USENIX Association

Proceedings of BSDCon '’ 03

San Mateo, CA, USA
September 8-12, 2003

USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Using FreeBSD to Render Realtime Localized Audio and Video

John H. Baldwin
The Weather Channel
Atlanta, GA 30539
jhb@FreeBSD.org, http://people.FreeBSD.org/ jhb

Abstract

One of the largest selling points for The Weather
Channel (TWC) is the ability to generate localized
content for its subscribers, specifically local weather
forecasts. To facilitate this localized content, TWC
deploys smart devices in cable head ends. These
smart devices are called STARs (Satellite Transmit-
ter Addressable Receivers) and are responsible both
for collecting weather data and displaying the data
to the user in an audio and video presentation.

TWC decided to produce a next generation STAR
that was more flexible than the current generation
as well as cheaper. FreeBSD was chosen as the
platform for these devices. Although FreeBSD was
largely suitable for this application, a few modifi-
cations were required and several workarounds were
employed. The end result is a PC built mostly of off-
the-shelf components that is able to render broad-
cast quality audio and video in realtime.

1 Introduction

Most cable channel operators provide national or re-
gional feeds from a single source to cable head end
operators across the country and world. These feeds
are transmitted via satellite from the broadcasters
to the head ends. The head ends then distribute
these feeds to viewers over cable. The Weather
Channel is a unique broadcaster in that part of its
presentation to viewers is localized to provide local
weather observations and forecasts. It is not feasi-
ble to generate the content of these local forecasts at
TWC and then distribute them over satellite to each
of the head ends. There is just not enough band-
width. Instead, a smart device known as a STAR is
deployed in each head end. In addition to a national
audio and video feed, TWC sends weather-related

data to the STARs out in the field including local
observations, thirty-six hour text forecasts, daily ex-
tended forecasts, radar images, and severe weather
alerts. In addition, TWC can send software updates
and other non-weather-related data over the satel-
lite.

For example, every hour thousands of automated
observation stations all over the United States sam-
ple the weather conditions at their location and
transmit this data to the National Weather Service
(NWS). Most STARs in the field are assigned an ob-
servation point. TWC receives this data from NWS
and then sends it over the satellite where it is re-
ceived by each of the STARs. Each STAR saves
any data that is relevant to its configuration and
discards the rest. The STAR may then display those
observations either on top of the national feed in a
small bar at the bottom of the screen, or it may
render a full-screen presentation.

Currently TWC broadcasts its feed as an analog
NTSC signal for the core network. TWC has started
migrating to a digital MPEG signal to meet the de-
mands of the cable industry as it begins the mi-
gration to digital. As part of this move, TWC is
deploying a next generation STAR device known as
the IntelliStar.

2 What is an IntelliStar and What
Does It Do?

An IntelliStar must perform two major tasks con-
currently. First, it must collect weather data from
the satellite feed and store the data relevant to the
location it is configured for. This data includes
current observations, radar images, satellite images,
and several different forecasts. Second, the device
must display this weather data to viewers at broad-

cast quality that compiles with FCC regulations.
This includes rendering both full screen video as well
as being able to render graphic objects on top of a
live video feed. When a box is down, it can not
deliver local content on the analog output and can
not deliver any digital output, so down time is very
visible to customers and must be avoided.

In addition, since other networks do not deploy de-
vices to head ends to generate localized content, an
IntelliStar must operate as a “black box” from a ca-
ble head end technician’s perspective. For example,
head end technicians are accustomed to using the
power button to turn things off, so the device must
handle powering off via the power button gracefully.
Also, the device must operate without having a key-
board, mouse, or monitor connected. Finally, the
device should not require any interaction from a
head end technician beyond using the power but-
ton to power the device on and off.

In addition to these requirements, TWC wants to
take advantage of recent technology innovations.
The current generation of STARs, known as the
WeatherSTAR XL, are built from SGI boxes run-
ning IRIX with additional proprietary hardware.
The IntelliStar, on the other hand, is built largely
from commodity PC hardware with limited propri-
etary hardware. This has resulted in a cheaper and
more compact device that is easier to upgrade in the
future. For example, the actual rendering of video
content is done using the hardware acceleration of
an off-the-shelf AGP graphics adapter. Should the
need for more rendering horsepower arise in the fu-
ture, the graphics adapter can be replaced with a
newer adapter without any changes needed in either
proprietary hardware or software. To accomplish
this goal, much of the realtime requirements for au-
dio and video have been offloaded into proprietary
hardware.

3 Why FreeBSD?

For the software platform on the IntelliStar, TWC
also wants to stick with largely off-the-shelf soft-
ware. The main device needs a stable and reliable
general purpose OS that is easily maintainable. The
TWC applications are written in a mixture of C++
and Python and are multithreaded, so decent sup-
port for those platforms is required. Finally, TWC
needs a platform that can be easily updated in the

field over the one-way satellite feed. The final de-
cision on the OS for the IntelliStar was made in
the summer of 2001. Prior to that, the develop-
ment platform was Red Hat Linux 7.0. FreeBSD
was chosen over Red Hat 7.0 for three primary rea-
sons: stability and maturity of the virtual memory
subsystem, a current and working tool chain, and a
complete and self-consistent distribution from one
source.

3.1 VM Stability

As mentioned before, down time is very noticeable.
If a box is down, then thousands of viewers may not
receive their local forecast. At the time of the plat-
form decision, TWC knew that the development of
the IntelliStar would take some time. Thus, TWC
wanted an OS branch that was stable and mature
but would not be obsolete by the time the IntelliS-
tar was deployed. The 2.2.x Linux kernel series was
nearing its end of life cycle as the 2.4.x Linux kernel
series was just ramping up. However, the virtual
memory subsystem of the early 2.4.x series had se-
vere stability problems. In addition, Linux changed
over to an entirely new virtual memory subsystem
during the early 2.4.x series. FreeBSD, on the other
hand, employed a mature, stable, and well-tested
virtual memory subsystem in its 4.x branch. TWC
developers noted that even on the Linux developer
mailing lists, FreeBSD’s virtual memory subsystem
was held up as the benchmark to test the new Linux
subsystems against. As a result, TWC developers
were much more comfortable with FreeBSD’s virtual
memory subsystem than with Linux’s. FreeBSD 4.x
was also not nearing its end of life cycle during 2001,
so TWC developers were not worried about having
to perform major OS upgrades in the middle of their
development cycle or immediately after the initial
deployment.

3.2 Compiler

The software in TWC’s STAR group largely con-
sists of multithreaded C++ applications, and TWC
required a compiler toolchain that would work with
these applications. The compiler that shipped with
Red Hat 7.0 was version 2.96 of the GNU C Com-
piler (gec). This version of gece was not an offi-
cial release of gcc by the GNU Project. Instead,
it was a snapshot of the 3.0 development branch of

GCC with additional fixes from Red Hat developers.
Out of the box this pre-release compiler was unable
to compile simple multithreaded C++ applications.
Numerous patches were required from Red Hat be-
fore the compiler could compile this simple test case.
Other Linux distributions used releases from the gcc
2.91 series which were unable to compile TWC’s
applications due to their more limited C++ sup-
port. FreeBSD, on the other hand, shipped with
supported releases from the gcc 2.95 branch. This
compiler was able to handle multithreaded C++ ap-
plications out of the box without the need for fur-
ther patches and included sufficiently recent C++
support to compile TWC’s applications.

3.3 Self-Contained OS

IntelliStar devices will be deployed all over the con-
tinental U.S., and TWC wanted to be able to up-
grade the base OS if necessary in addition to TWC’s
custom applications. The only data link that is re-
liable for all STARs is the one-way transport from
TWC out to the STARs via satellite. Thus, up-
date systems that require a two-way link are not
suitable. Since FreeBSD is an entire OS from one
source rather than a collection of packages from dif-
ferent sources like Linux distributions, it is easier to
generate an arbitrary release that is self-consistent
and use that complete distribution for either installs
or to upgrade units in the field. OS components can
be upgraded merely by sending a tarball out to the
deployed units without having to worry about keep-
ing a local package database up to date. Formal
packages are only used for third party libraries and
applications that are not part of the base OS and
TWC applications.

Remotely upgrading the kernel is also safer and eas-
ier with FreeBSD than with Linux. With Linux one
has to ensure that the lilo boot blocks are updated
after a new kernel is installed or one may end up
with an unbootable box. FreeBSD’s bootstrap sim-
ply looks for the loader by name in a UF'S filesystem,
so simply updating the actual kernel file is all that
is needed to upgrade the kernel. Recent versions of
Linux now offer the GNU GRUB boot loader which
does not suffer from the same limitations as lilo.
However, GNU GRUB is still under development
and was not in use when the final OS decision was
made.

Finally, TWC could easily build a custom re-

lease of FreeBSD including customized installation
scripts. TWC currently maintains a small set
of local patches. Using the LOCAL_PATCHES and
LOCAL_SCRIPTS features of FreeBSD’s release pro-
cess as detailed in [release.7], TWC is able to build
a full release with these patches that can be installed
either from a CD or over the network like any other
FreeBSD release. By using PXE network booting
and FTP install over a LAN, the installation of a
new machine simply involves plugging the box in
and turning the power on.

4 Changes from stock FreeBSD

The current generation of IntelliStars are based
on release 4.7 of FreeBSD. Although the stock
FreeBSD release met many of the requirements,
several modifications were required. These modi-
fications included backporting support for the Ad-
vanced Configuration and Power Interface (ACPI)
from 5.0, modifying the sio driver to share PCI
interrupts, adjusting the maximum size of receive
socket buffers, and several fixes for sysinstall to al-
low for more flexible scripted installations.

4.1 Backporting ACPI

As mentioned earlier, one of the requirements for the
IntelliStar was that it require little interaction from
head end technicians once it is deployed. Specifi-
cally, head end technicians should be able to safely
power off the device by flipping the power switch.
With the advent of ACPI, implementing this feature
becomes possible as an ACPI system will inform an
ACPI-aware OS when the power button is pressed.
The OS can safely shut down and then ask the com-
puter to power itself off via ACPI. The details of how
this works can be found in the ACPI specifications
which are available at [ACPI].

The 5.x development branch of FreeBSD contained
a mostly functional ACPI driver including support
for power button events. Thus, the same function-
ality could be brought to the version of FreeBSD
used in the IntelliStar by backporting a stripped
down ACPI driver to the 4.x branch. The majority
of the ACPI driver consists of Intel’s ACPI Compo-
nent Architecture (ACPICA) which is OS indepen-
dent and freely available at [ACPICA]. Thus the

only code that needed to be backported was the OS
shim that wraps around ACPICA as well as some
supporting code in other areas of the kernel used by
the shim.

The changes made to the OS shim included us-
ing proper synchronization primitives and avoiding
the use of a private taskqueue. 5.x uses mutexes
to protect data structures while 4.x still uses the
spl mechanism to protect top-half kernel code from
being interrupted. Thus, macros were added that
use splhigh and splx for synchronization with the
ACPI interrupt handler on 4.x and a mutex on 5.x.
FreeBSD 4.x also does not support the same soft-
ware interrupt APT used by the ACPI code in 5.x to
implement a private taskqueue. Thus, the backport
to 4.x simply uses the system taskqueue for ACPI
events instead. These changes were wrapped in ap-
propriate precompiler conditionals and committed
to the 5.x branch prior to 5.0-RELEASE.

Changes made to other parts of the kernel in-
clude backporting entire subsystems and drivers as
well as modifications to existing subsystems and
drivers. The ACPI driver required support for the
bus_set_resource and bus_get_resource methods
in the nexus driver, so these changes were back-
ported and committed to the 4.x branch prior
to 4.8-RELEASE. The ACPI driver also used the
resource_list_print_type helper function from
the resource manager, so that function was back-
ported and committed prior to 4.8-RELEASE. The
ACPI driver also depended on the new power sub-
system and pmtimer driver which debuted in 5.0-
RELEASE. The actual code for both of these sub-
systems compiles directly on 4.x but does require
some simple changes to the i386 clock and low
level interrupt code. In addition, the use of the
power subsystem requires several changes to the apm
driver. Several of the changes made to the apm
driver in the 5.x branch were merged prior to 4.8-
RELEASE to minimize the size of the local patches
TWC maintains.

The other significant difference between ACPI sup-
port in 5.x and ACPI support for 4.x is that the
backported ACPI driver does not include the PCI
support code. This means that the backported
ACPI driver does not route PCI interrupts using
the _PRT tables or enumerate host to PCI bridges.
The ACPI PCI code depends on large changes to
the PCI driver made in 5.x that are too large to
backport to 4.x. The rest of the functionality pro-
vided by the ACPI driver is present in the backport

including power button events, suspend and resume,
battery status, AC adapter status, CPU throttling,
thermal zones, and the ACPI timer.

4.2 Sharing sio PCI Interrupts

In FreeBSD, there are two main types of interrupt
handlers: fast interrupt handlers and non-fast in-
terrupt handlers. Fast interrupt handlers execute
with slightly less latency to the original interrupt
request and than non-fast handlers. Also, all inter-
rupts are blocked while executing a fast interrupt
handler. Fast handlers cannot share an interrupt
source such as an interrupt request (IRQ) line with
other interrupt handlers. Non-fast interrupt han-
dlers, on the other hand, can share an interrupt
source with other non-fast interrupt handlers. This
is enforced in bus_setup_intr by having attempts
to register a fast interrupt handler on an interrupt
source that already has an interrupt handler and
attempts to register a non-fast interrupt handler on
an interrupt source that already has a fast interrupt
handler fail.

The purpose of fast interrupt handlers is to mini-
mize latency for devices that require very low la-
tency. A prime example of such devices are the se-
rial ports found in PCs which have very small data
buffers. As a result, if interrupt latency is high,
characters will be dropped. Thus, the driver for se-
rial ports, sio, uses fast interrupt handlers.

When not using I/O APICs to manage interrupts
on a PC, there are only sixteen interrupt sources
in the form of ISA TRQ lines. Most of these IRQ
lines are reserved for ISA devices. ISA devices can-
not share interrupts, so PCI devices are restricted
to using the IRQ lines not used by any ISA devices.
Due to the limited number of free IRQ lines and and
the increasing number of PCI devices in PCs, PCI
devices are usually required to share whatever IRQ
line is allocated to them with other PCI devices.
Thus, if a PCI device driver uses a fast interrupt
handler it can either block other devices from reg-
istering non-shared interrupt handlers on the same
interrupt source if it is the first driver to register
a handler for that source, or it can fail to register
its handler if another driver has already registered
a handler.

The sio driver handles the second case but does not
handle the first case. To handle the second case, the

sio driver first attempts to register its handler as
a fast interrupt handler. If that fails, it tries to
register it as a non-fast interrupt handler. However,
the sio driver currently has no way of detecting the
first case and properly handling it.

The IntelliStar uses a PCI modem managed by the
sio driver that just happens to be the first PCI de-
vice to register its interrupt handler for its interrupt
source during the boot phase. As a result, other PCI
devices using the same interrupt source such as an
Ethernet adapter are unable to register their inter-
rupt handler and fail to attach. The solution that
TWC developed was to add a flag to the sio driver’s
global attach routine to specify whether or not the
driver should attempt to register a fast interrupt
handler or if it should only use a non-fast interrupt
handler. The attachments for different busses can
then set this flag to force sio to share its interrupt
source with other devices. For example, the PCI
and PCCard busses force the sio driver to share its
interrupt source in TWC’s patch.

The patch was submitted for review to the FreeBSD
developers but was rejected as being too much of a
hack. Several of the developers still wished to allow
the sio driver to use fast interrupts when possible
and wanted to fix the problem TWC had in the
drivers for the busses themselves such as the PCI
bus device driver instead of in sio. However, no
progress was ever made on even how to go about
doing that, so TWC continues to maintain this bug
fix as a local patch.

4.3 Increasing Size of Socket Receive
Buffers

As mentioned earlier, an IntelliStar receives not only
live video over the satellite, but also data includ-
ing weather data and software updates. For the
IntelliStar, this data is transmitted over the satel-
lite in a multicast UDP data stream alongside the
video stream. The bundling of the data stream with
the video stream is managed by an external inte-
grated receiver/decoder (IRD) which provides the
data stream as the original UDP multicast stream
to one of the Ethernet ports on the IntelliStar.
Since this communication transport is only one-way,
TWC has no way of knowing if an IntelliStar has
lost data due to the socket buffer overflowing. If
the link were two-way, then a reliable protocol such
as TCP could detect that data was lost and re-

quest a retransmission, but with the one-way link
that option is not available. Since rendering the on-
screen graphics is higher priority than reading data
off the socket, there can be enough latency between
reads of the receiving socket for the standard socket
buffer size of 41600 bytes to overflow. To fix this,
TWC uses setsockopt to increase the size of the
receiving sockets buffer to 512 kilobytes. At our
current data rate this allows up to one full second
of data in the buffer. The default maximum size for
a socket buffer in FreeBSD is 256 kilobytes, how-
ever, so TWC added an entry to /etc/sysctl.conf
to increase this limit to four megabytes per socket
buffer via the kern.ipc.maxsockbuf sysctl.

4.4 Scripting Enhancements for sysin-
stall

One of the benefits of FreeBSD mentioned in an ear-
lier section is the ability to easily build a customized
installation process. This can be done with the de-
fault installation utility, sysinstall, via installation
scripts. This custom installation allows TWC to
quickly and easily install all of the necessary soft-
ware on IntelliStars before they are deployed into
the field.

While working on the scripts for TWC’s custom re-
lease, a few limitations and gaps were found in sysin-
stall’s scripting support. TWC extended sysinstall’s
scripting support to address these shortcomings. All
of these changes to sysinstall were committed prior
to 4.7-RELEASE. To support more flexible instal-
lation scripts, TWC also made some changes to the
release Makefile.

The first two changes made to sysinstall allowed
scripted installs to optionally be more interactive.
The first change added the diskInteractive vari-
able to the disk layout editors. If this variable
is set when invoking the diskPartitionEditor or
diskLabelEditor commands, then the interactive
disk layout editors will be used instead of requir-
ing a fully scripted disk layout. The second change
added the netInteractive variable to the net-
work interface setup dialog. If this variable is set
when invoking the dialog via the tcpMenuSelect,
mediaSetFTP, or mediaSetNFS commands, then the
user is asked if they wish to use DHCP or IPv6
rather than assuming that neither is desired.

The next change to sysinstall fixed a bug in the han-

dling of the noError variable. As documented in
[sysinstall.8], the noError variable causes sysinstall
to ignore failures from the next command executed.
Usually sysinstall will abort and stop executing a
script if a command fails. The noError variable
allows a script to continue if a non-fatal error oc-
curs. The bug was that the noError variable was
only cleared if a command failed. Thus, if the non-
fatal command immediately after noError was set
succeeded, the variable remained set and the subse-
quent failure of a later command would be bogusly
ignored. The fix was simply to always clear noError
after executing a command.

The fourth change to sysinstall involved the addi-
tion of the mediaClose command. This command
simply executes the internal function by the same
name. For an install using a CD as the installation
media, this will unmount the CD allowing it to be
ejected from the drive. TWC uses this at the end
of CD installations to unmount the CD prior to dis-
playing a dialog box prompting the user to eject the
CD.

The final changes made were to the release Make-
file and not the installation utility itself. The first
change was to add the dialog program to the mem-
ory filesystem used as the root filesystem during in-
stallations. This made the dialog program available
to shell scripts executed by the installation scripts.
This allows for more complex installation scripts
that can interact with the user using the various
tools described in [dialog.1].

For example, the TWC install begins with a menu
box prompting the user for the type of machine to
install: an IntelliStar or a development machine.
Depending on which option the user selects, differ-
ent parameters are used. This is accomplished by
having the top level install script execute a shell
script. This shell script uses the dialog command to
display the menu and obtain the user’s choice. The
shell script then generates a configuration script on
the fly. After the shell script finishes, the top level
configuration script loads the configuration script
generated by the shell script and executes it.

To support this change, TWC added a NO_FLOPPIES
variable to the release Makefile to disable building
of boot floppies. Adding the dialog program to the
memory filesystem made the memory filesystem too
large to fit on floppies. By defining the NO_FLOPPIES
variable during the release build, TWC’s custom re-
lease completed without an error. TWC does not

use floppies for any of its installations, so the loss
of floppies as a installation boot media was not a
problem. The addition of the NO_FLOPPIES variable
was committed prior to 5.0-RELEASE and will be
merged to the 4.x branch prior to 4.9-RELEASE.

5 Workarounds for FreeBSD Prob-
lems

In addition to the problems above, FreeBSD is lack-
ing in two other areas as well that TWC chose to
work around in its own software instead of modify-
ing FreeBSD. The first area involves negative nice
priorities and is worked around fairly easily. The
second area consists of a couple of problems with
the userland thread implementation employed in
FreeBSD 4.7-RELEASE.

5.1 Nice is too Unnice

The TWC software that runs on the IntelliStar con-
sists of several applications of varying importance.
For example, rendering the video presentation is
very important and receiving data is slightly less im-
portant. Most other tasks are not all that important
as far as latency is concerned. Thus, negative nice
values are applied to the important applications to
ensure that they are not starved by any background
processes.

Initially a nice value of -20 was used for the most
important process. However, during development
an infinite loop bug was encountered and the box
locked up. Some simple tests of a program that
executed an infinite loop at a nice value of -20 ver-
ified that the looping process starved all other user
processes on the box. This was surprising since it
was expected that the CPU decay algorithm of the
scheduler would sufficiently impact the priority of
the important process so that other userland pro-
cesses would receive some CPU time. As a matter
of fact, the CPU decay algorithm will not decay a
nice -20 process enough to allow normal processes
with a nice value of zero to execute. The explana-
tion can be found in a simple examination of the
code.

The priority of a userland process is calculated by
the following code snippet from the resetpriority

function:

newpriority = PUSER +
p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
NICE_WEIGHT * p->p_nice;
newpriority = min(newpriority, MAXPRI);
p~—>p_usrpri = newpriority;

The pnice member of struct proc holds the
nice value and p_estcpu holds an estimate of the
amount of CPU that the process has used recently.
This field is incremented every statclock tick in the
schedclock function:

p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);

The ESTCPULIM macro limits the maximum value of
p-estcpu. Its definition along with the definition of
other related macros follows:

#define NQS 32
#define ESTCPULIM(e) \
min((e), INVERSE_ESTCPU_WEIGHT * \
(NICE_WEIGHT * PRIO_MAX - PPQ) + \
INVERSE_ESTCPU_WEIGHT - 1)
#define INVERSE_ESTCPU_WEIGHT 8

#define NICE_WEIGHT 2
#define PPQ (128 / NQS)
#define PRIO_MAX 20

Thus, the maximum value of p_estcpu is 295.

Since p_estcpu is never less than zero, a process
with a nice value of zero will have a userland priority
greater than or equal to PZERO. For a process with
a nice value of -20, the total nice weight ends up
being -40. However, the maximum weight of the
CPU decay is 36. Thus, with a nice value of -20, the
CPU decay algorithm will never overcome the nice
weight. Thus, a lone nice -20 process in an infinite
loop will starve normal userland processes with a
nice value of zero. In fact, since the maximum CPU
decay is 36, any nice value less than -18 will produce
the same result.

However, according to a comment above updatepri,
p-estcpu is supposed to be limited to a maximum
of 255:

/*

Recalculate the priority of a process after
it has slept for a while. For all load
averages >= 1 and max p_estcpu of 255,
sleeping for at least six times the
loadfactor will decay p_estcpu to zero.

* X X X *

*/

If this is the case, then the maximum CPU decay
weight is merely 31, and any nice value less than -15
can starve normal userland processes.

One possible solution would be to adjust the
scheduler parameters so that a nice -20 process
did not starve userland processes. For exam-
ple, INVERSE_ESTCPU_WEIGHT could be lowered from
eight to four. However, increasing the strength of
the CPU decay factor in the scheduling algorithm
might introduce other undesirable side effects. Also,
such a change would require TWC to maintain an-
other local patch to the kernel. TWC decided to
keep it simple and stick to nice values of -15 and
higher.

5.2 TUserland Threads

Two of the larger problems TWC encountered were
due to limitations in FreeBSD’s userland threads
implementation. As mentioned earlier, TWC’s soft-
ware consists largely of multithreaded C++ applica-
tions. Both problems stem from all userland threads
in a process in FreeBSD sharing a single kernel con-
text. First, when one thread calls a system call that
runs in the kernel, all of the threads in that process
are blocked until the system call returns. Secondly,
all the threads in a process are scheduled within the
same global priority. Both of these problems are
demonstrated in one of the TWC applications that
contains two threads. One thread is responsible for
rendering frames, and the other thread loads tex-
tures into memory from files. The rendering thread
is much more important than the loading thread
since the loading thread preloads textures and can
tolerate some latency whereas the rendering thread
must pump out at least thirty frames every second.

When the loading thread is loading a large file into
memory, it can temporarily starve the rendering
thread. The internal implementation of the read
function in the thread implementation uses a loop
of non-blocking read system calls. However, if the
entire file is resident in memory already, then the
non-blocking read will copy out all of the file to

userland. Especially for large files, this data copy
may take up enough time to delay the rendering
thread by a few frames. To minimize the effects of
this long delay, reads of large files are broken up into
loops that read in files four kilobytes at a time. Af-
ter each read, pthread_yield is called to allow the
rendering thread to run. If the two threads did not
share their kernel context, then when the render-
ing thread is ready to run it could begin execution
on another CPU immediately rather than having to
wait for the copy operation to complete.

The second problem is that all threads within a
process share the same global priority. In the ap-
plication in question, the rendering thread is the
most important user thread in the system. There-
fore, its process has the highest priority. The load-
ing thread, however, is less important than threads
in some of the other processes executing TWC ap-
plications. Since the two threads share the same
global priority, the loading thread ends up with a
higher priority than the more important threads in
other processes. If the two threads had separate
kernel contexts, then the rendering thread could
keep its high priority without requiring the load-
ing thread to have a higher priority than threads in
other processes. TWC currently does not employ
a workaround for this problem and so far no real
world anomalies have been attributed to it.

TWC considered using an alternate thread library
to work around these problems. Specifically, the
thread library contained in the LinuxThreads port
described at [LinuxThreads]. However, there are
binary incompatibilities between the structures de-
fined by FreeBSD’s thread library and the Linux-
Threads’ thread library. Thus, any libraries used by
a multithreaded application that use threads inter-
nally must be linked against the same thread library
as the application. As a result, for our applications
to use LinuxThreads, all of the libraries they link
against that use threads internally would also have
to link against LinuxThreads. As a result of those li-
braries using LinuxThreads, other applications that
use those libraries would also have to link against
LinuxThreads. This would require TWC to custom
compile several packages including XFree86, Mesa,
Python, and a CORBA ORB as well as other ap-
plications depending on those packages rather than
using the pre-built packages from stock FreeBSD re-
leases. Since the workarounds for FreeBSD’s thread
library were not too egregious, they were chosen as
the lesser of two evils.

Looking to the future, TWC is very excited about
the ongoing thread development in FreeBSD’s 5.x
series. The more flexible threading libraries in that
branch should eliminate most of the current prob-
lems with FreeBSD’s current thread library. At the
moment, however, TWC is uncomfortable with de-
ploying 5.x until it is more proven and mature.

6 Conclusion

While FreeBSD may not have been a perfect fit out
of the box for the IntelliStar, it was successfully
adapted to the IntelliStar’s needs with relatively mi-
nor effort. The first IntelliStar units began generat-
ing and delivering content to live viewers in March
of 2003. As of the time of this writing 24 units
are deployed across the continental U.S. All of these
units deliver the Weatherscan Local network which
delivers 24/7 localized weather programming. More
Weatherscan units are schedule to roll out during
the rest of the year, and IntelliStars should begin
replacing older STARs on the main TWC channel
in 2004.

7 Acknowledgments

Thanks to The Weather Channel for funding the
writing of this paper, the FreeBSD development de-
scribed in this paper, and numerous other FreeBSD
improvements. Thanks also to all the of the con-
tributors to the FreeBSD Project. Without their
efforts, there would not be an OS to build upon.
Special thanks to those who reviewed and critiqued
this paper including Chris McClellen, Sam Leffler,
and Gregory Shapiro. A special thanks is due as well
to the FreeBSD ACPI developers who added the ini-
tial ACPI support to FreeBSD. Without that con-
tribution, implementing soft power-off would have
been much more difficult and very likely much more
of a hack.

8 Availability

All of the changes to FreeBSD that have not already
been committed to the tree are freely available at

the following URL:

http://www.FreeBSD.org/~ jhb/patches/

Specifically, there are three patches of inter-
est in that directory. The first two patches
are for the backport of ACPI to 4.7-RELEASE
and 4.8-RELEASE and are contained in the files
acpi_4.7.patch and acpi_4.8.patch, respectively.
In addition to those patches, the following files and
directories must be checked out from the 5.x branch
on top of an appropriate kernel source tree:

e sys/contrib/dev/acpica

e sys/dev/acpica

e sys/i386/acpica

e sys/i386/include/acpica machdep.h
e sys/i386/isa/pmtimer.c

e sys/kern/subr_power.c

e sys/sys/power.h

The other patch is in the file sio_shareirq.patch
and includes the changes to fix the sio driver to
share interrupts with other PCI devices.

More information about FreeBSD and the FreeBSD
Project is available at [FreeBSD]. For more informa-
tion about The Weather Channel and its products,
please see [TWC].

References

[ACPI] ACPI - Advanced Configuration and Power
Interface, http://www.acpi.info

[ACPICA] Instantly Available Technology - ACPI,
http://developer.intel.com/ \
technology/iapc/acpi/downloads.htm

[dialog.1] Dialog, FreeBSD General Commands
Manual, http://www.FreeBSD.org/cgi/ \
man.cgi?query=dialog&sektion=1& \
manpath=FreeBSD+4.8-RELEASE

[FreeBSD] FreeBSD Project,
http://www.FreeBSD.org

[GNU GRUB] GNU GRUB,
http://www.gnu.org/software/grub

[LinuxThreads] LinuxThreads,
http://www.freebsd.org/cgi/ \
url.cgi?ports/devel/linuxthreads/ \
pkg-descr

[NWS] NOAA - National Weather Service,
http://www.nws.noaa.gov

[Python] Python Programming Language,
http://www.python.org

[Red Hat] Red Hat, http://www.redhat.com

[release.7] Release,
FreeBSD Miscellaneous Information Manual,
http://www.FreeBSD.org/cgi/ \
man.cgi?query=release&sektion=7& \
manpath=FreeBSD+4.8-RELEASE

[sysinstall.8] Sysinstall,
FreeBSD System Manager’s Manual,
http://www.FreeBSD.org/cgi/ \
man.cgi?query=sysinstall&sektion=8& \
manpath=FreeBSD+4.8-RELEASE

[TWC] The Weather Channel,

http://www.weather.com/aboutus

[XFree86] XFree86, http://www.xfree86.org

