
Prerendered User Interfaces for Higher-Assurance Electronic Voting

Ka-Ping Yee∗

ping@zesty.ca

David Wagner∗

daw@cs.berkeley.edu

Marti Hearst∗

hearst@sims.berkeley.edu

Steven M. Bellovin†

smb@cs.columbia.edu

Abstract

We propose an electronic voting machine architecture
in which the voting user interface is prerendered and
published before election day. The prerendered user
interface is a verifiable artifact — anelectronic sample
ballot— enabling public participation in the review, ver-
ification, usability testing, and accessibility testing of the
ballot. Preparing the user interface outside of the voting
machine dramatically reduces the amount and difficulty
of software verification required to assure the correctness
of the election result. We present a design for a high-
assurance touchscreen voting machine that supports a
wide range of user interface styles and demonstrate its
feasibility by implementing it in less than 300 lines of
Python code.

1 Introduction

Democratic elections are increasingly depending upon
electronic voting systems. In 2002, the United States
passed the Help America Vote Act [1], which includes
a requirement for “at least one direct recording elec-
tronic voting system or other voting system equipped
for individuals with disabilities at each polling place.”
Over $300 million in federal funds has been disbursed
specifically to pay for new voting machines [15]. Many
other governments around the world are planning ahead
for large-scale deployment of electronic voting.

Electronic voting machines have the potential to pro-
vide significant improvements in usability and acces-
sibility over paper ballots. For example, they can be
designed to help voters detect and correct mistakes;
they can provide alternate user interfaces for individuals
with disabilities; and they can be programmed with
support for more language choices than a typical paper
ballot. However, the electronic voting process lacks the

∗University of California, Berkeley, CA, 94720
†Columbia University, New York, NY 10027

transparency of paper voting, the correct functioning of
a computer program is difficult to assure, and computer
failures are an everyday part of modern life. Moreover,
elections are an especially high-profile and potentially
rewarding target for attack, and a broad range of parties
stand to benefit from influencing their outcome.

The typical challenge in software security is to design
software to defend against various threats. However,
because the stakes are so high for electronic voting, the
threat model must include the possibility of malicious
code in the voting system. Even in the absence of
deliberate insider fraud, well-intentioned programmers
can make mistakes. Thus, our challenge is not only
to design a secure voting machine program, but also to
design an overall architecture for the election system that
lets us confirm that it really is secure.

Though software is involved at many stages of the
election process, this work focuses on the software in
the voting machine itself. We will explain in Section 3.2
why we believe this to be the most critical software
component of the system. Unfortunately, the software
in today’s voting machines is far too large to allow
automated verification or thorough independent review,
given the time and cost constraints of the election equip-
ment certification process. In 2004, Kohno, Stubblefield,
Rubin, and Wallach [5] examined the source code for
the Diebold AccuVote TS machine and found it to
contain many serious design and engineering errors,
declaring it “far below even the most minimal security
standards applicable in other contexts.” The main Accu-
Vote TS program consists of over 31,000 lines of C++
code and resource scripts, ignoring comments and blank
lines. Verifying the correctness of a program this size is
overwhelmingly difficult.

We observe that the user interface (UI) is a major
contributor to software complexity. By our estimate,
the voting UI constitutes about 14,000 lines of the
aforementioned source code. The key idea we propose
is to construct and verify a prerendered description of

the UI before the election. Prerendering the UI yields
several significant advantages:

• It simplifies the software running in the voting
machine, facilitating its verification.

• It mitigates the conflict between accessibility and
security concerns by enabling the UI design to
be highly flexible without affecting the security
properties of the machine.

• It mitigates the conflict between the proprietary
interests of voting machine vendors and the public
benefits of transparency by reducing the portion of
code that has to be disclosed to evaluate the security
of the machine.

• It enables the UI to be updated and verified indepen-
dently of, and more easily than, the voting machine
software.

• It allows the UI to be separately published and to
be run on commodity hardware, enabling it to be
tested by anyone — not just those with access to the
equipment that will actually be used on election day.

In this paper, we propose an electronic voting machine
architecture based on the concept of a prerendered user
interface. We present a specific software design for a
touchscreen voting machine in this architecture, describe
our prototype implementation of the machine, and eval-
uate this implementation in terms of its security and
verifiability.

2 Goals

We begin by identifying six high-level goals for a secure,
verifiable, and usable election architecture.

1. Minimize trusted code. Reducing the amount
of trusted code (the portion of code that needs
to be verified) makes software verification easier
and more reliable. By “verification” we mean
informal code review, independent security audits,
formal methods, and everything in between. All
these kinds of software verification are highly sen-
sitive to code size, because small changes can have
far-reaching effects and software components can
interact in unexpected ways.

2. Design for verification. The difficulty of software
verification is reduced by designing code and data
structures specifically to make them more amenable
to analysis. Examples include componentization
and limited data flows.

3. Minimize code churn. If the trusted code changes
infrequently, each release can be tested and audited
more thoroughly. Hence, voting systems should be

designed so that customization or new functionality
can be provided without changing the trusted code.

4. Support public review. The success of a demo-
cratic election depends not only upon the actual
reliability of the voting system but also upon public
confidence in that reliability. Therefore, the election
system should allow as much as possible of the
election to be verifiable by the public, including
non-programmers.

5. Support accessibility. The architecture should
allow for user interfaces that enable individuals with
disabilities to vote privately and independently and
should facilitate their participation in reviewing and
testing these user interfaces.

6. Support interoperability. Election officials should
be able to mix and match components from many
vendors. To this end, the system should define clear
interfaces between components. This enhances
the effectiveness of testing, as components can be
tested in isolation and multiple implementations of
a component can be checked against each other.
Also, the resulting market competition may reduce
election costs.

The following are some basic requirements of
democratic elections:

• Each voter may only vote once, and only in contests
for which the voter is authorized.

• Votes must be reported accurately.

• Each voter’s choices must be kept secret.

• The voting system must not provide opportunities
for voters to sell their votes or to be coerced into
voting a particular way.

• The voting system must work reliably.

Standard ballot features that the voting system should
support include “vote fork out ofn,” write-ins, multiple
languages, and straight-ticket voting, and the system
should not preclude the possibility of ranked voting.
Electronic voting systems are also expected to prevent
voters from casting anovervote (choosing too many
selections) and to notify voters if they are about to
undervote(choose fewer than the allowed number of
selections).

In this work, we focus on producing voting machine
software that works correctly and verifying that it works
correctly. Other parts of the election system such as
absentee ballots, voting by mail, and voter registration
are outside of our scope. To run an accurate election,
it is also necessary to make sure the machines are
actually running the software that was approved and to
protect the voting machine and its storage media from
tampering. We do not address physical security and
chain-of-custody issues in this paper.

tally programballot design
tool voting machine

voter input
(secret)

voting software
(public)

ballot definition
(public)

anonymous votes
(public)

election officer input election result

Figure 1: Simplified block diagram of the proposed election system architecture. The dashed arrows hint at
the complex web of dependencies (including source code, operating systems, compilers, editors, and other tools)
underlying each software component. Publishing the inputs and outputs of the DRE (shown in bold) lets us cut away
these dependencies when performing a security evaluation.

3 Architecture

Election systems depend on software for many different
functions before, during, and after the actual day of
the election. Because so little information is typically
published about the programs used to conduct an election
and their inputs and outputs, trusting the outcome of
a computerized election today requires trusting nearly
everything in the system — including the software that
produces ballot definitions, the voting machine software,
the software that tallies votes, and all the operating sys-
tems, compilers, editors, and other tools that were used
to produce these programs. In the following sections,
we present a general election system architecture that
reduces what must be accepted on faith to trust the
validity of the election result.

3.1 Verification Methods

If a software component has inputx and outputy, and
if it is supposed to implement a deterministic function
f , there are two ways to check that the component has
produced the correct output:

1. Program verification. Examine the implementa-
tion of the software component and verify that it
matches the specification off . This may include
manual source code analysis, formal verification, or
other methods.

2. Result verification. Given x, computef(x) and
check that it matches the actual output,y. Do-
ing this requires records of bothx and y and an
independent implementation off .

Program verification only needs to be performed once
for a given implementation off , whereas result verifi-
cation must be performed for each timef is executed.
However, proving statements about the behaviour of

software programs is generally very difficult. The state
of the art in automated software verification can only
verify small programs of limited complexity, against
specifications that are difficult to write. Software review
by human experts is time-consuming and can be prone
to error. Furthermore, program verification requires
disclosure of the software code, which often faces legal,
financial, or political barriers. Disclosing code always
improves the transparency of the process, but it is use-
ful to be able to check the correctness of an election
without requiring inspection of all the code. For all of
these reasons, our architecture is designed to minimize
dependence on program verification.

3.2 Election Verification

“Direct recording electronic” (DRE) is the industry term
for the machine that handles voter input and recording of
votes. The DRE is the first step in the chain; its input is
a human interaction. Election rules forbid “leaking” vote
information that can be identified with specific voters, so
the human interaction must be kept secret. Consequently,
result verification of the DRE is not an option; program
verification is the only way to gain trust in the DRE.

However, if the DRE stores votes in anonymous form,
its output can be published. In addition, the inputs and
outputs of all other components of the system can be
published, and so can be checked by result verification.
Thus the only part of the process that requires program
verification is that part ranging from the input of the
voter’s selections to the point where the selections are
recorded anonymously.

Therefore, our approach is to minimize the size and
complexity of the DRE software (even if it means that
other components become more complex) and to publish
all of the DRE’s inputs and outputs — except for the
votes themselves, until they are anonymized — to enable
result verification of the rest of the process (Figure 1).

The ballot definition is published far enough in ad-
vance that it can be validated before election day. For
instance, the ballot definition might be published on
government websites and made available to candidates;
anyone would be able to download it and run software
on their own computer to see exactly what will be shown
to voters on election day. This provides a chance to
detect omitted races, misspelled candidate names, layout
errors, and other ballot errors. In this way, the published
ballot definition is analogous to the paper sample ballot
typically mailed to voters before an election.

The anonymized cast vote records from every DRE are
published for all to see after the election. Anyone can
add up the votes in these files to obtain the election-wide
totals and compare them against the official totals to
gain confidence that tallying was done correctly. Also,
pollworkers and observers might be encouraged to check
the summary tapes that are printed at the close of polls
against the published electronic vote files to verify that
the files were not tampered with while in transit.

The consequence is that neither the ballot layout soft-
ware nor the vote tallying software need to be verified.
The published ballot definitions, DRE software, and
anonymous vote records are sufficient to allow members
of the public to independently check the accuracy of the
election outcome.

3.3 Prerendering the User Interface

In a typical DRE, much of the software code is responsi-
ble for generating the voting user interface in real-time
on the running machine. This includes the code for
arranging the layout of elements on the screen, rendering
text in a variety of typefaces and languages, drawing
buttons, boxes, icons, and so on.

The DRE software can be considerably simplified by
moving this layout and rendering functionality into a
separate pre-election component. Instead of a ballot
definition (such as those used by today’s DREs) that lists
only essential information about contests and candidates,
we propose a ballot definition that describes the entire
user interface. For a visual interface, this would include
prerendered images of the screen and interface elements
exactly as the user will see them; for an audio interface,
this would include prerecorded sound clips.

There is some precedent for using prerendered
bitmaps in electronic voting machines. For example,
the ES&S iVotronic uses bitmap ballots [3], which
help provide flexible support for different languages.
The ballot definitions we propose contain not just the
prerendered images but a complete description of the
user interface — the locations where the images will
appear, the transitions from screen to screen, how these
transitions are triggered, and so on.

3.4 Virtual Machine

In our architecture, the ballot definition is a high-level,
platform-independent description of the user interface
for voting, displayed by avirtual machine(VM) that
provides a high-level interface to the input and output
hardware. The job of the VM is to respond to user
input by displaying images or playing sound clips as pre-
scribed by the ballot definition, keep track of the user’s
selections, and record the user’s selections anonymously.
Implementing the VM for a variety of DRE hardware
platforms would enable all of them to interoperate using
the same formats for ballot definitions and recorded
votes. We hypothesize that the VM implementation can
be made considerably smaller, simpler, and easier to
verify than the software in today’s DREs.

Our proposal can be compared to the previously pro-
posed “frog” voting architecture [2]: both are motivated
by a similar desire to reduce the size and complexity
of the trusted base on which the security of the voting
system rests. The frog architecture separates the voting
process into two steps: vote generation and vote casting.
The voter first selects their votes on the vote-generation
machine, which stores them on a “frog” (a storage
device). Then the voter puts the frog into the vote-casting
machine, which displays the contents of the frog for the
voter to check, and upon confirmation, casts the votes.

A key assumption of the frog architecture is that
responsibility for security rests on the simpler vote-
casting machine; the vote-generation machine will have
“no need for high security” [2]. This assumption requires
that we rely on voters to check their frogs carefully
before casting them. But some voters may give the
vote-casting machine only a cursory glance, and most
are likely to be influenced by confirmation bias [9], so
it remains possible that votes recorded incorrectly by the
vote-generation machine would go unnoticed. Even if
voters are willing to check their votes carefully, the vote-
generation machine remains in a position to influence
voters during the selection process. For example, the
vote-generation machine could present the options in a
biased way; it could change the wording of a ballot
measure to make an option seem more appealing or
even invert the sense of the question, swapping the
implications of “yes” and “no”; it could give misleading
instructions to voters, such as telling them to ignore the
vote-casting machine or to go to a different polling place.

Our proposed architecture therefore targets a broader
security goal: we wish to secure the entire voting user
interface including the vote selection process, in order to
avoid bias in the election’s measurement of the will of
the electorate. Prerendering the UI is not incompatible
with a further partitioning of the user interface into two
steps as suggested by the frog voting architecture.

3.5 Electronic Sample Ballot

The published ballot definition serves the role of an
electronic sample ballot, analogous to a sample ballot
in a paper election. Standardizing the file format of the
ballot definition and implementing the VM for consumer
PCs enables voters to try out the ballot in advance with
exactly the same user interface that they will see at the
polls. This could be used for training voters as well as
testing the ballot.

As we mentioned in the preceding section, verifying
the accuracy and fairness of the user interface is critical,
because the user interface of any voting machine is
in a position to mislead or otherwise influence voters
and hence influence the voter input. The published
electronic sample ballot gives the election averifiable
user interface, which can be examined and tested by all
voters, members of the disabled community, usability
experts, and accessibility experts.

Today, less commonly used ballot designs, such as
ballots for voters with disabilities or ballots in alternate
languages, receive significantly less attention, as only
the election office can compose and check electronic
ballots. A recent, rather alarming example of this lack of
attention occurred at the June 2006 primary election in
Santa Clara County, where pollworkers discovered that
there was no “continue” button on one of the Chinese
screens [4], which made it impossible to cast the Chinese
ballot. A published sample ballot would have increased
the chances of catching such an error before the election.
Publishing an electronic sample ballot helps to level
the playing field for members of minority communities
and empowers them to play a role in ensuring that the
electronic ballot serves them fairly.

3.6 Ballot Definition Visualization

Running the ballot definition in a live test might show
that the ballot appears to behave correctly, but it would
not be a sure way to test the complete behaviour of
the ballot. To be certain that the ballot contains no
hidden behaviour or incorrect behaviour triggered by rare
combinations of inputs, one would have to examine the
ballot definition file itself.

Therefore, we propose a software tool that transforms
an electronic sample ballot into a human-readable for-
mat that completely describes the user interface. One
possible visualization would be a flowchart-like diagram
that illustrates the steps of the user interface with the
prerendered screen images. Anyone would be able to
download the electronic sample ballot, use the program
to produce a diagram, print it out, and examine it. This
would make possible a new level of assurance: the
electronic voting UI could be verified even by non-

programmers. The hardcopy of the UI visualization
could also be archived in the records of the election. The
visualization alone should be sufficient to reconstruct the
interface that voters used at the polls.

3.7 Anonymous Recording

We return now to two security requirements mentioned
previously: voter privacy and coercion prevention.

To protect voter privacy, ballots should be stored
without any identifying information. The ballots should
also be stored in an order independent of the order in
which they were cast, so that someone who observes
the sequence of voters entering the polling place cannot
correlate the sequence of voters with the sequence of
stored ballots.

To prevent coercion, voters must not be allowed to
put identifying marks on their ballots. In one possible
coercion scenario, the coercing party gives each voter
a unique secret phrase to enter as a write-in candidate.
For example, suppose Ted tells Alice to vote for Carol
for President with “moldy explosion” as write-in for
Dogcatcher, and also tells Bob to vote for Carol for Pres-
ident with “wrinkled tourbus” as write-in for Dogcatcher.
Then the recorded ballots are no longer publishable
because they would enable Ted to confirm, and thus buy,
Alice’s and Bob’s votes.

One way to resolve this problem is to store each of
the voter’s selections as a separate item instead of the
entire ballot as a unit. There has been precedent for such
a scheme in some paper elections, where the ballots are
perforated so that they can be separated into strips, one
for each contest, before being counted. If an individual
voter’s selections cannot be associated with each other,
then the voter cannot use a specially marked selection to
identify the rest of their ballot. Splitting up the ballot
would conflict with election rules in some states that
require the entire ballot to be recorded intact; on the other
hand, it could be argued that a constitutional right to a
secret ballot takes priority over state regulations.

4 Design

This section describes our current design for a touch-
screen voting machine based on the above architecture
that comes close to the richness and capability of today’s
touchscreen voting interfaces for sighted voters. This
design supports only a visual interface, but could be ex-
tended to support audio or braille interfaces for visually
impaired, blind, or deafblind voters.

A traditional method of recording the voter’s selec-
tions is to store a numeric code or a text string identifying
each selected candidate. Instead, we store the image
containing the candidate’s name exactly as it was shown

to the voter, or for a write-in, the sequence of images of
the characters selected by the voter, to reduce the risk of
confusion.

Our design allows the voter to choose one or more
options from a list of options, which is sufficient to
emulate any choice that could be expressed by selecting
bubbles or arrows on an optical-scan ballot. We discuss
ways to support ranking of options in Section 7.5.

4.1 Ballot Definition Format

The ballot definition is divided into two parts — the
ballot modeland theimage library— corresponding to
the medium-independent and medium-specific informa-
tion about the voting user interface (Figure 2). The
ballot model specifies the interaction sequence, while the
image library specifies the appearance.

Separating the ballot model from the image library
reduces the cost and effort of validating changes to
the ballot. Replacing the image library is sufficient to
adjust the layout or visual style of the ballot, change the
display resolution, or translate the interface into another
language, all without altering the ballot model. For these
kinds of changes, only the new image library needs to
be validated, not the entire ballot definition. Comparing
two image libraries (for example, to confirm the accuracy
of a language translation) is easier than checking the
correctness of a ballot model.

4.1.1 Ballot Model

The ballot model consists of an array ofcontests, an array
of pages, and an array ofsubpages.

A contestis a question being put to the voters, such as
a referendum on an issue or the election of a candidate
(or several candidates) to a position. Each contest has
an integer parametermax sels specifying the maximum
number of selections that a voter may choose (usually
1, but possibly more in contests that allow choosing
multiple candidates) and an integer parametermax chars
specifying the maximum number of characters that can
be entered for a write-in option.

The page is the basic unit of presentation. For
example, a single page might display some instructions,
a description of a contest, or a list of available options.
At any given moment, one of the pages is thecurrent
page. The user interface begins on the first page in the
array of pages. When it transitions to the last page, the
ballot is cast with the user’s current selections.

Associated with each page are arrays oftargets, op-
tions, reviews, andwrite-ins, and any of these elements
can beactivatedby the user. In a touchscreen interface,
these elements correspond to rectangular areas of the
screen that are activated by touches.

ballot model

pagepagepage

subpagesubpagesubpage

contestcontestcontest
 int max_sels
 int max_chars targettargettarget

 int action
 int page_i
 int contest_i

optionoptionoption
 int contest_i

write-inwrite-inwrite-in
 int contest_i

reviewreviewreview
 int contest_i

subtargetsubtargetsubtarget
 int action

image library
 int width
 int height

spritespritesprite
 int width
 int height
 byte[] pixels

layoutlayoutlayout

background
 int width
 int height
 byte[] pixels

slotslotslot
 int left
 int top
 int width
 int height

Figure 2: Structure of the ballot definition. Names
ending with i indicate array indices.

A target is a user-triggered transition to another page.
In a touchscreen interface, a target appears as a button
that the user can press. Optionally, a target can also
trigger one of the following actions:

• Clear all the selections in a particular contest.

• Clear all the selections in the entire ballot.

An option is an option that the user can choose
in a particular contest. For example, a contest for
President would have one option for each of the eligible
candidates; a referendum contest would typically have
one option for “Yes” and one option for “No.” Each
option belongs to exactly one page, though there may
be options on different pages that belong to the same
contest — for example, if the contest has too many op-
tions to fit on one page. Activating an option toggles

background image

option (slot 4)

write-in (slot 5)

target (slot 0) target (slot 1) target (slot 2) target (slot 3)

write-in characters (slots 6–26)

write-in characters (slots 28–48)
write-in (slot 27)

Figure 3: An example of a selection page with two options currently selected, and its corresponding layout.

it between a selected state and an unselected state. In a
touchscreen interface, an option appears as a labelled box
that changes appearance to show whether it is selected.

A write-in is a write-in option. It can be in a
selected or unselected state, just like a regular option;
when selected, it also has an associated list of entered
characters. When a write-in is activated, it triggers a
jump to asubpagewhere the voter can type in the text
of the write-in selection.

A review displays the current selections in a particular
contest. Activating a review has no effect, though targets
can overlap reviews. In a touchscreen interface, a review
appears as a screen area (or multiple screen areas) filled
in with the option (or options) currently selected in its
associated contest. For example, a confirmation page
could summarize the voter’s selections by presenting
reviews for several contests.

A subpageis a temporary page for entering a write-in.
A subpage is like a subroutine call, but only one level
deep — the only possible transition is back to the current
page. In a touchscreen interface, a subpage provides
a text field and an on-screen keyboard for the voter to
type in the name of a write-in candidate. The number
of subpages is determined by the contests: there is one
subpage for each contest that contains a write-in. A
subpage contains an array ofsubtargets.

A subtarget triggers one of these actions:

• APPEND a particular character to the text field.

• APPEND2: if the text field is not empty, then append
a particular character to the text field.

• DELETE the last character.

• CLEAR all the characters.

• ACCEPT the write-in text and return.

• CANCEL the write-in text and return.

If the write-in text already containsmax chars charac-
ters, activating anAPPEND or APPEND2 subtarget has
no effect. If the write-in text is empty, activating an
APPEND2 or ACCEPT subtarget has no effect. If the
subpage is exited by anACCEPT subtarget, the write-in
option becomes selected and acquires the contents of the
text field. If the subpage is exited by aCANCEL subtarget,
the write-in option becomes unselected and empty. Thus,
it is not possible for a write-in to contain text yet remain
unselected.

Because anACCEPT subtarget only works when there
is write-in text present, a write-in cannot be simultane-
ously empty and selected. The purpose ofAPPEND2 is to
prevent a write-in fromappearingempty and yet being
selected. For example, if the keyboard’s “space” button
is an APPEND2 subtarget, then the write-in text cannot
consist of only spaces.

4.1.2 Image Library

The image library consists of an array oflayoutsand an
array ofsprites, and also specifies the screen dimensions
in pixels.

A layout consists of a background image and an array
of slots. Each page or subpage corresponds to exactly
one layout, and vice versa. Aslot is a rectangular region
of the screen where a sprite can be pasted or where a
touch will have an effect.

A sprite is an image smaller than the screen size
that is meant to be pasted into a slot on a background
image. The array of sprites contains images of options
and write-ins in their selected states, images of characters
that can be typed into a write-in, and the image of the text
entry cursor shown while entering a write-in. To keep the
DRE software as simple as possible, all images are stored
uncompressed with 3 bytes per pixel.

APPEND2
subtarget (slot 32)

subtarget (slot 1)
CLEAR

background image

CANCEL subtarget (slot 2) ACCEPT subtarget (slot 3)

write-in characters (slots 33–53)subtarget (slot 0)
DELETE

APPEND subtargets (slots 4–31)

character sprites cursor sprite

Figure 4: An example of a write-in subpage with a few characters entered, and its corresponding layout.

In a layout corresponding to a page, the slots cor-
respond to the targets, options, write-ins, and reviews
for that page. Each target has one slot, specifying the
touch region that activates the target; the image of the
target button (or other widget) is part of the background
image. Each option has one slot, which specifies both its
touch region and also the position for pasting the sprite
showing the option in its selected state. The image of the
unselected option is part of the background image, and
when the option is selected, the sprite is pasted over it.
Each write-in also has a sprite for its selected state, which
would typically look like a selected option but with space
provided for the write-in text. A write-in has one slot
for its touch region and for pasting the selected write-in
sprite, andmax chars more slots specifying the positions
where the entered characters are to be pasted. Each
review hasmax sels groups of slots (for displaying up
to max sels options selected by the voter). In each group
of slots, there is one slot for pasting the selected option
sprite andmax chars slots for displaying the write-in text
if a write-in is selected.

In the layout corresponding to a subpage, the slots
correspond to the subtargets and character slots for the
page. Each subtarget has one slot, the touch region
that activates it. Additionally there aremax chars slots
specifying the positions where the entered characters are
to be pasted.

4.1.3 Referential Integrity

To simplify verification, the ballot format minimizes its
use of pointers and other kinds of references. There are
only two kinds of references in these data structures:

• Targets refer to the page they transition to. This
is necessary to allow for multiple outgoing and
incoming transitions to and from each page.

• Targets, options, write-ins, and reviews refer to
contests. This is necessary to allow options, write-
ins, and reviews to be freely arranged among the
pages, so there can be multiple contests on a single
page or multiple pages for a single contest.

These references are stored as integer array indices in
the ballot definition because it is simpler to verify that an
index is in range than to verify that a pointer is valid.
All other associations between elements of the ballot
definition are implied through structural correspondence.
For instance, if there arep pages andq subpages, then
there are exactlyp + q layouts in the layout array, where
the firstp are for pages and the lastq are for subpages.
This use of corresponding array indices avoids the need
for pages or layouts to contain pointers to each other.

Similarly, the meanings of the slots are determined
by their order in the slot array. The slot array for a
page contains, in order, one slot for each target, then one
slot for each option, then1 + max chars slots for each
write-in, thenmax sels× (1 + max chars) slots for each
review. The slot array for a subpage contains one slot
for each subtarget followed bymax chars slots for the
entered text.

The sprite array contains one sprite for each option
and write-in, in the order they appear among the pages,
followed by, for each subpage, a character sprite for each
APPEND or APPEND2 subtarget and one cursor image
sprite.

4.1.4 Well-formedness and Validity

We distinguish two different notions of the correctness
of a ballot definition. A ballot definition iswell-formed
if it satisfies the assumptions made by the virtual ma-
chine implementation. A ballot definition isvalid if it
represents an acceptable user interface for voting.

Because the ballot definition must be well-formed
in order for the VM to read it and operate safely and
correctly, a verifier in the voting machine checks for
well-formedness before accepting a ballot definition.
To be well-formed, a ballot definition must meet the
following conditions:

• There is at least one page and one contest.

• There is one subpage for each contest that contains
a write-in.

• There is one layout for each page or subpage.

• Every index referring to a page or contest is in
bounds for its respective array.

• Every target or subtarget has a validaction.

• Every layout contains the correct number of slots
to match its page or subpage, as described in
Section 4.1.3.

• All background images match the screen size.

• All slots fit entirely within the screen bounds.

• All option slots, write-in slots, review slots, option
sprites, and write-in sprites associated with the
same contest have the same size.

• All character slots, character sprites, and cursor
sprites associated with the same contest have the
same size.

• The image library contains the correct number of
sprites to match the ballot model, as described in
Section 4.1.3.

Validity, on the other hand, does not have a single
definition because it depends on election regulations that
can vary by locality. The following are some examples
of conditions for validity that we expect to be common,
as they prevent some obvious pitfalls and sources of
confusion in the user interface:

• Target, option, write-in, and review slots do not
overlap each other, except that target slots may
overlap review slots.

• Character slots do not overlap each other and fit
inside their corresponding write-in or review slot.

• Character slots in write-ins and reviews are
arranged in the same relative positions as the
character slots on the corresponding subpages.

• The user is never trapped in a subgraph of pages,
except after arriving on the last page.

• The last page contains no target, option, write-in, or
review slots.

• There exists some transition path from the first page
to every other page.

• Every subpage contains anACCEPT subtarget,
a CANCEL subtarget, and at least oneAPPEND

subtarget.

• Before casting the ballot (arriving at the last page),
the user must be shown pages that contain reviews
for all the contests.

The ballot design tool could provide guidance, enforce
validity conditions, or give notification when validity
conditions are not met.

4.2 Virtual Machine

The VM is composed of four software modules: the
navigator, thevideo driver, theevent loop, and thevote
recorder (Figure 5). This separation does not in itself
prevent attacks, as the corruption of any module still
has the potential to corrupt the outcome of the election.
Rather, the separation into modules is an instance of de-
sign for verification. Establishing limited responsibilities
for each module and limited data flows among modules
facilitates the auditing and testing necessary to eliminate
vulnerabilities to attack.

The navigator walks through the pages in the ballot
model, always starting on the first page. It keeps track
of the current page, the user’s current selections, the
current subpage (if any), and the entered characters on
the current subpage (if any). The navigator responds to
just one message:

• When told toactivate a slot, the navigator takes
the action for the corresponding target or subtarget,
toggles the corresponding option, or transitions to
the subpage for the corresponding write-in.

The navigator issues three kinds of messages to other
modules:

• It tells the video driver togoto a layout upon
transition to a page or subpage. The message
specifies the layout index.

• It tells the video driver topaste sprites into slots as
necessary to display options, write-ins, reviews, and
write-in text. The message specifies the sprite index
and slot index.

• It tells the vote recorder towrite the selections when
the ballot is cast (when transitioning to the last
page). The message contains an array ofmax sels
selections for each contest. Each selection is a list of
integers: for a selected option this is a single integer,
the index of the selected sprite; for a write-in, this
is the index of the selected sprite followed by the
indices of the entered character sprites.

Thevideo driver has only one piece of state: it keeps
track of which layout is the current layout. It interprets
the slot index in apaste command in the context of the
current layout. The video driver handles three kinds of
messages:

LEGEND

navigatorvideo driver

image library

event loop

frame buffer

goto(layout_i)
paste(sprite_i, slot_i)

 activate(slot_i)locate(x, y)

touch sensor
x, y

cast vote records

write(selections)

ballot definition

software
module

hardware
device

data

one-way data flow

vote recorder

 slot_i

ballot model

Figure 5: Block diagram of the virtual machine, which consists of the four software modules in bold. The arguments
layout i, sprite i, slot i, x, andy are integers;selections is an array of arrays of lists of integers.

• When told togoto a layout, the video driver copies
the background image into the frame buffer and
remembers the given layout index.

• When told topaste a sprite into a slot, the video
driver copies the sprite into the frame buffer at the
position specified by the slot.

• When told to locate a given point by its
co-ordinates, the video driver looks through the
slots in the current layout and returns the index of
the first slot that contains the point, or a failure
code. (If the point lies within an overlapping target
and review, the target slot will be returned because
targets come first.)

Theevent loopreceives touch events from the screen’s
touch sensor. We assume that when the user touches
the screen, the sensor reports(x, y) coordinates in the
same coordinate space used for displaying images. Upon
receiving a touch event, the event loop asks the video
driver to locate the corresponding slot, then passes the
slot number on to the navigator in anactivate message.

The vote recorder records the voter’s selections in
non-volatile storage upon receiving awrite message
from the navigator. The votes are recorded using a
tamper-evident, history-independent, subliminal-free
storage method. Molnar, Kohno, Sastry, and Wagner
have proposed several schemes with these properties [7]
for storing ballots on a programmable read-only memory
(PROM). Each stored selection includes or indicates its
associated ballot definition so that the meaning of the
selections is apparent from the storage contents.

5 Implementation

To evaluate the feasibility and complexity of our voting
machine design, we built a prototype implementation in
Python [12] that runs on Linux, MacOS, or Windows.

Our prototype uses Pygame [11], an open-source multi-
media library for Python, to handle graphics and mouse
input. It runs on a commodity PC using the video display
and the mouse to simulate a touchscreen device.

The prototype reads the ballot definition from a file
namedballot and writes vote records to a file named
votes . The ballot file represents read-only media
and is opened read-only; thevotes file represents a
PROM. Each time the program runs, it casts at most one
ballot, then enters a terminal state.

Our prototype models the procedures that would take
place in a real election as follows. Creating an empty
votes file corresponds to opening the polls at the begin-
ning of election day with a blank PROM. Restarting the
program corresponds to activating the voting machine
for a single voter. We assume that only the pollworker
has the ability to restart the machine, so pollworkers
can ensure that each voter only votes once. Setting the
votes file read-only corresponds to closing the polls
and removing the PROM.

The source code for our prototype implementation
and a sample ballot definition file are available online at
http://zesty.ca/voting/ .

5.1 Ballot Definition File

A separate Python module, not shown in Figure 5, reads
theballot file, verifies all the conditions necessary to
determine that it is well-formed, and deserializes it to
objects in memory. All integers in the file are stored as
4-byte unsigned integers; images are uncompressed with
3 bytes (red, green, and blue) for each pixel.

The prototype does not include any user interface
for selecting which ballot definition to use; instead, it
assumes that the appropriateballot file will be present
when the program starts. Differentballot files can be
used for different runs.

before recording

erased (all zeroes) unused (all ones)old sorted list

writing new list in progress

old sorted list new sorted list

erasing old list in progress

new sorted listold sorted list

recording complete

new sorted list

maximum space that could have been used to store all
preceding lists, regardless of order in which votes were cast

first flag indicates start of valid list of votes

Figure 6: Storing votes in a copyover list. The list is always written in sorted order and the amount of erased space
preceding the list is independent of the size of previous lists, so that no information is revealed about the order in
which votes were cast. On a PROM, changing a bit from 1 to 0 is an irreversible operation.

Note that the selection of a ballot definition can be
divided into two parts: choices that have to be authorized
by the pollworker (such as choosing which precinct’s
ballot to use) and choices that the voter is allowed to
make (such as choosing a preferred language). The
former type of choice can be implemented by having
the pollworker select theballot file. The latter type
of choice can be implemented either by having the
pollworker select a ballot definition file at the voter’s
request, or by combining multiple ballots into a single
ballot definition. For example, a ballot could support
both English and French by including all the pages for
an English ballot and all the pages for a French ballot,
with a starting page to let the user choose between them.

We leave open the question of how the pollworker’s
selection would be implemented in hardware. One
possibility would be for the ballot definitions to be
stored on individual write-protected memory cards; to
support voting for multiple precincts, a pollworker would
insert the appropriate precinct’s ballot definition card to
activate the voting machine for a single voting session.
Alternatively, all the ballot definitions could be stored on
the machine in advance, and the pollworker would use
some other means to choose one when starting each new
voting session. In either case, our software prototype
models this step simply as having the authorized choice
of ballot file be present when the program starts.

5.2 Vote Storage File

Thevotes file is used to simulate a PROM, a solid-state
storage device initially filled with 1 bits; writing to a
PROM can change 1 bits to 0 bits, but never the reverse.
The vote recorder writes to the file in a manner consistent
with this property.

For this prototype, we have chosen to store the bal-
lots using acopyover list [7], because it is history-
independent, simple to implement, and does not depend
on a random number generator. A copyover list is a
list of items stored in sorted order; each time we add
items to the list, we write a new copy of the entire list
in sorted order and erase the old copy by overwriting
it with zeroes. Because the items are stored in sorted
order, the list does not reveal the order in which the items
were added. A copyover list usesO(n2) space in the
number of items, but previous analysis [7] shows that
only a modest and inexpensive amount of storage would
be required to handle all the votes that could be expected
to be cast on one machine in one day.

The items in the copyover list are the individual selec-
tions within each contest from all the voters. Each item
consists of the SHA-1 hash [8] of the ballot definition,
the integer index of the contest, and the integer index of
the selected option sprite. For a write-in selection, this is
followed by the indices of the selected character sprites.
All integers are stored as 4-byte unsigned integers. The
individual selections are stored as separate items so that
the votes file can be published without letting voters
mark their ballots to prove how they voted, as explained
in Section 3.7.

Because the items in the list can vary in length, the size
of the list depends on the contents of the selections. If the
new list were stored immediately after the old list, the
size of the erased space would reveal something about
the size of the old list and hence about the sequence
of votes. (For example, if two selections are stored,
one with a short write-in and one with a long write-
in, then casting the long one first would yield a larger
erased space than if they were cast in the opposite order.)
Therefore, we always erase the maximum amount of

space that would have been required, regardless of the
order in which the selections were added to the list.

A flag value is stored at the beginning of each list, and
the list is encoded so that it cannot contain the flag value.
The first occurrence of the flag in the file is considered
to signal the start of the current list of votes. After the
new list is written, erasing the flag in front of the old
list commits to the new list, as shown in Figure 6. This
commitment is atomic, because changing even one bit
invalidates the flag.

5.3 Interpreting Recorded Votes

For a stored selection to have well-defined semantics, it
must be somehow associated with a ballot definition. We
considered four ways to do this:

1. Store an entire copy of the ballot definition with
each selection.

2. Assume a pre-established global mapping of iden-
tifiers to ballot definitions; store an identifier with
each selection.

3. Store a cryptographic hash of the ballot definition
with each selection.

4. Store an array of ballot definitions, then store an
array index with each selection.

The first scheme is simple, but uses a lot of storage
space. At a resolution of 1024 by 768 pixels, a back-
ground image for a page occupies about 2.4 megabytes;
a typical ballot definition is on the order of 10 to 100
megabytes. Storing a few hundred votes would require
several gigabytes of space.

The second scheme uses very little space, but depends
on management of a global namespace of ballot defini-
tion identifiers, which might be brittle and error-prone. If
a vote record says that it belongs to ballot definition #34
and there is a disagreement about which ballot definition
was #34, the vote record becomes meaningless.

We chose the third scheme for our prototype because
it is space-efficient, and as long as the hash function
is collision-resistant, there can be no ambiguity about
which ballot definition is associated with each vote
record. However, in order to ascertain the true meaning
of a vote, one must otherwise obtain a copy of the
ballot definition. Our architecture assumes that the ballot
definitions are published, so this is not a serious problem.

The fourth scheme stores the actual ballot definitions,
yielding a vote record that is fully self-contained. But in
order to store all the definitions on write-once storage,
without revealing any information about the order in
which they were used, and without using very large
amounts of space, all the acceptable ballot definitions
must be known in advance. This scheme would make

sense for an implementation where the machine provides
some way for the pollworker to select which ballot
definition to use.

If the list of acceptable ballot definitions is fixed in
advance, it would be possible to use just one storage
device instead of two. The storage medium would
initially contain all the ballot definitions; the machine
would both read the ballot definitions from it and append
the vote records to it. In such an alternative scheme,
vote records could not become inadvertently separated
from their ballot definitions, but it might be more difficult
to provide a hardware-based guarantee that the ballot
definitions are never alterable.

6 Evaluation

6.1 Size

The entire prototype implementation is 293 lines long,
not including comments and blank lines. The breakdown
of module sizes is as follows:

ballot definition loader and verifier 126 lines
event loop 13 lines
navigator 94 lines
video driver 22 lines
subtotal (user interface) 255 lines
vote recorder 38 lines

total 293 lines

6.2 Dependencies

Our prototype runs on Python version 2.3. We have tried
to minimize the dependencies in our implementation
so that the size of the Python code gives a reasonable
indication of the true complexity of the program. We
use only one collection type, the Python list. Although
some lists change length during runtime, every list has
an upper bound on its length determined by the ballot
definition, so an implementation based on arrays could
preallocate the necessary space.

6.2.1 User Interface Modules

The user interface modules import nothing from
Python’s standard library and use only the following
built-in functions:

• open andread on the ballot definition file.

• ord to convert characters to integers.

• enumerate andrange for iterating over lists.

• len and theremove method on lists.

The only Pygame drawing function that we use isblit ,
which copies a bitmap onto the screen.

6.2.2 Vote Recorder Module

The vote recorder uses Python’s built-insha module for
computing the SHA-1 hash of the ballot definition, and
also the following built-in functions:

• open , read , write , seek , andtell on the vote storage
file to simulate access to a PROM.

• ord andchr to convert characters to integers.

• enumerate for iterating over lists.

• Thesort method to sort the copyover list.

• len andmax to find the longest item in the copyover
list.

6.3 Functionality

Our design allows a wide range of possible ballot
formats. For instance, our prototype can support:

• both general and primary elections

• ballots in any language and any typeface

• voter instructions at any point in the process

• multiple contests on a single screen

• splitting a contest over multiple screens

• contests allowing more than one selection

• photographs or logos shown with candidates

• write-in text in any alphabetic language

• review of selections before casting the ballot

• jumping directly to specific contests or review
screens

• regulations requiring voters to review their
selections before casting the ballot

• regulations restricting the number of times that
voters may review their selections

Because our implementation of write-ins assumes that
each character is selected with a single keypress on the
touchscreen, it can only support alphabetic languages;
write-ins in ideographic writing systems such as Chinese
are not supported.

Our design does not support an audio interface or
a printed record; these are discussed in Section 7. It
does not support straight-ticket voting, ranked voting,
cross-endorsed candidates, automatic ballot rotation, or
generation of audit logs, though it could be extended to
include these features.

Our prototype does not provide administrative func-
tions such as viewing vote counts or changing configu-
ration settings. It also does not perform encryption; by
design, there is no need to encrypt the stored votes.

6.4 Separation of Concerns

Our prototype is divided into five modules that can be
implemented and inspected separately. Each module has
a limited responsibility, which makes it easier to audit
and test.

The ballot definition loader is responsible for estab-
lishing that the ballot definition is well-formed. If the
loader is implemented correctly, and if the other modules
rely only on the conditions of well-formedness, then
the only possible kind of software failure is a failure to
load the ballot definition. Successful completion of the
loading and verification step assures that software errors
cannot occur during the voting session.

It is easy to see by direct inspection of the source code
that all modules other than the event loop only react to
messages they receive. The event loop is the only module
capable of initiating messages, but it is also the smallest
and easiest to audit.

The video driver is a passive component, never send-
ing any messages at all. In particular, the video driver
does not have the authority to activate slots (that is, it
cannot “press buttons” in the interface), which lessens
our vulnerability to errors in its implementation.

The navigator has access to only the ballot model and
cannot draw arbitrarily on the display. Because it cannot
see the image data, it cannot determine the semantics
of the user’s selections. Freezing the implementation
of the VM before choosing the order of candidates on
the ballot would make it difficult for even the author of
the navigator to bias the vote for or against a specific
candidate. Also, the only input to the navigator is a slot
number, which is a small integer, so the navigator can be
subjected to exhaustive testing.

The voting machine has no non-volatile storage other
than the ballot definition and the cast vote storage.
Because the machine is restarted for each new voting
session, and because the ballot definition is read-only,
the only state retained between voting sessions is the
vote storage. Furthermore, the vote recorder module
only receives messages and never sends any messages
to any other software module, so no information in
the vote storage can reach any of the other modules.
Consequently, the user interface seen by each voter
is determined only by the ballot definition and cannot
reveal any information about previous voting sessions.
Also, this ensures that all voters using the same ballot
definition receive the same voting experience.

6.5 Election Rules

Election regulations concerning the ballot are upheld
either by the implementation of the navigator module or
by validating the ballot definition.

By design, our prototype can only cast one ballot each
time it runs. It is easy to confirm by inspection of the
navigator that the only way to cast a ballot is to arrive at
the last page and to see that the last page is a terminal
node in the ballot definition.

It is also straightforward to verify that overvoting is
impossible, because only the navigator can manipulate
the user’s selections, and there are only two places in the
code where an item is added to the selection list.

Other election process rules can be verified by examin-
ing the ballot definition. For example, to ensure that the
voter will be notified of undervotes before casting the
ballot, we would check the graph of transitions among
pages to see that the voter must proceed through review
pages before arriving at any page that can cast the ballot.

6.6 Comparison

At only 293 lines of Python, our prototype code is much
smaller than the 31,000 lines of C++ in the AccuVote TS.
It may be slightly more appropriate to compare our 255
lines of UI code with the AccuVote’s 14,000 lines of UI
code — but neither comparison is entirely fair, because
our prototype lacks some of the AccuVote’s functionality
and the two systems have different sets of dependencies.
Nonetheless, the correctness of our code is certainly
easier to assure than the correctness of the AccuVote TS
code. In general, programs with less code tend to be
easier to review, easier to test, less likely to contain bugs,
and less likely to crash.

One reason that we have less code is our choice of
programming language. Our prototype requires a Python
interpreter, whereas the AccuVote TS does not. On
the other hand, the AccuVote TS software depends on
Microsoft Windows CE and builds its user interface
using the Microsoft Foundation Classes, which are much
larger and more complex that theblit functionality we
use from Pygame.

It is not unreasonable to consider running Python on
voting machines. Python is widely deployed and vetted
and is supported by an active developer community.
Unlike Windows CE and MFC, Python is a mature open
source project, distributed with an extensive suite of re-
gression tests. As a data point concerning Python’s size,
note that Nokia has released a Python interpreter [10]
that fits in a 504-kilobyte installation package, which
also includes over 40 Python library modules that we do
not use.

Alternatively, the Python code could be translated into
a compiled language. Although we did use a higher-level
language, we have been careful to minimize our use
of Python’s library modules and built-in functions, as
described in Section 6.2. It is reasonable to expect that
translating our code into a compiled language would

multiply its size by a factor of 3 or 4, but not by 100.
Despite its small size, our prototype maintains clear

boundaries and minimal data flow among its five mod-
ules. As described earlier in this section, many of the
desired security properties of the voting machine are
straightforward to verify in our prototype, due to its
design. The AccuVote TS code does not lend itself to
similarly easy analysis.

7 Open Issues

This section sketches out some of our ideas for ways
to add important missing functionality to our design.
Our intention is to show that the basic architecture we
have described does not pose fundamental obstacles to
adding these essential features, not necessarily to present
optimal solutions for achieving them.

7.1 Accessible Interfaces

One way to provide an audio interface would be to
add asound library to the ballot definition, containing
prerecorded audio clips of spoken instructions, contest
descriptions, and candidate names. A new module, the
audio driver, would play clips from the sound library
upon request by the navigator.

The event loop would handle user input from hardware
buttons, and the ballot definition would specify addi-
tional targets for handling button presses. Extending the
event loop to support hardware buttons would also be a
way to support alternate input devices for voters with
physical disabilities; the voting machine could provide
a standard hardware interface for plugging in a wide
variety of switch inputs.

Combined video and audio interfaces can be very
helpful for users with impaired vision and we aim to
provide synchronized video and audio in our future work
on an accessible design.

Although the majority of blind individuals do not
use braille, a braille interface would provide access to
deafblind voters and improve access for those who prefer
braille. This might be implemented with the addition of
another ballot definition component containing data to be
sent to a braille display.

7.2 Printing

Our design could be extended to produce a voter-
verifiable ballot record by adding a print driver module
that controls the printer. For a DRE with a prerendered
user interface, the printout might contain either the exact
images that the voter saw or printed text representing the
voter’s selections.

For a graphical printout, the print driver module would
have access only to the image library, and would tell the
printer to print the sprites that the user selected.

One way to support a text printout would be to add
a dictionary component to the ballot definition that
associates each contest and sprite with a string. Only the
print driver module would have access to the dictionary;
it would send these strings to the printer to describe the
user’s selections.

7.3 Audit Logging

The division of the software into modules makes commu-
nication among the modules a natural place to introduce
audit logging. An audit log would record the ballot
definition together with the sequence of all the messages
sent between modules. The audit log would not normally
be published, but in the event of a dispute, it could be
used to replay the user interaction sequence to reveal
both software errors and voter errors. Note that to protect
voter privacy, the interaction sequence for each user must
be protected in the same fashion as the actual ballots cast.

7.4 Straight-Ticket Voting

The basic concept of straight-ticket voting can be im-
plemented by providing a target with an action that sets
all the user’s selections to a preconfigured state, though
election rules may affect whether and how voters should
be able to specify exceptions to these presets. The design
of such a feature will depend on research into the various
rules for straight-ticket voting in different jurisdictions.

7.5 Alternate Election Methods

Most single-winner elections decide the victor by the
plurality rule (also known as “first past the post”), in
which each voter votes for a single candidate and the can-
didate with the most votes wins. Despite its popularity,
it is a poor method for electing a single winner because
it underrepresents centrists and often motivates voters to
misrepresent their preferences [6], locking in polarized
two-party control of the government.

One simple way to obtain a truer representation of
voter preferences is approval voting, in which each voter
can vote for as many candidates as they want. An
approval election is easily conducted with our prototype
by settingmax sels equal to the number of candidates.

Other improved election methods, such the Schulze
method [13] or the Tideman method [14], use voters’
rankings of the candidates to achieve a fairer result.
Our current design does not directly support ranking of
options, though ranking could be crudely implemented
by repeating the same list of options, as in some paper

elections. For example, San Francisco’s ranked bal-
lots show the same list of candidates in each of three
columns; voters are instructed to indicate their first
choice in the first column, second choice in the second
column, and third choice in the third column. However,
since our existing prototype knows nothing about the
semantics of ranking, it cannot warn the voter about
invalid rankings.

To provide proper ranking support, our design could
be extended to include images of numbers in the image
library and to display numbers next to ranked options.
The navigator could initially assign successive rank num-
bers as the voter makes multiple selections; to reorder
the rankings, the voter could clear the contest and start
again or press special targets to increment and decrement
ranks. Alternatively, a subpage with a numeric keypad
could be provided for typing in the rank numbers.

7.6 Ballot Definition Tools

We have not yet built the design tool for producing the
ballot definition or the visualization tool for verifying
ballot definitions. The existence of the ballot definition
as a separate artifact opens up possibilities for interesting
new research in automated description, validation, and
evaluation of user interfaces. The design tool is in
a position not only to check for validity according to
election regulations, but also to compute measures of
usability and accessibility and provide guidance to the
ballot designer during the layout process.

8 Conclusion

We have presented an electronic voting machine ar-
chitecture capable of offering much stronger levels of
assurance in both its software implementation and its
user interface with considerably less verification and
testing effort compared to an existing electronic voting
system. Our architecture also provides broader public
access to the verification process and has the potential
to level the playing field for voters with disabilities
and other minorities. In addition, we have presented
a specific design for a touchscreen voting machine and
have demonstrated that it can be implemented in a
small fraction of the amount of code in current voting
machines.

9 Acknowledgements

We thank David Dill for enlightening discussions about
design for verification; the categories “program verifi-
cation” and “result verification” were suggested by him.
We thank David Jefferson for bringing the importance

of interoperability to our attention and Dan Wallach
for pointing out that bitmaps are already used by some
machines. We are grateful to Scott Luebking for his
helpful advice on several usability and accessibility con-
siderations. Finally, we thank the anonymous reviewers
of this paper, who provided many useful suggestions for
its improvement.

This research was funded in part by NSF CNS-
0524252.

References

[1] 107th U. S. Congress. Help America Vote Act of 2002.
http://www.fec.gov/hava/law_ext.txt .

[2] Shuki Bruck, David Jefferson, and Ronald L. Rivest.
A Modular Voting Architecture (“Frogs”). Workshop
on Trustworthy Elections, 2001.http://www.vote.
caltech.edu/wote01/pdfs/amva.pdf .

[3] Douglas W. Jones. Recommendations for the Conduct
of Elections in Miami-Dade County using the ES&S
iVotronic System. http://www.cs.uiowa.edu/
˜jones/voting/miami.pdf .

[4] Arthur Keller. Experiences with Sequoia AVC Edge with
VeriVote Printer as Precinct Inspector in Santa Clara
County. http://gnosis.python-hosting.
com/voting-project/June.2006/0081.
html .

[5] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin,
and Dan S. Wallach. Analysis of an Electronic Voting
System. InProceedings of the IEEE Symposium on
Security and Privacy, 2004.

[6] Samuel Merrill. Making Multicandidate Elections More
Democratic. Princeton University Press, 1988.

[7] David Molnar, Tadayoshi Kohno, Naveen Sastry, and
David Wagner. Tamper-Evident, History-Independent,
Subliminal-Free Data Structures on PROM Storage -
or- How to Store Ballots on a Voting Machine. In
Proceedings of the IEEE Symposium on Security and
Privacy, 2006.

[8] National Institute of Standards and Technology.
FIPS 180-1: Secure Hash Standard. April 1995.
http://www.itl.nist.gov/fipspubs/
fip180-1.htm .

[9] Raymound S. Nickerson. Confirmation Bias: A
Ubiquitous Phenomenon in Many Guises.Review of
General Psychology, 2(2):175–220, 1998.

[10] Nokia. Python for Series 60.http://www.forum.
nokia.com/python .

[11] Pygame.http://pygame.org/ .

[12] Python Software Foundation. Python.http://www.
python.org/ .

[13] Markus Schulze. A New Monotonic and Clone-
Independent Single-Winner Election Method.Voting
Matters, (17):9–19, October 2003.

[14] T. Nicolaus Tideman. Independence of Clones as a
Criterion for Voting Rules.Social Choice and Welfare,
4:185–206, 1987.

[15] U. S. Election Assistance Commission.EAC 2004
Annual Report. http://www.eac.gov/docs/
EAC%20Annual%20Report%20FY04.pdf .

