
perform verification. We hope that this work will inspire
and challenge other groups working on trustworthy vot-
ing.

6 Acknowledgments

This work is being supported by the European Project
Mobius within the IST 6th Framework. This paper re-
flects only the authors’ views and the Community is not
liable for any use that may be made of the information
contained therein.

7 Availability

The KOA system’s home page is found at secure.
ucd.ie/products/opensource/KOA

References
[1] BURDY, L., CHEON, Y., COK, D., ERNST, M., KINIRY, J.,

LEAVENS, G. T., LEINO, K., AND POLL, E. An overview of
JML tools and applications. International Journal on Software
Tools for Technology Transfer (Feb. 2005).

[2] CHALIN, P., KINIRY, J. R., LEAVENS, G. T., AND POLL, E.
Beyond assertions: Advanced specification and verification with
JML and ESC/Java2. In Proceedings of Formal Methods for
Components and Objects (FMCO) 2005 (2006), vol. 4111 of Lec-
ture Notes in Computer Science, Springer–Verlag, pp. 342–363.

[3] CHEON, Y., AND LEAVENS, G. T. A simple and practical ap-
proach to unit testing: The JML and JUnit way. In ECOOP 2002
(June 2002), B. Magnusson, Ed., vol. 2374 of Lecture Notes in
Computer Science, Springer–Verlag, pp. 231–255.

[4] COCHRAN, D. Secure internet voting in Ireland using the Open
Source Kiezen op Afstand (KOA) remote voting system. Master’s
thesis, University College Dublin, March 2006.

[5] DEPARTMENT OF ENVIRONMENT AND LOCAL GOVERNMENT,
COMMISSION ON ELECTRONIC VOTING. Count requirements
and commentary on count rules, 23 June 2000.

[6] DEPARTMENT OF ENVIRONMENT AND LOCAL GOVERNMENT,
COMMISSION ON ELECTRONIC VOTING. Count requirements
and commentary on count rules, update no. 7: Available surpluses
and candidates with zero votes, 14 April 2002.

[7] KINIRY, J., MORKAN, A., COCHRAN, D., FAIRMICHAEL, F.,
CHALIN, P., OOSTDIJK, M., AND HUBBERS, E. The KOA re-
mote voting system: A summary of work to date. In Proceedings
of Trustworthy Global Computing (2006).

[8] KINIRY, J. R. Kind Theory. PhD thesis, Department of Computer
Science, California Institute of Technology, 2002.

[9] KINIRY, J. R. Semantic properties for lightweight specification
in knowledgeable development environments. Tech. Rep. R0420,
NIII, Radboud University Nijmegen, 2004.

[10] KINIRY, J. R., AND COK, D. R. ESC/Java2: Uniting ESC/Java
and JML: Progress and issues in building and using ESC/Java2
and a report on a case study involving the use of ESC/Java2 to
verify portions of an Internet voting tally system. In Construction
and Analysis of Safe, Secure and Interoperable Smart Devices:
International Workshop, CASSIS 2004 (Jan. 2005), vol. 3362 of
Lecture Notes in Computer Science, Springer–Verlag.

[11] LEAVENS, G. T., BAKER, A. L., AND RUBY, C. Behavioral
Specifications of Business and Systems. Kluwer Academic Pub-
lishing, 1999, ch. JML: A Notation for Detailed Design, pp. 175–
188.

[12] LEAVENS, G. T., BAKER, A. L., AND RUBY, C. Preliminary
design of JML: A behavioral interface specification language for
Java. Tech. Rep. 98-06p, Iowa State University, Department of
Computer Science, Aug. 2001.

[13] LEAVENS, G. T., CHEON, Y., CLIFTON, C., RUBY, C., AND
COK, D. R. How the design of JML accommodates both
runtime assertion checking and formal verification. In FMCO
2002 (2003), vol. 2852 of Lecture Notes in Computer Science,
Springer–Verlag, pp. 262–284.

[14] MEYER, B. Applying design by contract. IEEE Computer (Oct.
1992).

[15] WALDÉN, K., AND NERSON, J.-M. Seamless Object-Oriented
Software Architecture - Analysis and Design of Reliable Systems.
Prentice-Hall, Inc., 1995.

6

secure.ucd.ie/products/opensource/KOA
secure.ucd.ie/products/opensource/KOA

