
Studying the Nedap/Groenendaal ES3B voting computer

a computer security perspective

Rop Gonggrijp and Willem-Jan Hengeveld

Stichting "Wij vertrouwen stemcomputers niet"
(“We do not trust voting computers” foundation)

Linnaeusparkweg 98, 1098 EJ Amsterdam, The Netherlands

e-mail: rop@gonggri.jp

Abstract

The Nedap/Groenendaal ES3B voting computer is being used by 90% of the Dutch voters. With
very minor modifications, the same computer is also being used in parts of Germany and France.
In Ireland the use of this machine is currently on hold after significant doubts were raised
concerning its suitability for elections. This paper details how we installed new software in
Nedap ES3B voting computers. It details how anyone, when given brief access to the devices at
any time before the election, can gain complete and virtually undetectable control over the
election results. It also shows how radio emanations from an unmodified ES3B can be received at
several meters distance and used to tell what is being voted. We conclude that the Nedap ES3B is
unsuitable for use in elections, that the Dutch regulatory framework surrounding e-voting
currently insufficiently addresses security, and we pose that not enough thought has been given to
the trust relationships and verifiability issues inherent to DRE class voting machines.

1. Introduction
The Nedap ES3B electronic voting computer is a
system that belongs to the DRE (Direct Recording
Electronic) class of voting computers. As such it
only records the votes in memory. The system
requires ultimate trust, since it produces an official
election outcome that cannot be verified
independently. In this paper we describe the results
of an independent review of the Nedap ES3B
electronic voting computer that was done without
consent of the manufacturer, without access to
source code, and within roughly one month. This
paper details all the steps we needed to take to
create and install our own demonstration software
on the machine, as well as a modified version of its
own software: a version that lies about the election
results. It also details a practical attack that allows
a remote observer to get some information about
what is being voted on an unmodified Nedap ES3B
computer by exploiting compromising radio

emanations from the device. In this paper we show
that the over-all security design of this computer
relies almost solely on the near-universally
deprecated concept of ‘security through
obscurity’ (Schneier, 2002; Mercuri and Neumann,
2003; Kitcat, 2004). Since the problems we found
stem from the very design philosophy, we see no
quick fixes that could make this device sufficiently
secure.

Some good state-sponsored work on voting
systems exists, such as the work done on the
Accubasic interpreter (Wagner et al. 2006). But
given the fact that the technical specifications and
source code to most e-voting systems are not
publicly available, too much of what the world
knows about the technical inner workings of these
closed systems comes from papers such as this one
or the recent work done by Princeton University
researchers (Feldman et al., 2006). It is a sad fact
that public awareness of something as basic as the

1

mailto:rop@gonggri.jp
mailto:rop@gonggri.jp

inner workings of the modern ballot box depends
on reports written by researchers that managed to
somehow get their hands on a well-guarded piece
of secret voting technology so they can take it
apart.

This paper openly discusses vulnerabilities that
affect the particular voting system used by 90% of
the eligible voting population of The Netherlands.
Any vulnerabilities discussed herein affect the very
foundations of our democracy. Some will argue
that by discussing and demonstrating these
vulnerabilities, we are helping the bad guys. Some
might even argue we created a problem that did not
exist before. This is the full disclosure debate, and
although it predates the invention of computers, it
has been a lively part of computer security
community culture for decades. It is the debate
between those that feel vulnerabilities should be
told only to the manufacturer and people that feel
all those affected by a vulnerability have a right to
know so they can decide for themselves how much
trust they place in a given system. In the case of a
voting system, it is obvious that any lack of
security has the potential to directly affect all of
society.

2. About our study

2.1 The equipment we analyzed
This analysis deals with the Nedap/Groenendaal
ES3B voting computer. Together with the ISS
election management software, this computer is
sold by the cooperating companies Nedap (who
mainly do the hardware) and Groenendaal (who
mainly do the software). We started analyzing, on
August 23rd of 2006, an ES3B voting computer, a
reader unit, the mechanical keys needed to operate
the system, two ballot memory modules and the
accompanying ISS MS-Windows software. We got
all this equipment on loan from municipality ‘A’ in
The Netherlands. Because we were supposed to
return the equipment by the end of September, we
kept looking for more computers and accessories.
On September 6th of 2006, we found municipality
‘B’ willing to sell us two ES3B computers, another
reader unit and two more ballot memory modules.
All machines have current software (ES3B 2.12 on
two of the voting computers, ES3B 2.11 on both
reader units and one voting computer). To the best
of our knowledge, these are the exact machines
and software versions that 90% of The Netherlands

votes on, and at least some of our computers were
in use at elections up until the 2006 local election.

2.2 Early preliminary publication because
of time constraints
Because we wanted our results to be available
before the November 22nd of 2006 Dutch
parliamentary elections, we were in a hurry. A
preliminary paper detailing some of these findings
was published in October of 2006, after roughly a
month’s worth of work (Gonggrijp, Hengeveld et
al., 2006). This final paper represents our current
understanding and provides more detail on some of
the issues. However, much more research can and
should be done and there are very definite open
questions. One of the larger gaps in this study is
that we took only an very cursory look at the ISS
(Integraal Stem Systeem) Windows software that is
used to administer the ES3B voting computers. We
initially chose the attacks we implemented based
on the limited time and resources available to us.
Throughout this paper we will detail a few other
attacks that, although we did not implement them,
are practically feasible to the best of our
knowledge.

On our website1 we provide much more detailed
technical background information regarding the
work we did, most of which would be impractical
to include in this paper. This includes system
memory maps, quite a few programs and many
more photos.

2.3 Quick fixes ?
As a result of press-attention given to our
campaign before these specific vulnerabilities
surfaced, the Dutch government announced some
measures to “help increase public trust in an
already sufficiently secure electronic voting
system”. Among other security measures, all ES3B
devices were physically sealed before the
November 2006 election.

Given the proximity of the elections at the time of
our initial work and the obvious severity of some
of the vulnerabilities discussed herein, we decided
to include in our report as much as possible of our
thinking regarding any countermeasures that could
be used to increase security.

2

1 http://wijvertrouwenstemcomputersniet.nl/Nedap-en

http://wijvertrouwenstemcomputersniet.nl/Nedap-en%06
http://wijvertrouwenstemcomputersniet.nl/Nedap-en%06

3. Mechanical keys

3.1 Trust placed in mechanical locks
Dutch election law requires physical keys to be
used as part of an electronic voting system. The
entire legal framework surrounding voting
computers sees these physical mechanical keys as
an integral part of the security of the voting
process. Dutch election law and regulations makes
frequent mention of these keys2. The law regulates
that voting machines are built such that voting
cannot happen without the presence of a key and
the law even stipulates that the chairperson of a
polling station puts the key in an official sealed
envelope after the election is closed. Nedap/
Groenendaal (2006) state in their election
newsletter: “programming unit and key as well as
ballot modules need to be stored in the safe”.

As we can see, both regulators and implementers
of electronic voting systems place trust in
traditional mechanical locks and keys and want
users to adhere to strict procedures regarding key
management.

3.2 Chosen system
The key system chosen by Nedap for both the
locks on the voting computer is the “C&K YL
Series 4 Tumbler Camlock”. The number of key
possibilities for this lock is one, which probably
explains why the same key is used on all 8000
ES3B machines throughout The Netherlands.
Spare keys can be ordered separately online for
under two Euros each by Googling for the product
number: 115140126. We ordered, paid for and
were subsequently supplied with one hundred of
these keys without any
problem. According to the
product datasheet3, typical
applications for this lock
include “copy machines
and office furniture” .
Even if spare keys were
not so readily available:
this is quite literally the
type of lock we can open
with a bent paperclip.

The reader unit has, as
stipulated by law, a lock
with a different key for the
s l o t m a r k e d
‘programming’ (it is

marked “A154”), which is used to erase the ballot
memory modules and to write new candidate lists
to the modules. The key is of the same insecure
type and we expect it to also be the same all over
the country.

3.3 Conclusion
Even when taking into consideration that the law
does not say the physical locks needs to be of
decent quality, we feel this lock is obviously
grossly inadequate given the trust placed in it.
Either this “toy lock” needs to be replaced by a
real lock, or the law needs to be rewritten such that
it doesn’t inspire confidence where none is
warranted.

Note that the issues with the locks and keys on this
system closely resemble the issues found by the
Princeton researchers on the Diebold AccuVote-TS
(Feldman et al., 2006).

4. Understanding the ES3B

4.1 The components
The Nedap ES3B system as it is in use by a typical
Dutch municipality consists of multiple ES3B
voting computers, at least as many ballot memory
modules, a reader unit to be attached to a PC via
the serial port and an installed copy of the ISS

3

2 Voorwaarden voor stemmachines 1997 (dutch voting machine regulations): art 3 lid 2, art 5 lid 2, art 6 lid 4, art 7 lid 2.
 Kiesbesluit: art. J27 lid2, art J29 lid 2, art. K1.

3 http://www.ittcannon.com/media/pdf/catalogs/Leaf/YL_1apr.pdf

Figure 1: Nedap key. Figure 2: Nedap ES3B voting computer.

(Integraal Stem Systeem) software running on a
PC under Microsoft Windows. The municipal
election officials write the candidate lists into the
“ballot memory modules” using the reader unit.
Then these modules are installed into the voting
computers before they are deployed. After the
election is closed, the results are printed by each of
the voting computers. The ballot memory modules,
which now also contain all the votes, are carried to
a central location to be read using the reader unit
so the results can be tabulated.

4.2 First contact
We already knew quite a lot about the Dutch
Nedap computer from the Irish “First Report of the
Commission on Electronic Voting” (2004). As we
took it apart, we confirmed that this was indeed a
system built around a 68000 processor that came
with 256Kbytes of EPROM, 8 Kbytes of
EEPROM, 16 Kbytes of RAM, two 6850-based
serial ports, a printer port, and two screens (e.g. 4
lines of 40 characters on the voter display, 2 lines
of 40 characters on the small election official
console attached to a wire out the back). After
taking the system apart, photographing everything
and dumping the contents of the EPROMs, we had
to put it back together again. First we had to create
a working setup to work with the system in normal
operation. We installed the ISS software on a
notebook PC running Windows XP and we hooked
up the reader unit. After some experimentation we
could configure a new election, parties, candidates
and a polling station. We could then program the
ballot memory module that carries the list of
parties and candidates to the voting computer.
After we inserted it in the voting computer we
could cast votes and we could close the election
and print the results. After removing the module
and placing it in the reader, we could see the ISS
software list the votes.

4.3 Maintenance mode: “GEHEIM”
The ISS software has a ‘maintenance mode’ that is
supposed to be only accessible to members of the
“verkiezingswacht”, the Nedap election-day
helpdesk. You need a password to get the software
in this mode. A quick look in the binary revealed
this password to be “GEHEIM”, the Dutch word
for “SECRET”. The maintenance mode, among
other things, allows the helpdesk to read the binary
contents of a ballot module plugged into the
programming slot of a reader unit. By sniffing the
serial commands between the ISS software and the

reader unit, we figured out how to issue these
commands ourselves and we wrote a program in
TCL that we could use to read the entire contents
of a ballot memory module.4

Since we were now able to produce memory
images in various stages of an election, we could
see what changed between them. This produced an
overview of where and how the ES3B stored
parties and candidates, as well as how the votes
were stored.

4.4 Trace wires, look up parts, read
disassembly, repeat...
We used the IDA pro disassembler to look at the
compiled binary image contained in the system’s
EPROMs5 . Because the hardware is very
straightforward and the software very well-written,
we very quickly able to make some sense of the
binary. The IDA database contained more and
more comments as the hours passed. Most of the
IO was figured out by a combination of visual
inspection of the printed circuit board and looking
at the disassembled code. This was greatly added
by the fact that besides the main components, only
74 series TTL chips were used.

As we progressed, our memory map of the system
grew. IO lines to the various keyboards, the key
switch, the displays and the printer were
documented. We also found more and more about
the internals of the motherboard, such as how a
watchdog line needed to be pulsed to make sure
the board did not keep resetting itself. We also
found the small switch on the motherboard that
switches the computer into service mode, allowing

4

4 We used the same code to read the original contents of the system’s EEPROM chip, since the ‘R’ command allows
reading of the entire memory space of the system.

5 http://www.datarescue.com/

Figure 3: Maintenance mode window.

all of the parameters from the EEPROM (such as
the system ID) to be changed through menus on
the voter display.

We later found that this same menu pops up when
a ballot memory module with the ID
“SERVICE ” (with a space at the end) is in the
computer when it starts up. Such a module can be
made using the maintenance mode described
above.

4.5 The ballot memory module
We took apart a memory module and created a
schematic. The schematic shows how the two flash
chips, which handle the odd and even addresses,

both depend on their own hex inverter glue logic
chip to make sure that a malfunctioning part will
only take out half the memory. All data is written
both in the odd and the even half of the module to
create redundant data storage.

 Looking at the schematic, we see that data bit 5 on
both odd and even flash chip is pulled down to
ground. In addition, bits 5 and 7 have been
swapped. It took us a while to figure out that this
particular bit needs to be set to one in order to
issue the flash erase command on the Intel
P28F010 flash chips used, but that it could stay at
zero for all other flash programming commands.

5

Figure 4: Ballot memory module. Figure 5: Inside of ballot memory module.

Figure 6: Schematic of ballot memory module (result of reverse engineering).

We then noticed that this wire is only connected on
the ‘programming’ slot of the motherboard,
meaning this bit will always be zero in the slot that
is used in the voting machine and in the slot that is
marked ‘read’ in the reader unit. So only the slot
marked ‘programming’ in the reader unit can ever
issue the erase command. The swap between bits 5
and 7 places this bit conveniently out of the way.
Since the bus on the main board is pulled up, the
voting machine itself will always write zeroes and
read ones on bit 7 of every byte in the ballot
memory module.

Candidate lists are stored with the button
coordinates of each candidate as well as a
checksum, and that part of the memory is
subsequently filled with random data. The votes
are stored in a different part of the module in a
location based on the system timer, skipping to the
next one if that location is already taken. Because
the pointer in the random locations wraps around
after it reaches the end of the module in roughly
five minutes, we see no practical attack to get the
sequence of the votes cast.

Four copies of each vote are stored, and each copy
has “hamming code” error correction added, so
storage is extremely redundant. Two of these
copies are stored with the bits inverted, which
makes sure that subsequent flash operations (which
can always turn ‘one’ bits into ‘zero’) cannot
change any votes.

Besides candidate lists and votes, the module also
stores its ID, and the number of times it has been
erased6. It also stores the name and date of the
elections on the module7. After the first vote is
cast, it also stores the ID of the voting machine it is
in.

4.6 The EPROMs
The software for the ES3B is programmed into two
EPROM chips, each holding 128 kBytes. Both
chips are in a socket, which allow for them to be
easily exchanged. The system is built such that one
EPROM holds the odd and one holds the even
memory addresses. Both EPROM chips carry a
small sticker marked with “ES3B”, the software
version number, the word “ODD” or “EVEN” and
a 32-bit checksum written as hexadecimal
characters. This checksum is a simple addition of
all bytes in the EPROM. During most of our tests

and programming, we replaced these EPROMs by
two USB EPROM emulators8 so we could load our
experiment code much faster.

4.7 Running software: “Nedap Chess”
It started as what we thought was a very obvious
statement. We claimed on our website
"Wijvertrouwenstemcomputersniet.nl" that the
Nedap was just another computer, and that it could
just as easily be programmed to play chess, or to
lie about the election results. We didn’t think more
of it until Jan Groenendaal, whose company sells
this computer, placed a document on his website to
talk about our campaign. In it, he says: “[...] And
with regard to the claim that our machine can play
chess : I would l i ke to see tha t
demonstrated” (Groenendaal, 2006).

So quite obviously, one of our first goals now that
we had access to the device was to make it play
chess. Apart from proving our point, programming
it to do this would also confirm that we knew
everything we needed to know about the hardware.
Now that we knew roughly how it worked we used
a gcc 68000 cross-compiler to create a Nedap IO-
library containing functions to initialize the
system, write data to the display, read the
keyboard, and write debug messages to the UART.
Together with newlib, a small clib implementation,
we then managed to compile and run Tom
Kerrigan's Simple Chess Program (TSCP)9. This
was non-trivial only because we had to squeeze out
quite a few tables to make it run using only the
available 16 Kbytes of RAM. Getting the chess
pieces to magnetically attach (the keyboard is

6

6 Both can be reset by changing the module ID in the ISS software after going to the service menu

7 A maximum of two elections can be done at the same time using the ES3B.

8 WICE-M4 emulators made by Leap Electronic

9 http://home.comcast.net/~tckerrigan

Figure 7: Nedap Chess.

http://home.comcast.net/~tckerrigan/%06
http://home.comcast.net/~tckerrigan/%06

mounted at an angle) was also not that easy since
the foil switches are stuck to a plastic base. We
ended up using 2 and 5 Eurocent coins underneath
the paper, taped such that we could press the
underlying foil switches with the edge of the coin.

Nedap Chess knows all the rules and every now
and then it can be surprisingly clever for what it is.
But in all honesty we have to admit that it doesn’t
play all that well.

4.8 Conclusion
Reverse-engineering a vintage system such as the
Nedap ES3B is well within reach of a relatively
modest research effort. The fact that the ES3B has
no PALs or other custom components make it a
very easy system to come to grips with.

5. Modifying the Nedap software

5.1 Introducing “Nedap PowerFraud”
The idea of inserting one’s own program EPROMs
is not original: again the Irish Commission on
Electronic Voting, in their first report (2004: 139)
carefully details the attack. It’s easier here: the
machines tested in Ireland had paper seals that
needed to be broken in order to get access to the
inner box with the electronics, whereas the Dutch
machines never had any seals. Interestingly, the
Dutch Ministry of Interior and Kingdom Relations
has announced they will be sealing all the Nedaps
before the November 2006 elections (MinBZK,
2006). In 2004, in response to parliamentary
questions about the Irish report, the responsible
minister claimed the Irish situation was
fundamentally different so results from the Irish
studies did not apply to machines in The
Netherlands (Haverkamp en Spies, 2004).

When we started to think about demonstration
software that would lie about election results
(called “Nedap PowerFraud”), we kept in mind
that the system should not lie after an election that
was obviously a test of the system. We decided we
needed to store the votes and only decide whether
or not to perform the fraud at the moment the
election was closed, so our program would have as
much information as possible to make that
decision. Since the voting computer itself cannot
issue the flash erase command needed to erase the
ballot memory module, and since the votes are
stored both as-is and with all bits inverted, we saw
no way to change votes already stored in flash.
Hence we needed a mechanism that would store
votes, so that it could write these to the ballot
memory module later, either for the candidates for
which they were intended or for the recipient of the
fraudulent votes. Since the voting machine could

suffer from a loss of power, we would optimally
like store these stolen votes in non-volatile storage.
Since the flash on the ballot module was ruled out
because we could not erase it, we opted for the on-
board EEPROM.

The ES3B’s EEPROM is normally used to store a
few system configuration parameters (such as the
device ID) and some settings (such as whether or
not the keyboard beep is on). But most of the space
is used for two circular buffers holding the event
log and the error log of the device. In these logs,
the device keeps the system time and a number for
each event or error that occurred. Since system
time always starts at zero, these times are not as
helpful as one might think, they only represent an
offset relative to the last processor reset. We
updated the circular buffer routines that deal with
the error log to shorten the number of entries,
making space for our stolen votes.

Most Dutch ballots have a baffling number of
candidates. But the vast majority of votes go to a
number-one candidate on some party’s list. An
International election assessment mission that
visited The Netherlands in November 2006 has
detailed the exact workings of Dutch politics and
elections in great detail in their report (OSCE -
Office for Democratic Institutions and Human
Rights, 2007). Our new table didn’t have space for
all possible candidates, but it did have room for all
possible parties. So we decided to steal votes only
from the number one on each party’s list. Since the
most voters pick the first candidate on a given
party’s list, this is quite acceptable. We also store
the ID of the current ballot memory module and
the date of the election, so we know whether to
keep or delete any stored stolen votes when the
device wakes up.

We then built “hooks” into the regular ES3B code.
Every time a voter casts a ballot, our code
generates a random number between 0 and 100. If
the number is below the programmed percentage
of votes we want to steal, that vote is not written to
the ballot module but one is added to the
corresponding 16-bit number in EEPROM. At the
end of the election, our software determines
whether this was a real election or not (see section
5.2). It then proceeds to, either honestly or
fraudulently, quickly casts these ballots at random
locations in the ballot module, just like the real
software does.

To determine the recipient of the stolen votes,
PowerFraud does a case-insensitive match of all
party names with a programmed string. If it finds a
match, that party becomes the recipient of the
stolen votes. This allows for the fraudulent
EPROMs to be inserted long before the candidate

7

lists are known, and it allows a fraudulent ROM to
perform the same fraud year after year, even
though the relative position of the party on the
keyboard changes. It is significant to note that the
Dutch Ministry of Interior and Kingdom Relations
assumes this to be impossible. A statement from
October 2006 says: “Fraud during the production
of voting machines does not make sense because
the lists of candidates are not known
then” (MinBZK, 2006).

5.2 How do you know software is lying?
Parallel testing
Parallel testing of voting computers is based on the
notion that although the voting computer is a black
box, one can test its functionality by presenting a
situation that is indistinguishable from a polling
station at the inputs of the computer while keeping
a careful count of all the votes that go in. To
increase confidence in DRE-class voting
computers, officials would randomly select voting
computers to be taken from the system on the
morning of election day, and replace them with
other machines. These randomly selected machines
would then be used for such a test election. At the
end of the day, the totals should match with the
votes that were input.

There has been some work done in the US
regarding the number of machines that would need
to be tested to achieve a certain level of certainty
that the election was honest (Mebane, 2006). First
a desired level of confidence would need to be
defined, and then the calculations would need to be
done to obtain the number of machines that would
need to be tested for that level of confidence.
Subsequently, one would need to define what
would happen if discrepancies were detected. The
“Oh my God, it’s dishonest” at the very end of a
busy election day needs to be translated into
something more legally binding that allows
election officials to call for a new election or keep
the results from becoming accepted until more is
known. The exact procedure may need to be
codified as part of the election regulations.

Assuming these hurdles are taken and a system of
parallel testing is in place, the author of the vote-
stealing software can perform quite a few tests that
would discriminate between a real election and
anything but the most rigorous and disciplined
parallel tests. The Brennan Center for Justice at
New York University very recently published “The
machinery of democracy: protecting elections in an
electronic world”, which is by far the most detailed
work to date to deal with procedures for parallel

testing of election systems. It isn’t all that
optimistic about the method:“However, even under
the best of circumstances, Parallel Testing is an
imperfect security measure. The testing creates an
“arms race” between the testers and the attacker,
but the race is one in which the testers can never be
certain that they have prevailed” (Brennan Center
of Justice, 2006: 88).

The current revision of PowerFraud has a user-
selectable minimum number of votes that need to
be cast for the election to be seen as real. Although
not a true parallel testing counter-measure, it also
allows the setting of a minimum number of votes
to steal from any given party. This makes sure it
never inadvertently steals a party’s only vote in a
given polling station. If it did, it would alert at
least one voter that something was amiss.

Next versions of PowerFraud will allow the setting
of the minimum time an election should last and
we might also incorporate some statistics on the
random distribution of the time between votes and
the time between the pressing of the vote-release
button, the candidate button and the “cast ballot”
button. At that point we think parallel testing
becomes a job for a robot that presses the buttons
because the key intervals of utterly bored human
testers are very likely to exhibit statistically
improbable timing similarities. A future version of
PowerFraud will also offer a “magic button”
function. What this does is allow any voter during
the day to press a previously-configured inactive
button on the voter keypad, followed by the keys
needed for an actual vote. The device will then
store the party that received that vote as the
recipient for the stolen votes, and it will not
perform any vote stealing unless the magic button
was pressed. This would be impossible to catch
using parallel testing. And although post-election
examination of the EPROMs would show that a
fraud could have occurred, it would be hard10 to
detect whether it actually did and which party
received the stolen votes. This scenario, although
impractical in national elections, would be very
practical in a town of, say, ten to fifteen thousand
inhabitants where the attackers could send one
voter to each of around ten polling stations to press
the magic button before they cast their vote.

Verifying the contents of the EPROMs directly
If one were to take the EPROMs from an ES3B
and put them in an EPROM reader coupled to a
computer, one could compare the contents to a
known to be good image of the software to verify
that the software has not been tampered with. One
could also compare generated checksums, as long

8

10 Since the compromising data would have been erased from the EEPROM, it would involve reading past contents of the
EEPROM. Not impossible, but we expect this to be costly and time-consuming.

as they are not the checksums that Nedap uses.
They are simply a 32-bit hex representation of an
addition of all the bytes in the EPROM. Only
cryptographic hash algorithms such as SHA-256
generate a checksum that is secure against an
attacker trying to create a fraudulent EPROM with
the same checksum.

The ES3B also allows its memory contents to be
read through the serial port. However if this were
ever used to test the authenticity of the EPROM, it
would be easy to make the fraudulent software lie
about the contents of certain memory location
through the serial port. Besides: the serial port is
only available on the mainboard, so the inner box
would need to be opened anyway. In that case one
might as well test the actual EPROM contents. We
can envision a small hand-portable device that
would clip over the EPROMs while they are still in
their sockets, quickly testing their contents using a
small built-in micro-controller. Of course there is
then the question of whether or not that device and
the people handling it are trustworthy.

By verifying EPROM contents of random
machines before the election as well as those of
random and any suspect machines after the
election, it can be made more difficult for an
attacker to go undetected. Note that it also depends
on the metrics of the election (e.g. local, national)
how large the samples should be for a given
chance of detecting significant fraud.

5.3 Making sure attackers cannot install
software
Given that we have no easy way to tell whether
manipulation software was installed, we will need
to explore ways to make sure it does not get
installed in the first place. Please note that section
8 explains why fixes along these lines may actually
decrease security depending on your viewpoint.

Fix the ES3B so it does not run untrusted
software
We do not believe the “anyone can insert their own
EPROMs vulnerability” can be fixed in the current
design. In order to fix this, one would ideally want
a system in which a program already in the
processor domain can use the presence of
cryptographic signatures to evaluate whether or not
it wants to execute/install a newer program. The
Nedap ES3B is in essence a very expensive 1980’s
home computer that, unlike modern devices,
cannot perform such functions on the processor/
flash chip. One could envision a system with a

boot-ROM soldered to the board which checks a
cryptographic signature on code in socketed
EPROM. But given how easy it is to desolder large
DIL-chips, this wouldn’t add the same level of
protection. Also, note that an EPROM could even
be emulated using a microcontroller that can be
fitted in an EPROM housing. Such an ‘EPROM’
could present the honest contents at boot, and
dishonest contents further on.

Since publication of our preliminary paper, the
EPROMs have been replaced by PROMs in the
Nedap machines. However, these PROMs are not
soldered to the board. Given that no attacker would
reprogram EPROMs in the field, this adds no
protection other than sounding reassuring.

Upgrading physical security
One line of remedies would make sure an attacker
could not get surreptitious access to the devices.
This can be done by upgrading the physical
security of the storage locations and transport
logistics. Since this attack against the outcome of
the election hinges on physical access to the
devices, it would seem prudent to deny access to
unauthorized individuals. Given that at least some
of these computers are currently stored under
rather abysmal security conditions11 , this would
add a great deal of security against outside
attackers. However it would not significantly
increase security against attacks performed by
insiders. In situations where human guards are
employed, the added security would even increase
the number of insiders that have convenient round
the clock access to the computers.

Tamper-evident seals
The Dutch government has made Nedap replace all
the EPROMs by PROMs and put tamper-evident
seals on each machine. A government
commissioned independent study recently revealed
that the seals on the Dutch ES3B machines can be
circumvented (Hermans, Van Twist, 2007: 46).

Also note that applying seals assumes the person
or persons applying them would have to be
ultimately trusted because they are in a perfect
position to swap the EPROMs first. Given the wide
range of people that would need to properly
authenticate and inspect these seals under non-
ideal conditions, the value of these seals in adding
more than token security can easily be over-
estimated.

9

11 As documented in the “EénVandaag” October 4th 2006 news television broadcast. It documents how the 400 or so
Nedap ES3B voting computers serving the city of Rotterdam are stored in an old building on a somewhat shady
industrial lot with no alarm or other security measures.

5.4 Conclusion
The parallel testing method at best presents the
testers with an arms race and the other methods
appear to exclusively address the threat posed by
outsiders. We claim that it is highly questionable
whether a sufficient level of over-all security can
be accomplished by employing any combination of
counter-strategies currently being discussed. We
cannot think of other measures that would mitigate
this problem.

6. Compromising emanations

6.1 Spurious emissions
Many electronic devices transmit radio signals,
even when they are not intended to do so. In the
case of computers, such transmissions often leak
information about what the computer is doing. The
military and intelligence communities have known
this for many years and are actively exploiting this
against adversaries as well as shielding their own
equipment. We decided to take a look at the radio
spectrum emanating from our machines to see of
we could determine what they were doing by
looking at the transmissions. For this purpose we
used an AVCOM PSA 65A spectrum analyzer, as
well a number of handheld and tabletop receivers
and various antennae.

The Dutch state security service AIVD has been
asked by the Dutch government to independently
verify the RF-related claims made in a preliminary
version of this paper. They have been able to verify
the problems in a report (AIVD, 2006) that was
made public as a result of a Freedom Of
Information request.

Please note that although it is probably legal in The
Netherlands to look at the emissions from one’s
own Nedap, it is probably illegal to interpret
signals from one that is in use at an election.

6.2 Special characters and the display
refresh frequency
After finding a number of ‘empty’ signals that do
not appear to contain much information, we found
one that could be received at many frequencies.
Among many other frequencies, it appears at
around 36 MHz, 38MHz, 58.3 MHz and 150 MHz.
In both AM and FM, the main energy is at the
refresh frequency of the display. The signal is a
loud buzz, usually humming at roughly 72 Hz

The LCD voter display on the Nedap ES3B
consists of 4 lines of 40 characters each. Each two

lines are driven by a separate Hitachi HD44780
controller. The computer uses a parallel bus to tell
the display what to display and where to display it.
The controller has its own built-in character set
which contains the standard ASCII characters plus,
depending on the model, a choice of either
Japanese or European extended characters. It can
also display up to eight different characters that are
not in this character set. To use this feature, the
computer must first issue a special command
sequence to tell the display controller what the
character looks like. For some reason (we suspect
cost) Nedap decided to use the Japanese version of
the display controller. But they have written
software to display any accented or other non-
ASCII characters in party and candidate names by
first defining special characters for them.

It would appear that if a special character is
displayed, the controller has to do extra work every
time the display is updated. This causes the display
refresh frequency to drop from 72Hz to 58 Hz.
The difference between these two frequencies can
be determined by ear. In The Netherlands, the
name of the major political party CDA is written in
full on the display when the voter chooses any
CDA candidate: “Christen Democratisch Appèl”.
So using only a simple scanner or short-wave
receiver, we can tell whether or not a voter is
currently voting for a party or candidate with an
accent in the name. In Germany for instance this
would yield a “Grünen detector”, although the
much more frequent use of non-ASCII characters
in German names would diminish the selectivity
somewhat.

We have observed large signal strength variations
between the three devices we have tested this on.
In all cases we could receive the signal at a few
meters. In one case we could receive the signal up
to 25 meters away. Note that a signal like this can
be filtered from noise long after the unaided
human ear stopped hearing it, so range can be
significantly extended using digital signal
processing. When experimenting with software to
detect these two tones, we noticed that filtering for
216 Hz and 232 Hz respectively, each with a
bandwidth of 10 Hz, seems to work better than
filtering at the base frequencies of the audible
tones. We also noticed energy present at 3845 Hz
when the vote-button is pressed.

Figure 8 shows a “spectrum waterfall display” of
the received audio signal12. The difference between
a candidate from the CDA (middle) and any other
party (top and bottom) is clearly visible. To fix
this, the display update frequency always needs to
be the same. In a preliminary version of this paper

10

12 Made with SpectrumLab software

we wrote that always displaying at least one
special character would probably eliminate this
attack. It was since discovered that varying
numbers of special characters can be discerned
(AIVD, 2006), so that a fixed number of special
characters must be displayed. To make sure this is
not visually disturbing this could for instance be a
space that is actually defined as an empty special
character.

6.3 Fingerprinting display data bursts
On the same frequencies as the above refresh
signal, we can also see a short data burst as the
computer writes data to the display. Through the
audio path of a scanner, we can make out clear
differences for different candidates. Since this
signal is generated by a parallel bus, it will likely
be hard to decode precisely what is being written
the display, especially when one has only a
narrow-band audio signal like we did for our
experiments. However: we can easily profile all
the bursts for the various candidates and simply
match the received signal to all known candidates.

The four spectrum images in figure 9 show this
burst, roughly 200ms in length. The upper two
images were received when selecting the same

candidate, the lower two were made after selecting
different candidates.

6.4 Listening to the display itself
We did a test while we had our own software
display three different screens with a few seconds
between them. First we showed the left half of the
screen filled with “@” characters, then we showed
the right half filled with “.” characters and then we
showed an empty screen. The spectrum plot shown
in figure 10 shows differences, meaning something
can be said about the static contents of the display
without listening to the communication between
the computer and the display, which happens only
briefly. We expect more receiver bandwidth and
more processing power would be needed before
one can profile display contents in this way.

6.5 Determining impact - defining what
constitutes a valid attack
For an attack against ballot secrecy to be practical,
we deemed it would have to be significantly easier
to perform than obvious attacks such as mounting
a small hidden camera that would allow an attacker
to see the display of the machine. It is easy to see
that much more study is needed: we have only
tested the radio emissions on the three different

11

Figure 8: Display frequency changes when special characters are displayed. On the y-axis is time as candidate-buttons
with and without special characters are pressed. On the x-axis is energy at frequencies from 130 Hz (left) to 260 Hz.

Nedap computers that we had access to, and it may
well be that many computers in the field radiate
much more or less than any of the machines we
looked at.

6.6 Conclusions
The first attack, the “CDA detector”, is practical by
any definition since it can be performed by ear and
takes only a small and cheap scanner or short-wave
receiver. Given the amount of media-attention this
aspect of the problem received, it needed to be
fixed before the November 2006 election. Instead
of fixing the software or hardware, the Dutch
government opted to use special characters on the
paper keyboard overlay but not on the displayed
names.

Fingerprinting display data bursts takes some
initial work to create software, but appears still
very feasible and cheap to perform once the
software exists. Given that this attack would yield
the exact candidate and party that is being voted
for and that countermeasures are fairly
straightforward to implement, we feel it would
need to be protected against also.

Listening to the display itself would appear to need
both a much larger bandwidth to be received and
much more digital signal processing. And even
then, the range would likely be more limited than it
is for the two previous attacks. Within the limits of
this preliminary study, we tend to scale this attack
below our threshold for a valid attack, although
further research as well as the upcoming

12

Figure 10: noise from the display itself, alternating between two different screens (x-axis: time, y-axis: spectrum).
The changeover happens every second, and the display above shows approx. 8 seconds.

Figure 9: Display data bursts, each showing approx. 2 kHz of spectrum (0 Hz at the bottom) and measuring roughly 240 ms
from left to right. The top two show two different instances of the same candidate being selected, the bottom two bursts show
two different candidates being selected.

availability of cheap and portable software defined
radio equipment may change this.

It is remarkable nobody appears to have ever tested
for any spurious emissions, or thought to include
specifications regarding compromising emanations
in the legal requirements. It would seem obvious
that new versions of regulations regarding voting
computers specify a level of shielding that prevents
any such problems.

7. Other practical attacks

7.1 The screen and keyboard man-in-the-
middle attack
The voter display on the device consists of 4 lines
of 40 characters, controlled by a Hitachi HD44780
controller that is attached with an 8 bit wide bus
and some control lines. The keyboard is a simple
passive matrix of foil contact keys that is scanned
by the computer. One can envision a small board
that would be placed inside the (rather spacious)
keyboard/screen housing and that would terminate
the cables from the motherboard. It would then
have new cables to plug into the existing keyboard
and screen circuit boards. If this board would have,
say, a commercial off-the-shelf FPGA with built-in
microprocessor, it could pretend to be a keyboard
and a screen towards the computer and pretend to
be a computer towards the display and the
keyboard. Since our little board learns the names
of parties and candidates the first time a voter
votes for a given candidate, it would have all the
necessary information to press the wrong button
towards the computer and still present the voter
with a readout that shows the chosen candidate. It
could do the same level of parallel testing
countermeasures that PowerFraud does except it
would have a real time clock to aid in detection of
parallel testing.

Since none of this would happen inside the main
computer housing, placing a seal on this housing
would not help against this attack. The sheer
number of small torque screws on the keyboard/
screen make this manipulation harder, but they also
make inspection to check for this attack harder.
We’ve never really played with FPGAs much, so if
there are any doubts raised over the practicality of
this attack, we might have a go at it.

7.2 Placing a micro-controller in the ballot
memory module
A ballot module consists on a simple circuit board
with a few holes that allow the blue plastic shell to
be snapped on. One could quite easily create a
circuit board that holds a processor, say an Atmel
AVR family micro-controller, quite possibly

equipped with some external (modern) flash or
battery backed-up RAM. This module would store
everything honestly until the vote is closed, which
it knows because a byte of 0x00 is written in one
particular location on the module. At that point it
would decide whether or not this was a real
election and act accordingly, after which it would
allow its votes to be read by the computer for
printout. This module could again have a Real
Time Clock, allowing for more sophisticated
parallel testing detection than would be possible
inside the computer itself.

As a counter-measure, Nedap has suggested (or
even produced?) clear plastic shells for the ballot
memory modules. Given that most users would not
be able to tell one circuit board from another and
that a whole computer can be hidden underneath a
chip, this adds little protection.

7.3 The ballot manipulator (not a real
attack in The Netherlands)
One could easily create a small circuit board with a
battery and a micro-controller with sufficient GPIO
pins (such as the Atmel ATmega 128) that has a
male DIN41612AC connector on it. A program in
the micro-controller could manipulate at will the
contents of any ballot module that was plugged
into it.

Using this circuit, anyone with access to a module
as it is being transported to the reader unit and the
computer running ISS can change the votes on the
module. We realize this is not a true attack in The
Netherlands, because it would not alter the data on
the print-out, which has already been made at that
point. But in other countries, such as Ireland,
where the counting of the votes on the module was
supposed to happen at some location other than the
polling station this attack may very well be of
practical value. The First Report by the
Commission on Electronic Voting (2004:140) also
details this attack.

8. On security and elections

8.1 Security through Obscurity
While studying the Diebold source code that was
inadvertently placed on the web, Kohno et al.
(2004) discovered many vulnerabilities, some of
which they claim could have been found without
access to the source. Through our research we have
proven, unsurprisingly, that one indeed does not
need access to source code, documentation or
insider knowledge to understand and manipulate a
system once one can study it for a while.

13

Cryptography is the science that deals with secret
codes (Schneier, 2004). And in cryptography,
Kerckhoffs' principle was stated by Auguste
Kerckhoffs in the 19th century: a cryptographic
system should be secure even if everything about
the system, except the key, is public knowledge
(Kerckhoffs, 1883). Renowned security expert
Bruce Schneier takes Kerckhoffs’ principle to have
meaning outside of cryptographic systems when he
says: “Kerckhoffs' principle applies beyond codes
and ciphers to security systems in general: every
secret creates a potential failure point. Secrecy, in
other words, is a prime cause of brittleness—and
therefore something likely to make a system prone
to catastrophic collapse. Conversely, openness
provides ductility” (Mann, 2002: 4). The more
complex and unchangeable the secrets are that you
need to keep, to more prone your system is to
catastrophic failure. The cheaper and easier it is to
change the secrets in a system, the more robust it
becomes.

In contrast Jan Groenendaal (2006), of Nedap/
Groenendaal, says: “However Open Source or
publishing the source code provides opportunities
for dubious characters and unfortunately election
and election fraud are both as old as democracy
itself. The fact that only few people have this
knowledge can also be interpreted in a positive
light. If something goes wrong one quickly knows
where to look, and this mere fact is a deterrent for
willful manipulation (inside attack)”. This
reasoning is a clear example of a controversial
design practice often dubbed Security through
Obscurity: the inner workings of his system need
to remain secret to protect our elections from
“dubious characters”. Many of the poor design
choices that underlie the ES3B’s security problems
can be excused against the backdrop of the 1980s,
when fewer options were available to system
designers and many of the present-day security
concerns had not yet surfaced. But given that
Dutch democracy now completely depends on his
technology, the fact that Groenendaal’s viewpoints
on security are so far removed from the general
consensus in the computer security community is
cause for concern.

8.2 Security of what against whom?
In the security community it is not considered very
productive to make statements about the security
of any system without at least defining what it is
we’re securing, and what it is we’re securing it
against. In the case of voting systems, the general
concept of security is often mistakenly taken to
mean “the system-wide level of over-all security
against any attack, mounted by outsiders, that
affects the election results”. There are many more
possible interpretations of security when it comes

to elections. The above definition for instance
ignores the risk posed by an attack by
knowledgeable insiders, or that of an attack that
involves only the secrecy of the ballot.

We would argue that in the case of voting systems,
the only meaningful security against insiders is to
have a voting mechanism of which all the details
are published, and that a substantial portion of the
general population is capable of comprehending
in-depth. We pose that any other solution creates a
situation in which the population depends in
essence on reassuring statements that cannot be
verified independently. In a country where e-voting
has replaced traditional paper ballots, the level of
confidence with which the population views these
statements is then by definition the upper bound
for the trust the population can have regarding the
outcome of any election, and thus in effect a
measure for the legitimacy of government.
Continued reliance on DRE-class systems will
prove increasingly problematic given (among other
things) the fluid state of computer security, the
increasingly widespread awareness of issues with
voting technology and the all too often warranted
general distrust of reassuring statements regarding
the security of systems whose inner workings are
secret.

8.3 More security, less auditability
By adding extra security measures against the
over-emphasized threat posed by outsiders, one
can actually increase the risk posed by insiders. It
is not hard to imagine a voting system that would
be much more “secure” by today’s standards as
they would apply to equipment in other fields.
Today’s mobile phones for instance often combine
a processor, execution memory and tamper-
resistant key storage to make sure only the
manufacturer (who has the cryptographic signing
keys) can update the software. These mechanisms
can sometimes still be circumvented, but at least
they offer a layer of security that is completely
absent in the Nedap ES3B. But by adding
“security” in this way, the device could also resist
any attempts by independent inspectors to see what
code it is actually running. So what is a desired
feature from the viewpoint of a manufacturer - an
insider - trying to protect a mobile phone from
unauthorized manipulation may thus be a highly
undesirable feature from the viewpoint of the
concerned voter, who is by definition an outsider.

14

9. Over-all conclusions

9.1 ES3B insufficiently secure
Security by obscurity is not suitable as a primary
security mechanism. That an older DRE system
such as this one can be made to run a different
program is unsurprising. The extent and impact of
the vulnerabilities presented in this paper in our
view precludes using the ES3B in any election.
Unless anyone comes up with an effective short-
term remedy that we have not considered, we
believe the short-term remedies available provide
insufficient relief.

Let us for a moment assume that the voting public
will continue to have trust in DRE-class systems,
and let us ignore the problematic lack of
transparency and the accompanying threats posed
by insiders. Even in such a scenario the mere lack
of security features offered by modern processors
(such as tamper-resistant key storage and a source
of cryptographically strong random) mean the
existing Nedap ES3B machines, no matter what
software runs on them, cannot ever be made to
meet any responsible security criteria for such a
system.

9.2 Dutch e-voting requirements
insufficient
It is important to understand that the ES3B meets
all Dutch regulatory requirements. These
requirements, although very detailed on topics that
deal with availability, say absolutely nothing about
security against any kind of attack (Staatscourant,
1997). Without exaggeration, even a brain-
numbingly insecure system would meet Dutch
legal requirements, provided the buttons are of a
specific size, the computer can withstand moist
conditions without presenting a shock hazard and
no votes are lost when power fails. Across our
research, we noted remarkable similarities to the
present situation in the United States. Feldman et
al. (2006: 19) write: “Despite their very serious
security flaws, the Diebold DREs were certified
according to federal and state standards. This
demonstrates that the certification processes are
deficient. The Federal Election Commission’s 2002
Voting System Standards say relatively little about
security, seeming to focus instead on the machine’s
reliability if used non-maliciously” (Feldman et al.,
2006: 19).

When a building that was built to meet all
regulatory building requirements comes tumbling
down without cause, it probably means something

was wrong with the requirements. We pose that the
same is true here: the fact that the ES3B is proven
to be insufficiently secure to the degree shown in
this paper while still meeting all applicable legal
requirements implies that the legal requirements
are grossly insufficient. If we decide we want to
continue voting on computers, the legal
requirements must at a minimum address basic
computer security and stipulate that election
results can be independently verified. Existing
voting computers will need to be modified to the
new standards or to be replaced if they cannot meet
these new requirements.

9.3 DRE voting not given enough thought
DRE systems make us dependent on a single vote
count done in software. People cannot see
electrons, so they cannot observe a vote count
when a DRE voting system is used. Insufficient
thought has been given to the large number of
implicit trust relationships that come with DRE
systems, such as the near infinite trust placed in the
entities building and certifying the systems. In
addition, one has to consider the possibility that
outside attackers have surreptitious access to one
or more devices. Insider attacks are generally
thought to be more prevalent, and they are harder
to prevent and/or detect. The latter is especially
true in systems of which only insiders are allowed
to know how they work.

We can find no evidence that any of the various
trust relationships in the current DRE voting
systems in use in The Netherlands have been
sufficiently explored. In fact, we cannot find any
documents stating that they were considered at all.
We predict that very few, if any, cases would
warrant the choice for a DRE system after such an
analysis was done. Even if a DRE system was built
according to today’s security requirements, it
would still require almost infinite trust in a very
limited number of individuals and organizations,
which we feel is fundamentally at odds with the
notion of a publicly verifiable election.

The Netherlands has a very simple electoral system
compared to many other countries13. The fact that
The Netherlands almost exclusively makes use of
e-voting systems can be excused only because the
government introduced the computers very early
on, at a time when security and trust considerations
had not yet surfaced.

15

13 The Dutch cast only a single one-candidate vote per election, although sometimes two or three elections happen at the
same time. There are many candidates in some elections though.

Acknowledgments
We gratefully acknowledge the contributions to the
Nedap hack and security analysis by our partners
Andreas Bogk, Dirk Engling, Felix Lindner,
Hannes Mehnert, Frank Rieger, Pascal Scheffers,
and Barry Wels. We also thank all the people of
CryptoPhone and the Chaos Computer Club
Berlin, Job de Haas, Peter Knoppers, Anne-Marie
Oostveen, Marcel van der Peijl, Carla van
Rijsbergen, Sander ‘t Sas, Ferry Stoop, and the
brave heroes at the municipalities that lent and sold
us the Nedaps.

References
AIVD (2006) Aanvallen op het stemgeheim via

elektromagnetische effecten. (Attacks on ballot
secrecy through electromagnetic effects)
Algemene Inlichtingen- en Veiligheidsdienst,
Directie Beveiliging, Nationaal Bureau voor
Verbindingsbeveiliging, (comparable to US-
NSA). Available at: http://
www.wijvertrouwenstemcomputersniet.nl/
images/c/c0/20061027_aivd_rapport.pdf

Brennan Center of Justice (2006) The machinery of
democracy: Protecting elections in an
electronic world. Brennan Center Task Force on
Voting System Security. Available at:
http://www.brennancenter.org/programs/downloads/
Full20Report.pdf

Commission on Electronic Voting (2004) First
Report of the Commission on Electronic Voting
on the Secrecy, Accuracy and Testing of the
Chosen Electronic Voting System. Available at:
http://www.cev.ie/htm/report/download_first.htm

Feldman, J. A. Halderman, E. W. Felten (2006).
Security Analysis of the Diebold AccuVote-TS
Voting Machine. Paper presented at Electronic
Voting Technology ’07. Available at:
http://itpolicy.princeton.edu/voting/ts-paper.pdf

Gonggrijp, Hengeveld et al. (2006)
Nedap/Groenendaal ES3B voting computer, a
security analysis. Available at http://
www.wijvertrouwenstemcomputersniet.nl/other/es3b-
en.pdf

Groenendaal, J. (2006) Wij vertrouwen
stemcomputers niet. Nedap-Groenendaal
Bureau voor Verkiezingen. Available at:
http://www.election.nl/bizx_html/ISS/documents/
WIJVERTROUWENSTEMCOMPUTERSNIET.pdf

Haverkamp en Spies (2004), CDA, Kamervragen
(official questions in parliament) 1 april 2004,
KVR20183 / 2030411850 / 0304tkkvr1453 /
ISSN 0921 - 7398

Hermans, L.M.L.H.A., M.J.W. van Twist (2007)
Stemmachines, een verweesd dossier. (Voting

machines, an orphaned dossier)
Available at: http://www.minbzk.nl/aspx/
download.aspx?file=/contents/pages/86914/
rapportstemmachineseenverweesddossier.pdf

Kerckhoffs, A. (1883) La Cryptographie Militaire.
Journal des Sciences Militaires. 5-38. Available
at: http://www.petitcolas.net/fabien/kerckhoffs/
la_cryptographie_militaire_i.htm

Kitcat, J. (2004) Source Availability and E-Voting:
An Advocate Recants. Communications of the
ACM. October 2004, Vol. 47, No. 10. Pp. 65-67.

Kohno, T., Stubblefield, A., Rubin, A.D, Wallach,
D.S. (2004) Analysis of an Electronic Voting
System. Available at: http://avirubin.com/vote.pdf

Mebane, W.R. (2006) Detecting Attempted
Election Theft: Vote Counts, Voting Machines
and Beford's Law. Paper for the 2006 Annual
Meeting of the Midwest Political Science
Associate, Chicago, IL, April 20-23.

Mercuri, R. and P. Neumann (2003) Security by
Obscurity. Communications of the ACM.
November 2003, Vol. 46, No. 11. Pp. 160.

MinBZK ((Dutch ministry of the Interior) (2006)
Stemmachines nog betrouwbaarder. Available
at: http://www.wijvertrouwenstemcomputersniet.nl/
images/6/6e/MinBZK.nl_-_Stemmachines_nog_
betrouwbaarder.pdf

Nedap/Groenendaal (2006) Verkiezingsbulletin
(Tweede Kamer 2006). Nummer 2. Available at:
http://www.election.nl/bizx_html/ISS/documents/
Verkiezingsbulletin%202%20TK%202006.pdf

OSCE - Office for Democratic Institutions and
Human Rights (2007) The Netherlands -
Parliamentary Elections 22 November 2006
Election Assessment Mission Report
Available at: http://www.osce.org/item/23602.html

Schneier, B. (2002) Secrecy, Security, and
Obscurity. Crypto-Gram Newsletter, May 15,
2002. Available at: http://www.schneier.com/
crypto-gram-0205.html#1

Schneier, B. (2004) The Nonsecurity of Secrecy.
Communications of the ACM. October 2004,
Vol. 47, No. 10. Pp. 120.

Staatscourant (1997) Regeling voorwaarden en
goedkeuring stemmachines 1997. (regulation
governing requirements and approval of voting
machines 1997) Staatscourant Nr. 134. Pp
14-20.

Wagner D., Jefferson D., Bishop M. (2006)
Security Analysis of the Diebold AccuBasic
Interpreter. Voting Systems Technology
Assessment Advisory Board (VSTAAB).
Available at: http://www.ss.ca.gov/elections/
voting_systems/security_analysis_of_the_
diebold_accubasic_interpreter.pdf

16

http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf
http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf
http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf
http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf

