
Studying the Nedap/Groenendaal ES3B voting computer

a computer security perspective

Rop Gonggrijp and Willem-Jan Hengeveld

Stichting "Wij vertrouwen stemcomputers niet"
(“We do not trust voting computers” foundation)

Linnaeusparkweg 98, 1098 EJ Amsterdam, The Netherlands

e-mail: rop@gonggri.jp

Abstract

The Nedap/Groenendaal ES3B voting computer is being used by 90% of the Dutch voters. With 
very minor modifications, the same computer is also being used in parts of Germany and France. 
In Ireland the use of this machine is currently on hold after significant doubts were raised 
concerning its suitability for elections. This paper details how we installed new software in 
Nedap ES3B voting computers. It details how anyone, when given brief access to the devices at 
any time before the election, can gain complete and virtually undetectable control over the 
election results. It also shows how radio emanations from an unmodified ES3B can be received at 
several meters distance and used to tell what is being voted. We conclude that the Nedap ES3B is 
unsuitable for use in elections, that the Dutch regulatory framework surrounding e-voting 
currently insufficiently addresses security, and we pose that not enough thought has been given to 
the trust relationships and verifiability issues inherent to DRE class voting machines.

1. Introduction
The Nedap ES3B electronic voting computer is a 
system that belongs to the DRE (Direct Recording 
Electronic) class of voting computers. As such it 
only records the votes in memory. The system 
requires ultimate trust, since it produces an official 
election outcome that  cannot  be verified 
independently. In this paper we describe the results 
of an independent review of the Nedap ES3B 
electronic voting computer that  was done without 
consent  of the manufacturer, without  access to 
source code, and within roughly one month. This 
paper details all the steps we needed to take to 
create and install our own demonstration software 
on the machine, as well as a modified version of its 
own software: a version that lies about the election 
results. It  also details a practical attack that allows 
a remote observer to get some information about 
what is being voted on an unmodified Nedap ES3B 
computer by exploiting compromising radio 

emanations from the device. In this paper we show 
that the over-all security design of this computer 
relies almost solely on the near-universally 
deprecated concept of ‘security through 
obscurity’ (Schneier, 2002; Mercuri and Neumann, 
2003; Kitcat, 2004). Since the problems we found 
stem from the very design philosophy, we see no 
quick fixes that could make this device sufficiently 
secure. 

Some good state-sponsored work on voting 
systems exists, such as the work done on the 
Accubasic interpreter (Wagner et al. 2006). But 
given the fact  that the technical specifications and 
source code to most e-voting systems are not 
publicly available, too much of what the world 
knows about  the technical inner workings of these 
closed systems comes from papers such as this one 
or the recent work done by Princeton University 
researchers (Feldman et al., 2006). It  is a sad fact 
that public awareness of something as basic as the 
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inner workings of the modern ballot  box depends 
on reports written by researchers that managed to 
somehow get  their hands on a well-guarded piece 
of secret  voting technology so they can take it 
apart. 

This paper openly discusses vulnerabilities that 
affect  the particular voting system used by 90% of 
the eligible voting population of The Netherlands. 
Any vulnerabilities discussed herein affect  the very 
foundations of our democracy. Some will argue 
that by discussing and demonstrating these 
vulnerabilities, we are helping the bad guys. Some 
might  even argue we created a problem that  did not 
exist  before. This is the full disclosure debate, and 
although it predates the invention of computers, it 
has been a lively part  of computer security 
community culture for decades. It is the debate 
between those that  feel vulnerabilities should be 
told only to the manufacturer and people that feel 
all those affected by a vulnerability have a right  to 
know so they can decide for themselves how much 
trust  they place in a given system. In the case of a 
voting system, it  is obvious that  any lack of 
security has the potential to directly affect  all of 
society.

2. About our study

2.1 The equipment we analyzed
This analysis deals with the Nedap/Groenendaal 
ES3B voting computer. Together with the ISS 
election management software, this computer is 
sold by the cooperating companies Nedap (who 
mainly do the hardware) and Groenendaal (who 
mainly do the software). We started analyzing, on 
August  23rd of 2006, an ES3B voting computer, a 
reader unit, the mechanical keys needed to operate 
the system, two ballot memory modules and the 
accompanying ISS MS-Windows software. We got 
all this equipment on loan from municipality ‘A’ in 
The Netherlands. Because we were supposed to 
return the equipment by the end of September, we 
kept  looking for more computers and accessories. 
On September 6th of 2006, we found municipality 
‘B’ willing to sell us two ES3B computers, another 
reader unit and two more ballot  memory modules. 
All machines have current  software (ES3B 2.12 on 
two of the voting computers, ES3B 2.11 on both 
reader units and one voting computer). To the best 
of our knowledge, these are the exact  machines 
and software versions that  90% of The Netherlands 

votes on, and at least  some of our computers were 
in use at elections up until the 2006 local election. 

2.2 Early preliminary publication because 
of time constraints
Because we wanted our results to be available 
before the November 22nd of 2006 Dutch 
parliamentary elections, we were in a hurry. A 
preliminary paper detailing some of these findings 
was published in October of 2006, after roughly a 
month’s worth of work (Gonggrijp, Hengeveld et 
al., 2006). This final paper represents our current 
understanding and provides more detail on some of 
the issues. However, much more research can and 
should be done and there are very definite open 
questions. One of the larger gaps in this study is 
that we took only an very cursory look at  the ISS 
(Integraal Stem Systeem) Windows software that is 
used to administer the ES3B voting computers. We 
initially chose the attacks we implemented based 
on the limited time and resources available to us. 
Throughout  this paper we will detail a few other 
attacks that, although we did not implement them, 
are practically feasible to the best of our 
knowledge.

On our website1  we provide much more detailed 
technical background information regarding the 
work we did, most  of which would be impractical 
to include in this paper. This includes system 
memory maps, quite a few programs and many 
more photos. 

2.3 Quick fixes ?
As a result  of press-attention given to our 
campaign before these specific vulnerabilities 
surfaced, the Dutch government  announced some 
measures to “help increase public trust  in an 
already sufficiently secure electronic voting 
system”. Among other security measures, all ES3B 
devices were physically sealed before the 
November 2006 election.

Given the proximity of the elections at the time of 
our initial work and the obvious severity of some 
of the vulnerabilities discussed herein, we decided 
to include in our report  as much as possible of our 
thinking regarding any countermeasures that  could 
be used to increase security.
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3. Mechanical keys

3.1 Trust placed in mechanical locks
Dutch election law requires physical keys to be 
used as part of an electronic voting system. The 
entire legal framework surrounding voting 
computers sees these physical mechanical keys as 
an integral part of the security of the voting 
process. Dutch election law and regulations makes 
frequent  mention of these keys2. The law regulates 
that voting machines are built  such that voting 
cannot happen without the presence of a key and 
the law even stipulates that  the chairperson of a 
polling station puts the key in an official sealed 
envelope after the election is closed. Nedap/
Groenendaal (2006) state in their election 
newsletter: “programming unit  and key as well as 
ballot modules need to be stored in the safe”. 

As we can see, both regulators and implementers 
of electronic voting systems place trust in 
traditional mechanical locks and keys and want 
users to adhere to strict  procedures regarding key 
management.

3.2 Chosen system
The key system chosen by Nedap for both the 
locks on the voting computer is the “C&K YL 
Series 4 Tumbler Camlock”. The number of key 
possibilities for this lock is one, which probably 
explains why the same key is used on all 8000 
ES3B machines throughout  The Netherlands. 
Spare keys can be ordered separately online for 
under two Euros each by Googling for the product 
number: 115140126. We ordered, paid for and 
were subsequently supplied with one hundred of 
these keys without  any 
problem. According to the 
product  datasheet3, typical 
applications for this lock 
include “copy machines 
and office furniture” . 
Even if spare keys were 
not so readily available: 
this is quite literally the 
type of lock we can open 
with a bent paperclip.

The reader unit  has, as 
stipulated by law, a lock 
with a different  key for the 
s l o t m a r k e d 
‘programming’ (it  is 

marked “A154”), which is used to erase the ballot 
memory modules and to write new candidate lists 
to the modules. The key is of the same insecure 
type and we expect it to also be the same all over 
the country.

3.3 Conclusion
Even when taking into consideration that the law 
does not  say the physical locks needs to be of 
decent  quality, we feel this lock is obviously 
grossly inadequate given the trust  placed in it. 
Either this “toy lock” needs to be replaced by a 
real lock, or the law needs to be rewritten such that 
it  doesn’t inspire confidence where none is 
warranted.

Note that  the issues with the locks and keys on this 
system closely resemble the issues found by the 
Princeton researchers on the Diebold AccuVote-TS 
(Feldman et al., 2006).

4. Understanding the ES3B

4.1 The components
The Nedap ES3B system as it is in use by a typical 
Dutch municipality consists of multiple ES3B 
voting computers, at least as many ballot memory 
modules, a reader unit  to be attached to a PC via 
the serial port  and an installed  copy of the ISS 
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(Integraal Stem Systeem) software running on a 
PC under Microsoft  Windows. The municipal 
election officials write the candidate lists into the 
“ballot  memory modules” using the reader unit. 
Then these modules are installed into the voting 
computers before they are deployed. After the 
election is closed, the results are printed by each of 
the voting computers. The ballot  memory modules, 
which now also contain all the votes, are carried to 
a central location to be read using the reader unit 
so the results can be tabulated.

4.2 First contact
We already knew quite a lot about the Dutch 
Nedap computer from the Irish “First Report of the 
Commission on Electronic Voting”  (2004). As we 
took it apart, we confirmed that this was indeed a 
system built around a 68000 processor that  came 
with 256Kbytes of EPROM, 8 Kbytes of 
EEPROM, 16 Kbytes of RAM, two 6850-based 
serial ports, a printer port, and two screens (e.g. 4 
lines of 40 characters on the voter display, 2 lines 
of 40 characters on the small election official 
console attached to a wire out the back). After 
taking the system apart, photographing everything 
and dumping the contents of the EPROMs, we had 
to put  it  back together again. First  we had to create 
a working setup to work with the system in normal 
operation. We installed the ISS software on a 
notebook PC running Windows XP and we hooked 
up the reader unit. After some experimentation we 
could configure a new election, parties, candidates 
and a polling station. We could then program the 
ballot memory module that  carries the list of 
parties and candidates to the voting computer. 
After we inserted it  in the voting computer we 
could cast votes and we could close the election 
and print the results. After removing the module 
and placing it in the reader, we could see the ISS 
software list the votes.

4.3 Maintenance mode: “GEHEIM”
The ISS software has a ‘maintenance mode’ that is 
supposed to be only accessible to members of the 
“verkiezingswacht”, the Nedap election-day 
helpdesk. You need a password to get  the software 
in this mode. A quick look in the binary revealed 
this password to be “GEHEIM”, the Dutch word 
for “SECRET”. The maintenance mode, among 
other things, allows the helpdesk to read the binary 
contents of a ballot  module plugged into the 
programming slot of a reader unit. By sniffing the 
serial commands between the ISS software and the 

reader unit, we figured out how to issue these 
commands ourselves and we wrote a program in 
TCL that  we could use to read the entire contents 
of a ballot memory module.4 

Since we were now able to produce memory 
images in various stages of an election, we could 
see what  changed between them. This produced an 
overview of where and how the ES3B stored 
parties and candidates, as well as how the votes 
were stored.

4.4 Trace wires, look up parts, read 
disassembly, repeat...
We used the IDA pro disassembler to look at  the 
compiled binary image contained in the system’s 
EPROMs5 . Because the hardware is very 
straightforward and the software very well-written, 
we very quickly able to make some sense of the 
binary. The IDA database contained more and 
more comments as the hours passed. Most of the 
IO was figured out  by a combination of visual 
inspection of the printed circuit board and looking 
at  the disassembled code. This was greatly added 
by the fact that besides the main components, only 
74 series TTL chips were used.

As we progressed, our memory map of the system 
grew. IO lines to the various keyboards, the key 
switch, the displays and the printer were 
documented. We also found more and more about 
the internals of the motherboard, such as how a 
watchdog line needed to be pulsed to make sure 
the board did not keep resetting itself. We also 
found the small switch on the motherboard that 
switches the computer into service mode, allowing 
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Figure 3: Maintenance mode window.



all of the parameters from the EEPROM (such as 
the system ID) to be changed through menus on 
the voter display. 

We later found that  this same menu pops up when 
a ballot  memory module with the ID 
“SERVICE ” (with a space at  the end) is in the 
computer when it  starts up. Such a module can be 
made using the maintenance mode described 
above.

4.5 The ballot memory module
We took apart  a memory module and created a 
schematic. The schematic shows how the two flash 
chips, which handle the odd and even addresses, 

both depend on their own hex inverter glue logic 
chip to make sure that a malfunctioning part will 
only take out  half the memory. All data is written 
both in the odd and the even half of the module to 
create redundant data storage.

 Looking at  the schematic, we see that  data bit 5 on 
both odd and even flash chip is pulled down to 
ground. In addition, bits 5 and 7 have been 
swapped. It  took us a while to figure out that  this 
particular bit  needs to be set  to one in order to 
issue the flash erase command on the Intel 
P28F010 flash chips used, but  that  it  could stay at 
zero for all other flash programming commands.  
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We then noticed that this wire is only connected on 
the ‘programming’ slot of the motherboard, 
meaning this bit will always be zero in the slot that 
is used in the voting machine and in the slot that is 
marked ‘read’ in the reader unit. So only the slot 
marked ‘programming’ in the reader unit  can ever 
issue the erase command. The swap between bits 5 
and 7 places this bit conveniently out of the way. 
Since the bus on the main board is pulled up, the 
voting machine itself will always write zeroes and 
read ones on bit  7 of every byte in the ballot 
memory module.

Candidate lists are stored with the button 
coordinates of each candidate as well as a 
checksum, and that part of the memory is 
subsequently filled with random data. The votes 
are stored in a different part  of the module in a 
location based on the system timer, skipping to the 
next  one if that location is already taken. Because 
the pointer in the random locations wraps around 
after it  reaches the end of the module in roughly 
five minutes, we see no practical attack to get the 
sequence of the votes cast.

Four copies of each vote are stored, and each copy 
has “hamming code” error correction added, so 
storage is extremely redundant. Two of these 
copies are stored with the bits inverted, which 
makes sure that  subsequent flash operations (which 
can always turn ‘one’ bits into ‘zero’) cannot 
change any votes.

Besides candidate lists and votes, the module also 
stores its ID, and the number of times it has been 
erased6. It  also stores the name and date of the 
elections on the module7. After the first vote is 
cast, it  also stores the ID of the voting machine it is 
in.

4.6 The EPROMs
The software for the ES3B is programmed into two 
EPROM chips, each holding 128 kBytes. Both 
chips are in a socket, which allow for them to be 
easily exchanged. The system is built such that  one 
EPROM holds the odd and one holds the even 
memory addresses. Both EPROM chips carry a 
small sticker marked with “ES3B”, the software 
version number, the word “ODD” or “EVEN” and 
a 32-bit checksum written as hexadecimal 
characters. This checksum is a simple addition of 
all bytes in the EPROM. During most  of our tests 

and programming, we replaced these EPROMs by 
two USB EPROM emulators8 so we could load our 
experiment code much faster.

4.7 Running software: “Nedap Chess”
It  started as what we thought  was a very obvious 
statement. We claimed on our website 
"Wijvertrouwenstemcomputersniet.nl" that  the 
Nedap was just  another computer, and that  it  could 
just  as easily be programmed to play chess, or to 
lie about  the election results. We didn’t  think more 
of it until Jan Groenendaal, whose company sells 
this computer, placed a document  on his website to 
talk about  our campaign. In it, he says: “[...] And 
with regard to the claim that our machine can play 
chess : I would l i ke to see tha t 
demonstrated” (Groenendaal, 2006).

So quite obviously, one of our first goals now that 
we had access to the device was to make it play 
chess. Apart from proving our point, programming 
it to do this would also confirm that we knew 
everything we needed to know about the hardware. 
Now that  we knew roughly how it  worked we used 
a gcc 68000 cross-compiler to create a Nedap IO-
library containing functions to initialize the 
system, write data to the display, read the 
keyboard, and write debug messages to the UART. 
Together with newlib, a small clib implementation, 
we then managed to compile and run Tom 
Kerrigan's Simple Chess Program (TSCP)9. This 
was non-trivial only because we had to squeeze out 
quite a few tables to make it  run using only the 
available 16 Kbytes of RAM. Getting the chess 
pieces to magnetically attach (the keyboard is 

6

6 Both can be reset by changing the module ID in the ISS software after going to the service menu

7 A maximum of two elections can be done at the same time using the ES3B.

8 WICE-M4 emulators made by Leap Electronic

9 http://home.comcast.net/~tckerrigan
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mounted at an angle) was also not that  easy since 
the foil switches are stuck to a plastic base. We 
ended up using 2 and 5 Eurocent  coins underneath 
the paper, taped such that  we could press the 
underlying foil switches with the edge of the coin.

Nedap Chess knows all the rules and every now 
and then it  can be surprisingly clever for what it is. 
But  in all honesty we have to admit that it  doesn’t 
play all that well.

4.8 Conclusion
Reverse-engineering a vintage system such as the 
Nedap ES3B is well within reach of a relatively 
modest  research effort. The fact that the ES3B has 
no PALs or other custom components make it  a 
very easy system to come to grips with.

5. Modifying the Nedap software

5.1 Introducing “Nedap PowerFraud”
The idea of inserting one’s own program EPROMs 
is not  original: again the Irish Commission on 
Electronic Voting, in their first report  (2004: 139) 
carefully details the attack. It’s easier here: the 
machines tested in Ireland had paper seals that 
needed to be broken in order to get  access to the 
inner box with the electronics, whereas the Dutch 
machines never had any seals. Interestingly, the 
Dutch Ministry of Interior and Kingdom Relations 
has announced they will be sealing all the Nedaps 
before the November 2006 elections (MinBZK, 
2006). In 2004, in response to parliamentary 
questions about  the Irish report, the responsible 
minister claimed the Irish situation was 
fundamentally different so results from the Irish 
studies did not apply to machines in The 
Netherlands (Haverkamp en Spies, 2004).

When we started to think about demonstration 
software that  would lie about  election results 
(called “Nedap PowerFraud”), we kept  in mind 
that the system should not lie after an election that 
was obviously a test of the system. We decided we 
needed to store the votes and only decide whether 
or not  to perform the fraud at the moment the 
election was closed, so our program would have as 
much information as possible to make that 
decision. Since the voting computer itself cannot 
issue the flash erase command needed to erase the 
ballot memory module, and since the votes are 
stored both as-is and with all bits inverted, we saw 
no way to change votes already stored in flash. 
Hence we needed a mechanism that  would store 
votes, so that  it could write these to the ballot 
memory module later, either for the candidates for 
which they were intended or for the recipient of the 
fraudulent votes. Since the voting machine could 

suffer from a loss of power, we would optimally 
like store these stolen votes in non-volatile storage. 
Since the flash on the ballot  module was ruled out 
because we could not erase it, we opted for the on-
board EEPROM.

The ES3B’s EEPROM is normally used to store a 
few system configuration parameters (such as the 
device ID) and some settings (such as whether or 
not the keyboard beep is on). But  most of the space 
is used for two circular buffers holding the event 
log and the error log of the device. In these logs, 
the device keeps the system time and a number for 
each event  or error that occurred. Since system 
time always starts at  zero, these times are not  as 
helpful as one might think, they only represent an 
offset  relative to the last  processor reset. We 
updated the circular buffer routines that  deal with 
the error log to shorten the number of entries, 
making space for our stolen votes.

Most  Dutch ballots have a baffling number of 
candidates. But the vast majority of votes go to a 
number-one candidate on some party’s list. An 
International election assessment  mission that 
visited The Netherlands in November 2006 has 
detailed the exact workings of Dutch politics and 
elections in great  detail in their report  (OSCE - 
Office for Democratic Institutions and Human 
Rights, 2007). Our new table didn’t  have space for 
all possible candidates, but  it  did have room for all 
possible parties. So we decided to steal votes only 
from the number one on each party’s list. Since the 
most voters pick the first candidate on a given 
party’s list, this is quite acceptable. We also store 
the ID of the current ballot memory module and 
the date of the election, so we know whether to 
keep or delete any stored stolen votes when the 
device wakes up.

We then built  “hooks” into the regular ES3B code. 
Every time a voter casts a ballot, our code 
generates a random number between 0 and 100. If 
the number is below the programmed percentage 
of votes we want to steal, that  vote is not written to 
the ballot module but  one is added to the 
corresponding 16-bit number in EEPROM. At the 
end of the election, our software determines 
whether this was a real election or not (see section 
5.2). It then proceeds to, either honestly or 
fraudulently, quickly casts these ballots at random 
locations in the ballot module, just like the real 
software does.

To determine the recipient of the stolen votes, 
PowerFraud does a case-insensitive match of all 
party names with a programmed string. If it  finds a 
match, that party becomes the recipient of the 
stolen votes. This allows for the fraudulent 
EPROMs to be inserted long before the candidate 
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lists are known, and it allows a fraudulent  ROM to 
perform the same fraud year after year, even 
though the relative position of the party on the 
keyboard changes. It is significant to note that the 
Dutch Ministry of Interior and Kingdom Relations 
assumes this to be impossible. A statement from 
October 2006 says: “Fraud during the production 
of voting machines does not  make sense because 
the lists of candidates are not  known 
then” (MinBZK, 2006).

5.2 How do you know software is lying?
Parallel testing
Parallel testing of voting computers is based on the 
notion that  although the voting computer is a black 
box, one can test  its functionality by presenting a 
situation that  is indistinguishable from a polling 
station at the inputs of the computer while keeping 
a careful count  of all the votes that go in. To 
increase confidence in DRE-class voting 
computers, officials would randomly select  voting 
computers to be taken from the system on the 
morning of election day, and replace them with 
other machines. These randomly selected machines 
would then be used for such a test  election. At  the 
end of the day, the totals should match with the 
votes that were input. 

There has been some work done in the US 
regarding the number of machines that would need 
to be tested to achieve a certain level of certainty 
that the election was honest (Mebane, 2006). First 
a desired level of confidence would need to be 
defined, and then the calculations would need to be 
done to obtain the number of machines that  would 
need to be tested for that level of confidence. 
Subsequently, one would need to define what 
would happen if discrepancies were detected. The 
“Oh my God, it’s dishonest” at  the very end of a 
busy election day needs to be translated into 
something more legally binding that  allows 
election officials to call for a new election or keep 
the results from becoming accepted until more is 
known. The exact procedure may need to be 
codified as part of the election regulations.

Assuming these hurdles are taken and a system of 
parallel testing is in place, the author of the vote-
stealing software can perform quite a few tests that 
would discriminate between a real election and 
anything but  the most  rigorous and disciplined 
parallel tests. The Brennan Center for Justice at 
New York University very recently published “The 
machinery of democracy: protecting elections in an 
electronic world”, which is by far the most  detailed 
work to date to deal with procedures for parallel 

testing of election systems. It isn’t all that 
optimistic about the method:“However, even under 
the best  of circumstances, Parallel Testing is an 
imperfect security measure. The testing creates an 
“arms race” between the testers and the attacker, 
but the race is one in which the testers can never be 
certain that they have prevailed” (Brennan Center 
of Justice, 2006: 88).

The current  revision of PowerFraud has a user-
selectable minimum number of votes that need to 
be cast for the election to be seen as real. Although 
not a true parallel testing counter-measure, it  also 
allows the setting of a minimum number of votes 
to steal from any given party. This makes sure it 
never inadvertently steals a party’s only vote in a 
given polling station. If it did, it  would alert at 
least one voter that something was amiss.

Next versions of PowerFraud will allow the setting 
of the minimum time an election should last and 
we might also incorporate some statistics on the 
random distribution of the time between votes and 
the time between the pressing of the vote-release 
button, the candidate button and the “cast ballot” 
button. At that  point we think parallel testing 
becomes a job for a robot that  presses the buttons 
because the key intervals of utterly bored human 
testers are very likely to exhibit  statistically 
improbable timing similarities. A future version of 
PowerFraud will also offer a “magic button” 
function. What  this does is allow any voter during 
the day to press a previously-configured inactive 
button on the voter keypad, followed by the keys 
needed for an actual vote. The device will then 
store the party that received that vote as the 
recipient for the stolen votes, and it will not 
perform any vote stealing unless the magic button 
was pressed. This would be impossible to catch 
using parallel testing. And although post-election 
examination of the EPROMs would show that  a 
fraud could have occurred, it would be hard10  to 
detect whether it actually did and which party 
received the stolen votes. This scenario, although 
impractical in national elections, would be very 
practical in a town of, say, ten to fifteen thousand 
inhabitants where the attackers could send one 
voter to each of around ten polling stations to press 
the magic button before they cast their vote.

Verifying the contents of the EPROMs directly
If one were to take the EPROMs from an ES3B 
and put  them in an EPROM reader coupled to a 
computer, one could compare the contents to a 
known to be good image of the software to verify 
that the software has not been tampered with. One 
could also compare generated checksums, as long 
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10 Since the compromising data would have been erased from the EEPROM, it would involve reading past contents of the 
EEPROM. Not impossible, but we expect this to be costly and time-consuming.



as they are not the checksums that  Nedap uses. 
They are simply a 32-bit  hex representation of an 
addition of all the bytes in the EPROM. Only 
cryptographic hash algorithms such as SHA-256 
generate a checksum that  is secure against an 
attacker trying to create a fraudulent EPROM with 
the same checksum.

The ES3B also allows its memory contents to be 
read through the serial port. However if this were 
ever used to test  the authenticity of the EPROM, it 
would be easy to make the fraudulent software lie 
about the contents of certain memory location 
through the serial port. Besides: the serial port  is 
only available on the mainboard, so the inner box 
would need to be opened anyway. In that case  one 
might  as well test  the actual EPROM contents. We 
can envision a small hand-portable device that 
would clip over the EPROMs while they are still in 
their sockets, quickly testing their contents using a 
small built-in micro-controller. Of course there is 
then the question of whether or not that  device and 
the people handling it are trustworthy.

By verifying EPROM contents of random 
machines before the election as well as those of 
random and any suspect  machines after the 
election, it can be made more difficult for an 
attacker to go undetected. Note that  it  also depends 
on the metrics of the election (e.g. local, national) 
how large the samples should be for a given 
chance of detecting significant fraud.

5.3 Making sure attackers cannot install 
software
Given that we have no easy way to tell whether 
manipulation software was installed, we will need 
to explore ways to make sure it  does not  get 
installed in the first  place. Please note that  section 
8 explains why fixes along these lines may actually 
decrease security depending on your viewpoint.

Fix the  ES3B so it does not run untrusted 
software
We do not believe the “anyone can insert  their own 
EPROMs vulnerability” can be fixed in the current 
design. In order to fix this, one would ideally want 
a system in which a program already in the 
processor domain can use the presence of 
cryptographic signatures to evaluate whether or not 
it  wants to execute/install a newer program. The 
Nedap ES3B is in essence a very expensive 1980’s 
home computer that, unlike modern devices, 
cannot perform such functions on the processor/
flash chip. One could envision a system with a 

boot-ROM soldered to the board which checks a 
cryptographic signature on code in socketed 
EPROM. But given how easy it  is to desolder large 
DIL-chips, this wouldn’t  add the same level of 
protection. Also, note that an EPROM could even 
be emulated using a microcontroller that can be 
fitted in an EPROM housing. Such an ‘EPROM’ 
could present  the honest  contents at boot, and 
dishonest contents further on.   

Since publication of our preliminary paper, the 
EPROMs have been replaced by PROMs in the 
Nedap machines. However, these PROMs are not 
soldered to the board. Given that  no attacker would 
reprogram EPROMs in the field, this adds no 
protection other than sounding reassuring. 

Upgrading physical security
One line of remedies would make sure an attacker 
could not get  surreptitious access to the devices. 
This can be done by upgrading the physical 
security of the storage locations and transport 
logistics. Since this attack against  the outcome of 
the election hinges on physical access to the 
devices, it would seem prudent  to deny access to 
unauthorized individuals. Given that  at  least some 
of these computers are currently stored under 
rather abysmal security conditions11 , this would 
add a great deal of security against outside 
attackers. However it  would not significantly 
increase security against  attacks performed by 
insiders. In situations where human guards are 
employed, the added security would even increase 
the number of insiders that have convenient round 
the clock access to the computers.

Tamper-evident seals
The Dutch government has made Nedap replace all 
the EPROMs by PROMs and put tamper-evident 
seals on each machine. A government 
commissioned independent study recently revealed 
that the seals on the Dutch ES3B machines can be 
circumvented (Hermans, Van Twist, 2007: 46). 

Also note that applying seals assumes the person 
or persons applying them would have to be 
ultimately trusted because they are in a perfect 
position to swap the EPROMs first. Given the wide 
range of people that would need to properly 
authenticate and inspect  these seals under non-
ideal conditions, the value of these seals in adding 
more than token security can easily be over-
estimated.
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Nedap ES3B voting computers serving the city of Rotterdam are stored in an old building on a somewhat shady 
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5.4 Conclusion
The parallel testing method at  best  presents the 
testers with an arms race and the other methods 
appear to exclusively address the threat posed by 
outsiders. We claim that it  is highly questionable 
whether a sufficient level of over-all security can 
be accomplished by employing any combination of 
counter-strategies currently being discussed. We 
cannot think of other measures that  would mitigate 
this problem.

6. Compromising emanations

6.1 Spurious emissions
Many electronic devices transmit  radio signals, 
even when they are not intended to do so. In the 
case of computers, such transmissions often leak 
information about what the computer is doing. The 
military and intelligence communities have known 
this for many years and are actively exploiting this 
against adversaries as well as shielding their own 
equipment. We decided to take a look at the radio 
spectrum emanating from our machines to see of 
we could determine what they were doing by 
looking at  the transmissions. For this purpose we 
used an AVCOM PSA 65A spectrum analyzer, as 
well a number of handheld and tabletop receivers 
and various antennae.

The Dutch state security service AIVD has been 
asked by the Dutch government  to independently 
verify the RF-related claims made in a preliminary 
version of this paper. They have been able to verify 
the problems in a report  (AIVD, 2006) that was 
made public as a result  of a Freedom Of 
Information request.

Please note that although it is probably legal in The 
Netherlands to look at  the emissions from one’s 
own Nedap, it  is probably illegal to interpret 
signals from one that is in use at an election.

6.2 Special characters and the display 
refresh frequency
After finding a number of ‘empty’ signals that  do 
not appear to contain much information, we found 
one that  could be received at many frequencies. 
Among many other frequencies, it  appears at 
around 36 MHz, 38MHz, 58.3 MHz and 150 MHz. 
In both AM and FM, the main energy is at  the 
refresh frequency of the display. The signal is a 
loud buzz, usually humming at roughly 72 Hz

The LCD voter display on the Nedap ES3B 
consists of 4 lines of 40 characters each. Each two 

lines are driven by a separate Hitachi HD44780 
controller. The computer uses a parallel bus to tell 
the display what  to display and where to display it. 
The controller has its own built-in character set 
which contains the standard ASCII characters plus, 
depending on the model, a choice of either 
Japanese or European extended characters. It  can 
also display up to eight  different characters that are 
not in this character set. To use this feature, the 
computer must first  issue a special command 
sequence to tell the display controller what the 
character looks like. For some reason (we suspect 
cost) Nedap decided to use the Japanese version of 
the display controller. But  they have written 
software to display any accented or other non-
ASCII characters in party and candidate names by 
first defining special characters for them. 

It  would appear that if a special character is 
displayed, the controller has to do extra work every 
time the display is updated. This causes the display 
refresh frequency to drop from 72Hz to  58 Hz. 
The difference between these two frequencies can 
be determined by ear. In The Netherlands, the 
name of the major political party CDA is written in 
full on the display when the voter chooses any 
CDA candidate: “Christen Democratisch Appèl”. 
So using only a simple scanner or short-wave 
receiver, we can tell whether or not a voter is 
currently voting for a party or candidate with an 
accent in the name. In Germany for instance this 
would yield a “Grünen detector”, although the 
much more frequent use of non-ASCII characters 
in German names would diminish the selectivity 
somewhat.

We have observed large signal strength variations 
between the three devices we have tested this on. 
In all cases we could receive the signal at a few 
meters. In one case we could receive the signal up 
to 25 meters away. Note that  a signal like this can 
be filtered from noise long after the unaided 
human ear stopped hearing it, so range can be 
significantly extended using digital signal 
processing. When experimenting with software to 
detect these two tones, we noticed that  filtering for 
216 Hz and 232 Hz respectively, each with a 
bandwidth of 10 Hz, seems to work better than 
filtering at  the base frequencies of the audible 
tones. We also noticed energy present  at  3845 Hz 
when the vote-button is pressed. 

Figure 8 shows a “spectrum waterfall display” of 
the received audio signal12. The difference between 
a candidate from the CDA (middle) and any other 
party (top and bottom) is clearly visible. To fix 
this, the display update frequency always needs to 
be the same. In a preliminary version of this paper 
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we wrote that always displaying at  least one 
special character would probably eliminate this 
attack. It  was since discovered that varying 
numbers of special characters can be discerned 
(AIVD, 2006), so that a fixed number of special 
characters must be displayed. To make sure this is 
not visually disturbing this could for instance be a 
space that is actually defined as an empty special 
character. 

6.3 Fingerprinting display data bursts
On the same frequencies as the above refresh 
signal, we can also see a short data burst as the 
computer writes data to the display. Through the 
audio path of a scanner, we can make out clear 
differences for different candidates. Since this 
signal is generated by a parallel bus, it  will likely 
be hard to decode precisely what is being written 
the display, especially when one has only a 
narrow-band audio signal like we did for our 
experiments. However: we can easily profile all 
the bursts for the various candidates and simply 
match the received signal to all known candidates.

The four spectrum images in figure 9 show this 
burst, roughly 200ms in length. The upper two 
images were received when selecting the same 

candidate, the lower two were made after selecting 
different  candidates.

6.4 Listening to the display itself
We did a test while we had our own software 
display three different screens with a few seconds 
between them. First we showed the left  half of the 
screen filled with “@” characters, then we showed 
the right half filled with “.” characters and then we 
showed an empty screen. The spectrum plot  shown 
in figure 10 shows differences, meaning something 
can be said about the static contents of the display 
without  listening to the communication between 
the computer and the display, which happens only 
briefly. We expect  more receiver bandwidth and 
more processing power would be needed before 
one can profile display contents in this way.  

6.5 Determining impact - defining what 
constitutes a valid attack
For an attack against  ballot secrecy to be practical, 
we deemed it would have to be significantly easier 
to perform than obvious attacks such as mounting 
a small hidden camera that would allow an attacker 
to see the display of the machine. It  is easy to see 
that much more study is needed: we have only 
tested the radio emissions on the three different 
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Figure 8: Display frequency changes when special characters are displayed. On the y-axis is time as candidate-buttons 
with and without special characters are pressed. On the x-axis is energy at frequencies from 130 Hz (left) to 260 Hz.



Nedap computers that  we had access to, and it  may 
well be that many computers in the field radiate 
much more or less than any of the machines we 
looked at. 

6.6 Conclusions
The first  attack, the “CDA detector”, is practical by 
any definition since it can be performed by ear and 
takes only a small and cheap scanner or short-wave 
receiver.  Given the amount of media-attention this 
aspect of the problem received, it needed to be 
fixed before the November 2006 election. Instead 
of fixing the software or hardware, the Dutch 
government opted to use special characters on the 
paper keyboard overlay but  not  on the displayed 
names.

Fingerprinting display data bursts takes some 
initial work to create software, but appears still 
very feasible and cheap to perform once the 
software exists. Given that this attack would yield 
the exact candidate and party that  is being voted 
for and that countermeasures are fairly 
straightforward to implement, we feel it  would 
need to be protected against also.

Listening to the display itself would appear to need 
both a much larger bandwidth to be received and 
much more digital signal processing. And even 
then, the range would likely be more limited than it 
is for the two previous attacks. Within the limits of 
this preliminary study, we tend to scale this attack 
below our threshold for a valid attack, although 
further research as well as the upcoming 
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Figure 10: noise from the display itself, alternating between two different screens (x-axis: time, y-axis: spectrum). 
The changeover happens every second, and the display above shows approx. 8 seconds.

Figure 9: Display data bursts, each showing approx. 2 kHz of spectrum (0 Hz at the bottom) and measuring roughly 240 ms 
from left to right. The top two show two different instances of the same candidate being selected, the bottom two bursts show 
two different candidates being selected.



availability of cheap and portable software defined 
radio equipment may change this. 

It  is remarkable nobody appears to have ever tested 
for any spurious emissions, or thought  to include 
specifications regarding compromising emanations 
in the legal requirements. It would seem obvious 
that new versions of regulations regarding voting 
computers specify a level of shielding that prevents 
any such problems.

7. Other practical attacks

7.1 The screen and keyboard man-in-the-
middle attack
The voter display on the device consists of 4 lines 
of 40 characters, controlled by a Hitachi HD44780 
controller that  is attached with an 8 bit wide bus 
and some control lines. The keyboard is a simple 
passive matrix of foil contact keys that is scanned 
by the computer. One can envision a small board 
that would be placed inside the (rather spacious) 
keyboard/screen housing and that would terminate 
the cables from the motherboard. It  would then 
have new cables to plug into the existing keyboard 
and screen circuit  boards. If this board would have, 
say, a commercial off-the-shelf FPGA with built-in 
microprocessor, it could pretend to be a keyboard 
and a screen towards the computer and pretend to 
be a computer towards the display and the 
keyboard. Since our little board learns the names 
of parties and candidates the first  time a voter 
votes for a given candidate, it would have all the 
necessary information to press the wrong button 
towards the computer and still present the voter 
with a readout  that  shows the chosen candidate. It 
could do the same level of parallel testing 
countermeasures that  PowerFraud does except it 
would have a real time clock to aid in detection of 
parallel testing.

Since none of this would happen inside the main 
computer housing, placing a seal on this housing 
would not  help against this attack. The sheer 
number of small torque screws on the keyboard/
screen make this manipulation harder, but they also 
make inspection to check for this attack harder. 
We’ve never really played with FPGAs much, so if 
there are any doubts raised over the practicality of 
this attack, we might have a go at it.

7.2 Placing a micro-controller in the ballot 
memory module
A ballot  module consists on a simple circuit  board 
with a few holes that allow the blue plastic shell to 
be snapped on. One could quite easily create a 
circuit board that  holds a processor, say an Atmel 
AVR family micro-controller, quite possibly 

equipped with some external (modern) flash or 
battery backed-up RAM. This module would store 
everything honestly until the vote is closed, which 
it knows because a byte of 0x00 is written in one 
particular location on the module. At  that point it 
would decide whether or not this was a real 
election and act  accordingly, after which it  would 
allow its votes to be read by the computer for 
printout. This module could again have a Real 
Time Clock, allowing for more sophisticated 
parallel testing detection than would be possible 
inside the computer itself.

As a counter-measure, Nedap has suggested (or 
even produced?) clear plastic shells for the ballot 
memory modules. Given that most users would not 
be able to tell one circuit board from another and 
that a whole computer can be hidden underneath a 
chip, this adds little protection. 

7.3 The ballot manipulator (not a real 
attack in The Netherlands)
One could easily create a small circuit board with a 
battery and a micro-controller with sufficient GPIO 
pins (such as the Atmel ATmega 128) that  has a 
male DIN41612AC connector on it. A program in 
the micro-controller could manipulate at will the 
contents of any ballot  module that was plugged 
into it.

Using this circuit, anyone with access to a module 
as it  is being transported to the reader unit and the 
computer running ISS can change the votes on the 
module. We realize this is not  a true attack in The 
Netherlands, because it would not alter the data on 
the print-out, which has already been made at that 
point. But in other countries, such as Ireland, 
where the counting of the votes on the module was 
supposed to happen at some location other than the 
polling station this attack may very well be of 
practical value. The First  Report  by the 
Commission on Electronic Voting (2004:140) also 
details this attack.

8. On security and elections

8.1 Security through Obscurity
While studying the Diebold source code that was 
inadvertently placed on the web, Kohno et al. 
(2004) discovered many vulnerabilities, some of 
which they claim could have been found without 
access to the source. Through our research we have 
proven, unsurprisingly, that  one indeed does not 
need access to source code, documentation or 
insider knowledge to understand and manipulate a 
system once one can study it for a while.
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Cryptography is the science that  deals with secret 
codes (Schneier, 2004). And in cryptography, 
Kerckhoffs' principle was stated by Auguste 
Kerckhoffs in the 19th century: a cryptographic 
system should be secure even if everything about 
the system, except  the key, is public knowledge 
(Kerckhoffs, 1883). Renowned security expert 
Bruce Schneier takes Kerckhoffs’ principle to have 
meaning outside of cryptographic systems when he 
says: “Kerckhoffs' principle applies beyond codes 
and ciphers to security systems in general: every 
secret  creates a potential failure point. Secrecy, in 
other words, is a prime cause of brittleness—and 
therefore something likely to make a system prone 
to catastrophic collapse. Conversely, openness 
provides ductility” (Mann, 2002: 4). The more 
complex and unchangeable the secrets are that  you 
need to keep, to more prone your system is to 
catastrophic failure. The cheaper and easier it  is to 
change the secrets in a system, the more robust it 
becomes. 

In contrast Jan Groenendaal (2006), of Nedap/
Groenendaal, says: “However Open Source or 
publishing the source code provides opportunities 
for dubious characters and unfortunately election 
and election fraud are both as old as democracy 
itself. The fact  that only few people have this 
knowledge can also be interpreted in a positive 
light. If something goes wrong one quickly knows 
where to look, and this mere fact  is a deterrent for 
willful manipulation (inside attack)”. This 
reasoning is a clear example of a controversial 
design practice often dubbed Security through 
Obscurity: the inner workings of his system need 
to remain secret to protect our elections from 
“dubious characters”. Many of the poor design 
choices that  underlie the ES3B’s security problems 
can be excused against  the backdrop of the 1980s, 
when fewer options were available to system 
designers and many of the present-day security 
concerns had not yet  surfaced. But given that 
Dutch democracy now completely depends on his 
technology, the fact  that  Groenendaal’s viewpoints 
on security are so far removed from the general 
consensus in the computer security community is 
cause for concern.

8.2 Security of what against whom?
In the security community it  is not considered very 
productive to make statements about the security 
of any system without  at  least defining what  it  is 
we’re securing, and what it  is we’re securing it 
against. In the case of voting systems, the general 
concept of security is often mistakenly taken to 
mean “the system-wide level of over-all security 
against any attack, mounted by outsiders, that 
affects the election results”. There are many more 
possible interpretations of security when it comes 

to elections. The above definition for instance 
ignores the risk posed by an attack by 
knowledgeable insiders, or that of an attack that 
involves only the secrecy of the  ballot.

We would argue that in the case of voting systems, 
the only meaningful security against  insiders is to 
have a voting mechanism of which all the details 
are published, and that a substantial portion of the 
general population is capable of comprehending 
in-depth. We pose that any other solution creates a 
situation in which the population depends in 
essence on reassuring statements that cannot be 
verified independently. In a country where e-voting 
has replaced traditional paper ballots, the level of 
confidence with which the population views these 
statements is then by definition the upper bound 
for the trust  the population can have regarding the 
outcome of any election, and thus in effect  a 
measure for the legitimacy of government. 
Continued reliance on DRE-class systems will 
prove increasingly problematic given (among other 
things) the fluid state of computer security, the 
increasingly widespread awareness of issues with 
voting technology and the all too often warranted 
general distrust of reassuring statements regarding 
the security of systems whose inner workings are 
secret.

8.3 More security, less auditability
By adding extra security measures against the 
over-emphasized threat posed by outsiders, one 
can actually increase the risk posed by insiders. It 
is not hard to imagine a voting system that would 
be much more “secure” by today’s standards as 
they would apply to equipment in other fields. 
Today’s mobile phones for instance often combine 
a processor, execution memory and tamper-
resistant  key storage to make sure only the 
manufacturer (who has the cryptographic signing 
keys) can update the software. These mechanisms 
can sometimes still be circumvented, but at  least 
they offer a layer of security that  is completely 
absent in the Nedap ES3B. But  by adding 
“security” in this way, the device could also resist 
any attempts by independent inspectors to see what 
code it  is actually running. So what is a desired 
feature from the viewpoint  of a manufacturer - an 
insider - trying to protect  a mobile phone from 
unauthorized manipulation may thus be a highly 
undesirable feature from the viewpoint of the 
concerned voter, who is by definition an outsider.
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9. Over-all conclusions

9.1 ES3B insufficiently secure
Security by obscurity is not  suitable as a primary 
security mechanism. That  an older DRE system 
such as this one can be made to run a different 
program is unsurprising. The extent  and impact  of 
the vulnerabilities presented in this paper in our 
view precludes using the ES3B in any election. 
Unless anyone comes up with an effective short-
term remedy that  we have not considered, we 
believe the short-term remedies available provide 
insufficient relief. 

Let  us for a moment  assume that the voting public 
will continue to have trust  in DRE-class systems, 
and let  us ignore the problematic lack of 
transparency and the accompanying threats posed 
by insiders. Even in such a scenario the mere lack 
of security features offered by modern processors 
(such as tamper-resistant key storage and a source 
of cryptographically strong random) mean the 
existing Nedap ES3B machines, no matter what 
software runs on them, cannot ever be made to 
meet any responsible security criteria for such a 
system.

9.2 Dutch e-voting requirements 
insufficient 
It  is important  to understand that  the ES3B meets 
all Dutch regulatory requirements. These 
requirements, although very detailed on topics that 
deal with availability, say absolutely nothing about 
security against  any kind of attack (Staatscourant, 
1997). Without exaggeration, even a brain-
numbingly insecure system would meet Dutch 
legal requirements, provided the buttons are of a 
specific size, the computer can withstand moist 
conditions without  presenting a shock hazard and 
no votes are lost  when power fails. Across our 
research, we noted remarkable similarities to the 
present  situation in the United States. Feldman et 
al. (2006: 19) write: “Despite their very serious 
security flaws, the Diebold DREs were certified 
according to federal and state standards. This 
demonstrates that the certification processes are 
deficient. The Federal Election Commission’s 2002 
Voting System Standards say relatively little about 
security, seeming to focus instead on the machine’s 
reliability if used non-maliciously” (Feldman et al., 
2006: 19). 

When a building that was built  to meet  all 
regulatory building requirements comes tumbling 
down without  cause, it probably means something 

was wrong with the requirements. We pose that the 
same is true here: the fact that  the ES3B is proven 
to be insufficiently secure to the degree shown in 
this paper while still meeting all applicable legal 
requirements implies that the legal requirements 
are grossly insufficient. If we decide we want to 
continue voting on computers, the legal 
requirements must  at  a minimum address basic 
computer security and  stipulate that election 
results can be independently verified. Existing 
voting computers will need to be modified to the 
new standards or to be replaced if they cannot meet 
these new requirements.

9.3 DRE voting not given enough thought
DRE systems make us dependent  on a single vote 
count done in software. People cannot  see 
electrons, so they cannot observe a vote count 
when a DRE voting system is used. Insufficient 
thought  has been given to the large number of 
implicit trust  relationships that  come with DRE 
systems, such as the near infinite trust placed in the 
entities building and certifying the systems. In 
addition, one has to consider the possibility that 
outside attackers have surreptitious access to one 
or more devices. Insider attacks are generally 
thought  to be more prevalent, and they are harder 
to prevent  and/or detect. The latter is especially 
true in systems of which only insiders are allowed 
to know how they work.

We can find no evidence that any of the various 
trust  relationships in the current  DRE voting 
systems in use in The Netherlands have been 
sufficiently explored. In fact, we cannot find any 
documents stating that they were considered at all. 
We predict that very few, if any, cases would 
warrant  the choice for a DRE system after such an 
analysis was done. Even if a DRE system was built 
according to today’s security requirements, it 
would still require almost  infinite trust in a very 
limited number of individuals and organizations, 
which we feel is fundamentally at  odds with the 
notion of a publicly verifiable election.

The Netherlands has a very simple electoral system 
compared to many other countries13. The fact that 
The Netherlands almost  exclusively makes use of  
e-voting systems can be excused only because the 
government introduced the computers very early 
on, at a time when security and trust considerations 
had not yet surfaced.

15

13 The Dutch cast only a single one-candidate vote per election, although sometimes two or three elections happen at the 
same time. There are many candidates in some elections though.



Acknowledgments
We gratefully acknowledge the contributions to the 
Nedap hack and security analysis by our partners 
Andreas Bogk, Dirk Engling, Felix Lindner, 
Hannes Mehnert, Frank Rieger, Pascal Scheffers, 
and Barry Wels. We also thank all the people of 
CryptoPhone and the Chaos Computer Club 
Berlin, Job de Haas, Peter Knoppers, Anne-Marie 
Oostveen, Marcel van der Peijl, Carla van 
Rijsbergen, Sander ‘t  Sas, Ferry Stoop, and the 
brave heroes at  the municipalities that lent  and sold 
us the Nedaps.

References
AIVD (2006) Aanvallen op het stemgeheim via 

elektromagnetische effecten. (Attacks on ballot 
secrecy through electromagnetic effects)
Algemene Inlichtingen- en Veiligheidsdienst, 
Directie Beveiliging, Nationaal Bureau voor 
Verbindingsbeveiliging, (comparable to US-
NSA). Available at: http://
www.wijvertrouwenstemcomputersniet.nl/
images/c/c0/20061027_aivd_rapport.pdf

Brennan Center of Justice (2006) The machinery of 
democracy: Protecting elections in an 
electronic world. Brennan Center Task Force on 
Voting System Security. Available at: 
http://www.brennancenter.org/programs/downloads/
Full20Report.pdf

Commission on Electronic Voting (2004) First 
Report of the Commission on Electronic Voting 
on the Secrecy, Accuracy and Testing of the 
Chosen Electronic Voting System.  Available at: 
http://www.cev.ie/htm/report/download_first.htm 

Feldman, J. A. Halderman, E. W. Felten (2006). 
Security Analysis of the Diebold AccuVote-TS 
Voting Machine. Paper presented at Electronic 
Voting Technology ’07. Available at: 
http://itpolicy.princeton.edu/voting/ts-paper.pdf 

Gonggrijp, Hengeveld et al. (2006) 
Nedap/Groenendaal ES3B voting computer, a 
security analysis. Available at http://
www.wijvertrouwenstemcomputersniet.nl/other/es3b-
en.pdf

Groenendaal, J. (2006) Wij vertrouwen 
stemcomputers niet. Nedap-Groenendaal 
Bureau voor Verkiezingen. Available at: 
http://www.election.nl/bizx_html/ISS/documents/
WIJVERTROUWENSTEMCOMPUTERSNIET.pdf

Haverkamp en Spies (2004), CDA, Kamervragen 
(official questions in parliament) 1 april 2004, 
KVR20183 / 2030411850 / 0304tkkvr1453 / 
ISSN 0921 - 7398

Hermans, L.M.L.H.A., M.J.W. van Twist (2007) 
Stemmachines, een verweesd dossier. (Voting 

machines, an orphaned dossier)
Available at: http://www.minbzk.nl/aspx/
download.aspx?file=/contents/pages/86914/
rapportstemmachineseenverweesddossier.pdf

Kerckhoffs, A. (1883) La Cryptographie Militaire. 
Journal des Sciences Militaires. 5-38. Available 
at: http://www.petitcolas.net/fabien/kerckhoffs/
la_cryptographie_militaire_i.htm

Kitcat, J. (2004) Source Availability and E-Voting: 
An Advocate Recants. Communications of the 
ACM. October 2004, Vol. 47, No. 10. Pp. 65-67.

Kohno, T., Stubblefield, A., Rubin, A.D, Wallach, 
D.S. (2004) Analysis of an Electronic Voting 
System. Available at: http://avirubin.com/vote.pdf

Mebane, W.R. (2006) Detecting Attempted 
Election Theft: Vote Counts, Voting Machines 
and Beford's Law. Paper for the 2006 Annual 
Meeting of the Midwest Political Science 
Associate, Chicago, IL, April 20-23.

Mercuri, R. and P. Neumann (2003) Security by 
Obscurity. Communications of the ACM. 
November 2003, Vol. 46, No. 11. Pp. 160.

MinBZK ((Dutch ministry of the Interior) (2006) 
Stemmachines nog betrouwbaarder. Available 
at:  http://www.wijvertrouwenstemcomputersniet.nl/
images/6/6e/MinBZK.nl_-_Stemmachines_nog_
betrouwbaarder.pdf

Nedap/Groenendaal (2006) Verkiezingsbulletin 
(Tweede Kamer 2006). Nummer 2. Available at: 
http://www.election.nl/bizx_html/ISS/documents/
Verkiezingsbulletin%202%20TK%202006.pdf

OSCE - Office for Democratic Institutions and 
Human Rights (2007) The Netherlands - 
Parliamentary Elections 22 November 2006 
Election Assessment Mission Report
Available at: http://www.osce.org/item/23602.html

Schneier, B. (2002) Secrecy, Security, and 
Obscurity. Crypto-Gram Newsletter, May 15, 
2002. Available at: http://www.schneier.com/
crypto-gram-0205.html#1

Schneier, B. (2004) The Nonsecurity of Secrecy. 
Communications of the ACM. October 2004, 
Vol. 47, No. 10. Pp. 120.

Staatscourant (1997) Regeling voorwaarden en 
goedkeuring stemmachines 1997. (regulation 
governing requirements and approval of voting 
machines 1997)  Staatscourant Nr. 134. Pp 
14-20.

Wagner D., Jefferson D., Bishop M. (2006) 
Security Analysis of the Diebold AccuBasic 
Interpreter. Voting Systems Technology 
Assessment Advisory Board (VSTAAB). 
Available at: http://www.ss.ca.gov/elections/
voting_systems/security_analysis_of_the_
diebold_accubasic_interpreter.pdf

16

http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf
http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf
http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf
http://www.election.nl/bizx_html/ISS/documents/Verkiezingsbulletin%202%20TK%202006.pdf

