ExperimenTor: A Testbed for Safe and Realistic Tor Experimentation

Kevin Bauer¹ Micah Sherr²
Damon McCoy³ Dirk Grunwald⁴

¹University of Waterloo ²Georgetown University
³UCSD ⁴University of Colorado

http://crysp.uwaterloo.ca/software/exiptor
4th Workshop on Cyber Security Experimentation and Test (CSET ’11)
What is Tor and why is it important?

Tor is a low-latency overlay network and a software package that allows you to use TCP-based applications anonymously.

Tor has an estimated 350,000 daily users world-wide and its network consists of over 2,500 volunteer-operated Tor routers.

Ordinary Citizens
- Protect web browsing habits
- Research sensitive or taboo topics
- Circumvent censorship

Activists & Whistleblowers
- Expose human rights violations
- Promote democracy
- Protest election results

Corporations
- Research the competition
- Safeguard trade secrets

Law Enforcement
- Online surveillance
- Sting operations
Tor uses layered encryption to hide your online behaviors.

The Tor Network

Tor provides *anonymity for TCP applications* by tunneling traffic through a *virtual circuit* of three Tor routers using layered encryption. Communicating parties are *unlinkable* as long as the entry and exit routers do not collude.
Tor is still an evolving research network

• Past and current research aims to improve Tor’s:
 – Security and anonymity [CCS ‘07, NDSS ’08, USENIX Security ‘10]
 – Quality of service [USENIX Security ‘09, CCS ‘10, PETS ’11]

• **Problem:** There is no standard methodology for conducting Tor research in a *realistic* and *safe* manner; prior methods include:

Realism

- Abstract modeling
- Network simulators
- Small-scale network emulation
- Distributed research networks
- Live Tor network

Safety
ExperimenTor: A whole-network Tor emulation testbed

Goal: Propose a standard experimental methodology

- Replicates all components of the Tor network *in isolation*
- Reproduces plausible network conditions through *scalable network emulation*
- Fuels experiments with *empirically derived models*

ExperimenTor

Allows investigators to study global, whole-network effects
Talk outline

• Motivating case studies from prior Tor research
• Challenges of building a Tor network testbed
• Design and implementation of ExperimenTor
• Early experiences and lessons learned
• Conclusions and future work
Case study: Whole-network PlanetLab experiments

Uniform router selection: Probability of attack’s success is \((c/n)^2\), \(c\) malicious routers in a network of \(n\) total routers

Tor routers are selected in proportion to their perceived bandwidth capacities for load balancing, but malicious routers can lie
Case study: Whole-network PlanetLab experiments (2)

Experiment: Evaluated the attack on two small Planetlab deployments with 40 and 60 honest Tor routers

Details: Sample the bandwidth distribution of the real Tor network

<table>
<thead>
<tr>
<th>Tier</th>
<th>Tor Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real Tor</td>
</tr>
<tr>
<td>996 KB/s</td>
<td>38</td>
</tr>
<tr>
<td>621 KB/s</td>
<td>43</td>
</tr>
<tr>
<td>362 KB/s</td>
<td>55</td>
</tr>
<tr>
<td>111 KB/s</td>
<td>140</td>
</tr>
<tr>
<td>29 KB/s</td>
<td>123</td>
</tr>
<tr>
<td>20 KB/s</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>103.9 MB/s</td>
</tr>
</tbody>
</table>

Limitations:
1. Reduced scale
2. Need to run many measurements to find suitable PlanetLab nodes
3. Repeatability?

[Bauer et al., WPES ‘07]
Case study: Small-scale experiments with the live Tor network

Tunable Tor was proposed to help users manage their risk of the previous attack \[\text{[Snader and Borisov, NDSS '08]}\]

Uniform selection

Skewed to high bandwidth nodes

User-tunable router selection

High anonymity

High performance

Experiment: Deployed one “Tunable Tor” client on the live Tor network

Details: Measured download times at different “selection levels”

Limitations: What happens when *many* Tor clients use Tunable Tor? Global effects?
A case for whole-network Tor emulation

Goal: Capture all salient dynamics of the live Tor network and reproduce in isolation → **Realistic** and **safe** experiments

** Desired features:**

1. Allow investigators to deploy small-scale, large-scale, or global changes to any part of Tor’s design
2. Should eliminate any risk to the live Tor network
3. Experimental results should be meaningful to the live Tor network

Our argument: All can be realized with whole-network Tor emulation
Design challenges

• Modeling the live Tor network is difficult
 – Tor routers: Bandwidths, guard statuses, exit policies?
 – Tor clients: How many? Applications? Behaviors?

• Large-scale network emulation
 – Emulab and DETER have limited and shared resources

• Need to run unmodified Tor and application code
 – Avoids re-implementation errors; promotes realism
Meeting the design challenges

Modeling Tor routers:
- Publicly-available router metadata from Tor’s directories
- Historical router data aggregated by the Tor Metrics Portal

Replicate live Tor’s router state, or scale things up or down
Meeting the design challenges (2)

Modeling Tor clients: Leverage existing empirical data on Tor clients and their behaviors [McCoy et al., PETS ’08]

Number of Exit TCP Connections by Protocol

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Number of Connections</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>12,160,437</td>
<td>92.45%</td>
</tr>
<tr>
<td>SSL</td>
<td>534,666 (4.06%)</td>
<td></td>
</tr>
<tr>
<td>BitTorrent</td>
<td>438,395 (3.33%)</td>
<td></td>
</tr>
<tr>
<td>Instant Messaging</td>
<td>10,506 (0.08%)</td>
<td></td>
</tr>
<tr>
<td>E-Mail</td>
<td>7,611 (0.06%)</td>
<td></td>
</tr>
<tr>
<td>FTP</td>
<td>1,338 (0.01%)</td>
<td></td>
</tr>
<tr>
<td>Telnet</td>
<td>1,045 (0.01%)</td>
<td></td>
</tr>
</tbody>
</table>

Also leverage existing empirical studies of HTTP traffic to emulate realistic workloads [e.g., Hernández-Campos et al., MASCOTS ’03; Google web metrics 2010]
Meeting the design challenges (3)

Modeling Tor clients: Leverage existing empirical data on Tor clients and their behaviors [McCoy et al., PETS ’08]

Aggregate Exit Traffic Volume by Protocol (GB)

- HTTP: 411 GB (57.90%)
- SSL: 11 GB (1.55%)
- BitTorrent: 285 GB (40.20%)
- Instant Messaging: 735 MB (0.10%)
- E-Mail: 291 MB (0.04%)
- FTP: 792 MB (0.11%)
- Telnet: 110 MB (0.02%)

Model the distribution of client traffic by connection and volume
Meeting the design challenges (4)

Modeling Tor clients: Can also leverage publicly-available data about Tor clients from the Tor Metrics Project

![Graph showing the number of users directly connecting from all countries between May 2011 and July 2011.](https://metrics.torproject.org/)

Replicate live Tor’s client state, or scale things up or down
Meeting the design challenges (5)

Large-scale network emulation with ModelNet [Vahdat et al., OSDI ‘02]
- Emulates a specified network topology
- Runs native code without modification
- Commodity hardware and OSes; can be deployed at local institution

• High-level system architecture
 - “Emulator” machine: Emulates a network topology in a kernel module
 - “Virtual node” machine: Runs applications within the virtual topology

Applications run on “virtual node” machines
Putting it all together

Network topology emulation on a ModelNet core

Per-link bandwidth, latency, queues, drop rate

Prototype: FreeBSD 6.3
Linux 2.6.32

Accompanying toolkit:
- Topology generation
- Configure Tor clients, routers, & directories
- Run experiments & perform analyses

Tor and applications run on edge nodes in virtual topology

Testbed and toolkit are publicly available
http://crysp.uwaterloo.ca/software/exptor
Early experiences

• ExperimenTor prototypes are deployed at four research institutions (single emulator)
• Used to support two ongoing research projects:
 – Evaluate the effects of link-based router selection
 – Re-design Tor’s congestion control and flow control
• Both projects require global design changes to Tor
Limitations and future work

- **Scalability**
 - Scaling experiments to Tor’s estimated 350K users is likely not possible; necessary to “down sample”

- **Improve client and traffic models**
 - Data on Tor usage are limited
 - Is it possible to emulate diverse versions and configurations of Tor users?
Summary and conclusion

• Experimenter is a whole-network emulation-based testbed and toolkit for safe and realistic Tor experiments

• Enables large-scale Tor experiments that:
 – Use real Tor router bandwidths to inform topology
 – Emulate Tor clients and their traffic
 – Enable experiments with global changes to Tor’s design
 – Can be deployed cheaply on commodity systems

For more information:
http://crysp.uwaterloo.ca/software/exptor