USENIX Association

Proceedings of the
BSDCon 2002
Conference

San Francisco, California, USA
February 11-14, 2002

THE ADVANCED COMI

PUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Porting NetBSD to the AMD x86-64% a case study in OS portability

Frank van der Linden
Wasabi Systems, Inc.
fvdl@wasabisystems.com

Abstract

NetBSD is known as a very portable operating system,
currently running on 44 different architectures (12 dif-
ferent types of CPU). This paper takes a look at what
has been done to make it portable, and how this has de-
creased the amount of effort needed to port NetBSD to
a new architecture. The new AMD x86-64 architecture,
of which the specifications were published at the end of
2000, with hardware to follow in 2002, is used as an ex-
ample.

1 Portability

Supporting multiple platforms was a primary goal of the
NetBSD project from the start. As NetBSD was ported
to more and more platforms, the NetBSD kernel code
was adapted to become more portable along the way.

1.1 General

Generally, code is shared between ports as much as pos-
sible. In NetBSD, it should always be considered if the
code can be assumed to be useful on other architectures,
present or future. If so, it is machine-independent and
put it in an appropriate place in the source tree. When
writing code that is intended to be machine-independent,
and it contains conditional preprocessor statements de-
pending on the architecture, then the code is likely
wrong, or an extra abstraction layer is needed to get rid
of these statements.

1.2 Types

Assumptions about the size of any type are not made.
Assumptions made about type sizes on 32-bit plat-
forms were a large problem when 64-bit platforms came
around. Most of the problems of this kind had to be

*x86-64 is a trademark of Advanced Micro Devices, Inc.

dealt with when NetBSD was ported to the DEC Alpha
in 1994. A variation on this problem had to be dealt with
with the UltraSPARC (sparc64) port in 1998, which is
64-bit, but big endian (vs. the little-endianness of the
Alpha). When interacting with datastructures of a fixed
size, such as on-disk metadata for filesystems, or datas-
tructures directly interpreted by device hardware, explic-
itly sized types are used, such as uint32_t, int8_t, etc.

1.3 Device drivers

BSD originally was written with one target platform
(PDP11, later VAX) in mind. Later, code for other
platforms was added, and 4.4BSD contained code for
4 platforms. NetBSD is based on 4.4BSD, but has
steadily expanded the number of supported platforms
over the years. As more platforms were added, it
became obvious that many used the same devices, only
using different low-level methods to access the device
registers and to handle DMA. This led to, for example, 5
different ports having 5 seperate drivers for a serial chip,
containing nearly identical code. Obviously, this was
not an acceptable situation, with ports to new hardware
being added every few months.

To remedy this situation, the bus_dma and bus_space
layers were created [1], [S5]. The bus_space layer takes
care of accessing device I/O space, and the bus_dma
layer deals with DMA access. For each NetBSD
port to a new architecture, these interfaces must be
implemented for each I/O bus that the machine uses.
Once that is done, all device drivers that attach to such
an I/O bus should compile and work without any extra
effort.

2 Machine-dependent parts

Of course, not all code can be shared. Some parts deal
with platform-specific hardware, or simply need to use
machine instructions that a compiler will never gener-
ate. A few userspace tools will also be platform spe-

cific. Here is a summary of he most important machine-
dependent parts of NetBSD that need to be dealt with
when porting NetBSD to a new platform.

2.1 Toolchain

First and foremost, a working cross-toolchain (compiler,
assembler, linker, etc) is needed to bootstrap an operat-
ing system on to a new platform. The GNU toolchain has
become the de-facto standard for open source systems,
and NetBSD is no exception to that rule. Since the ELF
binary format is used by almost all NetBSD ports (and
should be used by any new ports), as well other operat-
ing systems such as Linux, making the GNU toolchain
work for NetBSD usually involves not more work than
creating/modifying a few configuration files. The excep-
tion being the case where the target CPU isn’t supported
at all yet, which makes for a much greater effort.

2.2 Boot code

The boot code deals with loading the kernel image in
to RAM and executing it. It interacts with the firmware
to load the image. The effort needed to write the boot
code largely depends on the functionality offered by the
firmware. Often, the limited capabilities of the firmware
are only used to load a second stage bootloader, con-
taining code that is more sophisticated in dealing with
filesystems on which the kernel image may reside, and
the file format(s) that the kernel may have.

2.3 Traps and interrupts

Trap and interrupt handling is obviously a highly
machine-dependent part of the kernel. At the very least,
the entry points for these must have machine-dependent
code to save and restore CPU registers. Furthermore,
CPUs will have different sets of traps, needing specific
care.

24 Low-level VM /MMU handling

Memory management units (MMUs) tend to be quite
different from CPU to CPU. They may even be differ-
ent within one family of processors (for example, the
PowerPC 4xx series has an MMU that differs signif-
icantly from the 6xx series). They may also be very
different in what they expose to the hardware. MMUSs
may for example have a fixed page table structure that
they walk in hardware, or leave many more operations

up to the software, exposing translation lookaside buffer
(TLB) misses. The low-level virtual memory code in
all 4.4BSD-derived systems is called the pmap module,
a name taken from the Mach operating system, whose
virtual memory (VM) system was used in 4.4BSD.

2.5 Port-specific devices

Some platforms will have devices that are highly un-
likely to appear on any other platform. These may in-
clude on-chip serial devices and clocks. Porting NetBSD
to a new platform often involves writing a driver for at
least one such device.

2.6 Bus-layer backend code

As mentioned above, the device code uses a machine-
independent interface for I/O and DMA operations. The
differences per platform are hidden underneath this in-
terface, and the implementation of this interface deals
with the platform specifics. This interface is heavily
used in device drivers, so a small memory footprint and
speed are important. Often, the interface is implemented
as a set of macros or inline functions.

2.7 Libraries

In userspace, the C startup code and a few libraries will
contain machine-dependent code. The library parts in
question are mainly the system call interface in the C li-
brary, the optimized string functions in the same library,
and specific floating point handling in the math library.
There are a few other, lesser used areas, like the KVM
library which deals with reading kernel memory. Lastly,
shared library handling (relocation types) will likely be
different from other platforms.

3 The x86-64 hardware

Before going into the specifics, a brief introduction to
the AMD x86-64 architecture[2]is in order. The AMD
x86-64 (codenamed “Hammer”) architecture specifica-
tion was released end of 2000. As of December 2001,
no hardware implentation was publicly available yet
(NetBSD/x86-64 was exclusively developed on the Sim-
ics x86-64 simulator made by VirtuTech). Since x86-64
is essentially an extension to the IA32 (or i386, as it is
known in NetBSD) architecture, its predecessor will be
introduced first below.

31 22 21 12 11

virtual address

Page

Page Directory Page Table Physical

Page

phys. address

o
L

o
L

Figure 1: IA32 virtual address translation (4K pagesize). The entries in the page table and page directory are 32 bits wide.

3.1 The IA32 architecture

IA32 is the name that Intel gave to the 32-bit ar-
chitecture that was originally introduced with its
80386 CPU, and has, through its application in the PC
world, become the most popular CPU architecture today.

IA32 CPUs have the following features [4]:

e Seven 32-bit wide general purpose registers, 4 of
which can also be used in 16-bit and 8-bit chunks

o A large set of instructions.

e From the 80486 and up, an on-chip floating point
unit.

¢ From the Pentium III and up, Streaming SIMD Ex-
tensions (SSE), a class of instructions dealing with
parallelized load/store and computation, targeted at
graphics applications. SSE also adds a set of new
registers, 64 bits wide, for use with SSE instruc-
tions. The Pentium 4 added yet more SSE instruc-
tions, and widended the SSE registers to 128 bits.
These newer SSE instructions are known as SSE2.

e 32-bit wide addressing

¢ An MMU supporting the usual page protection
schemes, and four gigabytes of virtual memory

through a three-level pagetable. Different parts of
a virtual address are used as indices into page table
structures. These structures contain some informa-
tion on the protection of the page, and point to the
physical address of the page in which the structure
to be indexed at the next (lower) level is contained.
The lowest level of page tables contains the actual
physical address to be referenced. Later CPUs also
support an extended version of this scheme called
Physical Address Extensions (PAE), enabling the
use of more than 4G of physical memory. Vir-
tual address translation for the IA32 architecture is
shown in figure 1.

Memory segmentation through descriptors, de-
scribing the type, base address and length of a sec-
tion of memory. Memory descriptors (and other
types) are stored in special tables.

Segment registers that specify which de-
scriptor is used to determine the location of
loads/stores/execution.

Trap/interrupt handling through a special array of
descriptors, called the Interrupt Descriptor Table
(IDT).

Four different execution modes for programs: plain
16-bit mode (“real mode”, backward compatible to
the 8086); 16-bit “protected mode” (16-bit mode

with protection); 32-bit “protected mode” (this is
the mode that all modern systems use); and finally
“virtual 8086 mode”, which runs old-style 16-bit
programs in a virtual “real mode”, while the oper-
ating system is actually running in 32-bit protected
mode.

3.2 General x86-64 extensions

The x86-64 architecture is essentially a 64-bit exten-
sion of the IA32 architecture. In addition to the legacy
“real” (16-bit) and “protected” (32-bit) modes, it de-
fines a “long” (64-bit) mode. In real mode and pro-
tected mode, it is fully compatible with the TA32 archi-
tecture. In long mode, it is capable of running 32-bit
binaries without modification, and contains a number of
extensions. This paper only discusses long mode, except
where explicitly noted otherwise.

3.3 Registers

The general-purpose registers that already were present
in the IA32 architecture were extended to 64 bits. Eight
general purpose registers were added, yielding a total
of fifteen (not counting the esp register, see figure 2).
This addresses an often heard complaint about the
IA32 architecture: it has very few general purpose
registers. Additionally, eight SSE2 registers were
added. For consistency, all general purpose registers
can have their lower 16 bits or lower 8 bits addressed
specifically in instructions, something that was only
possible for four of the registers in the IA32 architecture.

To be backward compatible, computations and moves
involving the lower 16- and 8-bit parts of the registers
do not affect the upper bits. However, 32-bit operations
are zero-extended. A special 64-bit immediate register
move instruction was added to conveniently use 64-bit
constants; 64-bit immediate values are not allowed in
other instructions.

3.4 Memory management

The idea of the x86-64 being an extended IA32 archi-
tecture is also reflected in its memory management unit
(MMU). The x86-64 has a 64-bit virtual address space,
however, initial implementations of the architecture are
specified to only use 48 out of these 64 bits, and 40 bits
of physical address space. Addresses are specified to be
sign-extended, essentially leading to a “hole” in virtual
memory space that cannot be addressed. To enable the

MMU to handle the translation of 48 bits of virtual ad-
dress space, an extra page table level was added, in addi-
tion to the extra level that already had been added in later
implementations of the IA32 architecture to support PAE
(see figure 3, the dotted line inside the virtual address
shows where PAE ends). So basically, the x86-64 page
table scheme is the IA32 PAE scheme, with 512 instead
of 4 page table pointer directory entries, plus a fourth
level, called PMLA4. This similarity goes so far that the
PAE feature must actually be specifically enabled as part
of the steps to get the chip into long mode.

3.5 Other

Other notable features of the x86-64 architecture in-
clude:

o The possibility of addressing relative to the instruc-
tion pointer.

o Flat address space (the memory offsets specified
through the code and data segment registers are ig-
nored).

e Most hardware (system) data structures were ex-
tended to hold 64-bit addresses where needed.

o Fast, special cased instructions for system calls into
the operating system. AMD had already introduced
these with the K6 CPU, and they were extended to
64 bits.

o A few special registers were added, such as
the registers that hold the entry point for the
SYSCALL/SYSRET instructions, and the EFER, the
Extended Feature Enable Register, which, amongst
other things, contains a bit that enables long mode.

4 The actual port

Using the list of machine-dependent operating system
parts in section 2, the work that was needed to port
NetBSD to the x86-64 architecture will now be dis-
cussed.

4.1 Toolchain

When the work on NetBSD/x86_64 was started, the
GNU toolchain already had some basic x86-64 support
in it, which had been developed for Linux at SuSe,
Inc. Shared library support wasn’t working yet, but

General Purpose Registers

Floating Point Registers

SSE Registers

eax | rax mm0/st0 xmim0
ebx | tbx mml/st] xmml
ecx | Tex mm2/st2 xmm?2
edx | rdx mm3/st3 xmm3
esi | rsi mmd4/st4 xmm4
edi | rdi mmS5/st5 xmms
ebp | Tbp mm6/st6 xmm6
esp | 1sp mm7/st7 xmm7
8 3 0 xmm§
9 xmm9
10 xmm10
(11 Instruction Pointer xmml1
r12 - eip rip xmm12
13 & 0 xmm13
rl4 xmm14
rl5 xmml5
o 5 127 0

Figure 2: x86-64 registers. IA32 compatible registers are shown in italic

compiling, assembling and linking applications mostly
worked. The application binary interface (ABI) had also
been defined[3]. Adapting this code for NetBSD came
down to just modifying/creating some configuration
header files. Naturally, a few compiler and linker
bugs were present in the OS-independent code of the
toolchain, but this could be expected as the x86-64 code
was quite young.

There are some ABI issues to consider. The x86-
64 ABI defines four non-PIC code models:

e Small. All symbols in the program are assumed to
be at virtual addresses in 32-bit range.

o Kernel. As above, but instead, all addresses are ex-
pected to be in negative 32-bit range, i.e. in the
upper 32 bits of 64-bit memory. Kernels are often
run in the upper region of virtual memory, and this
code model was added to map a kernel in that area,
without having to specify full 64-bit offsets in the
code.

e Medium. Size and address of the code segment are
expected to be in 32-bit range, but data can be the
full 64-bit range

e Large. No restrictions on data or code addresses.
The compiler has to generate code to only use indi-

rect addressing via registers to be sure that the full
64-bit range is addressable.

There are similar models for position-independent code.
By default, userspace programs are expected to use the
“small” code model. Other code models weren’t yet
completely supported when the port was done, although
at least the “large” model turned out to be stable after a
few small modifications, and was used for the kernel.

4.2 Bootcode and bootstrap

Since there is no actual x86-64 hardware available yet,
and no definitive firmware interface for the upcoming
x86-64 machines has been specified yet, the bootcode
had to deal with whatever the simulator provided.
The simulator provided a normal PC BIOS interface,
meaning that the NetBSD/i386 bootcode could almost
be used as-is. However, the kernel image to be loaded
is a 64-bit ELF binary for the x86-64 case. Making this
work was a trivial modification, since the code to load
64-bit ELF binaries had already been made machine-
independent and placed into the stand-alone library used
by the bootcode of various NetBSD platforms.

The initial bootstrap code in the kernel (i.e. the
first code to be executed in the kernel) naturally had

63 48 47 39 38

3029

21 20 1211 0

(sign extend) |

| virtual address

L

phys addr

» »

» »

PML4

Page Directory Page

Page Pointers Page Directory Page Table Physical
Page

Page Page

Figure 3: Virtual address translation in the x86-64 (4K pagesize). The entries in the page table structures are 64 bits wide.

to be written from scratch for this new NetBSD port,
although it can be viewed as an extended version of
that in NetBSD/i386. Since the x86-64 is fully IA32
compatible at power-on, it also needs to deal with
getting the CPU out of 16-bit mode, in to 32-bit mode,
and this time a couple of steps further, into 64-bit mode.
The actual steps are:

1. Enable Physical Address Extensions

2. Set the LME (Long Mode Enable) bit in the EFER
register

3. Point the %cr3 register at a prefabricated initial 4-
level page table structure

4. Enable paging

5. The CPU is now running in a 32-bit compatibility
segment. Fabricate a temporary Global Descrip-
tor Table with a Long Mode memory segment, and
jump to that segment

6. Because the kernel is mapped in the upper regions
of memory, we could previously not address that re-
gion, as it lies well out of 32-bit range. But since we
are now finally running in long mode, it is within
range of the jump instructions, so use one to finally
start executing the actual kernel code.

4.3 Traps and interrupts

The structure of the low-level trap and interrupt code is
similar to that of NetBSD/i386, although no code could
be shared. The x86-64 also uses an Interrupt Descriptor
Table (IDT) to set up the vectors for traps and interrupts.
The work done at the entry points for the traps was
the normal save registers/dispatch/restore registers.
Although the higher-level trap code can probably be
shared between NetBSD/i386 and NetBSD/x86-64,
since the set of traps is the same between the architec-
tures, this has not yet been done.

Another set of traps is the system call entry points.
The x86-64 supports the same mechanisms that were
already present in the IA32 architecture: entering the
kernel via a software interrupt, or doing so by issuing
a call to a special type of structure (a call gate), which
automatically switches to the kernel environment. These
instructions perform some actions that are usually not
needed in an environment where the address space is
flat (i.e. the full 4G of virtual memory is available to
programs in one chunk, with the kernel usually occu-
pying the upper region). The SYSCALL and SYSRET
instructions are optimized for this case, and can be used
to implement a faster system call path, which can be an
important factor in the performance of applications. The
code to handle this was written, but not yet integrated;

currently the old-style entry points are still used, but this
will change in the near future.

44 Low-level VM /MMU handling

The x86-64 MMU uses a page table structure that is
very similar to the TA32. It basically is the IA32 with
a Physical Address Extensions page table, extrapolated
to have 4 levels, to deal with the 48 bits of virtual
memory that the initial family of x86-64 processors will
have. Because of this similarity, the 1386 pmap module
was taken, and abstracted to implement a generic
N-level IA32 page table, with either 32- or 64-bit wide
entries. The resulting code has been tested on both the
x86-64 and 1386 ports of NetBSD, with success. The
differences between the IA32 and x86-64 code were
hidden in C preprocessor macros and type definitions.
The advantage of this approach is that it is now easy to
optionally support PAE on the NetBSD/i386 as well,
because this only means conditionally compiling in a
few other macros and type definitions.

Alt. Page Table Pages
0xEEE£££8000000000
Unused
0x££££800080000000
Kernel Space
0x££££800000000000
Virtual Memory Gap
0x0000800000000000
Page Table Pages
0x00007£8000000000
User Space
0x0000000000000000

Figure 4: NetBSD/x86-64 virtual memory layout.

The implemented virtual memory layout is shown
in figure 4. Because of the sign-extension that the

CPU performs on virtual addresses, an unaddressable
gap exists between 2%7and 2% — 247, This is not
unusual; such a gap is also found on e.g. SPARCv9
and Alpha processors. The memory layout is more
or less a stretched-out version of the IA32 memory
map, as was to be expected in a merged pmap module.
A user process runs in the bottom half of virtual
memory, while the kernel is always mapped in the
top half. Part of the top half is unused, because the
kernel doesn’t need the huge amount of virtual memory
available there, and it turned out that using such an
amount of space blew up some data structures in a
disproportional way. The upper part of the bottom
half of virtual memory is taken up by recursively
mapped page table pages, as is the the upper part of the
top half of virtual memory (used if the page tables of
a process other than the current one need to be changed).

This layout meant that the kernel was out of range
of the “kernel” code model, specified in the ABI. The
“large” model was needed, but not yet supported by gcc.
Fortunately, it turned out that it did work, with a few
small modifications. The NetBSD/x86_64 kernel will
likely be changed to use the kernel ABI model, once
real hardware is available, and a speed assessment will
be made. This layout is being used for now because it is
a consistent extension of the IA32 model, making pmap
code sharing easier.

4.5 Bus-layer backend code

Much of the bus-layer backend code could be reused
from the 1386 port. For the PIO case, the instructions re-
mained the same, so no changes were needed, except for
some modifications to make it fit the extended 64-bitreg-
ister set. The same goes for memory-mapped I/O. The
DMA framework needed to deal with possibly having
32-bit PCI, which would be unable to do DMA access
into memory above the 4G limit. For now, a simple solu-
tion was picked of having DMA memory for 32-bit PCI
always come from below the 4G limit. This needs to be
revisited later; for machines with more than 4G of mem-
ory conditions may occur where RAM is available, but
not below the 4G limit. To avoid this problem, bounce
buffers can be introduced; they are temporary buffers on
which the DMA is done, and to or from which the data
must be copied to its actual location.

4.6 Port-specific devices

So far, the NetBSD x86-64 port does not deal with any
platform-specific devices. The simulator simulates a

number of hardware components that is known from the
PC world (like the host-PCI bridge, etc). These compo-
nents “just worked”, and no modifications were needed,
after the bus_space and bus_dma layers were imple-
mented.

4.7 Libraries

The main work in userspace was porting the libraries
and C startup code. The C startup code and C library
were fairly trivial to port. Most of the work that had to
be done was to write the system call stubs and the opti-
mized string functions, keeping in mind that the x86-64
ABI passes most arguments in registers, instead of al-
ways on the stack as the 1386 ABI specifies. The math
library was a bit more work. It could share a lot of code
with the 1386 (really i387) code, since the FPU has the
same instructions, but there was an ABI difference. The
x86-64 ABI specifies that floating point arguments are
passed in SSE registers, but the 1386 ABI passes these
on the stack. A few macros had to be written to extract
the arguments to the various (mostly trigonometry) func-
tions, prepare them, and then use a common bit of code
for both the 1386 and x86-64 ports. Lastly, the dynamic
linker had to be adapted to deal with the types of reloca-
tion that x86-64 shared libraries may use.

4.8 Compatibility code

The x86-64 offers the option to run 32-bit 1386 applica-
tions without modification. This is a useful option, as
it enabled operating systems to run older applications
out of the box. Some support for this is needed in the
kernel, though. The basic item that is needed to run
a 32-bit application is to install 32-bit compatibility
memory segments in the various descriptor tables of the
CPU. The CPU will execute instructions from such a
segment in a 32-bit environment. However, traps to the
kernel will switch the CPU to 64-bit mode. This has
the advantage that there doesn’t need to be any special
kernel entry/exit code for 32-bit applications. 32-bit
programs do have a different interface to the kernel; they
pass arguments to system calls in different ways, and in
32-bit quantities. Also, structures passed to the kernels
(or rather, the pointers to them) will have a different
alignment. These issues needed to be addressed to
enable running old NetBSD/i386 binaries.

Compatibility code to run binaries from various
platforms (Linux, Tru64, Solaris, etc.) has been a
part of NetBSD for a long time. So, not surprisingly,
this issue had already been tackled once before, when

NetBSD/sparc64 needed to deal with running 32-bit
SPARC binaries. This code, the compat_netbsd32
module, implements a small layer which translates (if
needed) 32-bit arguments to system calls to their 64-bit
counterparts.

5 Conclusions and future work

The port of NetBSD to AMD’s x86-64 architecture
was done in six weeks, which confirms NetBSD’s
reputation as being a very portable operating system.
One week was spent setting up the cross-toolchain and
reading the x86-64 specifications, three weeks were
spent writing the kernel code, one week was spent
writing the userspace code, and one week testing and
debugging it all. No problems were observed in any of
the machine-independent parts of the kernel during test
runs; all (simulated) device drivers, file systems, etc,
worked without modification.

The porting effort went smoothly. Table 1 shows
the amount of new code written. In the area of sharing

| Area | Assembly Lines | C lines |
libc 310 2772
C startup 0 104
libm 52 0
kernel 3314 17392
dynamic linker 59 172

Table 1: New lines of C/assembly code per area of the NetBSD
source tree

code between “related” CPUs (such as the x86-64 and
the TA32), some more work can be done. Currently, the
x86-64 pmap isn’t shared between the 2 ports, though
it is known to work for both architectures. The pmap
code is counted as “new code” in table 1, but most of its
3500 lines of code was in some form or another based
on the 1386 code. Some descriptor table code can also
be shared. The number of new C code lines will drop
well below 10,000 when the code is properly shared.

Acknowledgments

This work was paid for by my employer, Wasabi Sys-
tems, Inc. I’d also like to thank AMD for their support,
Virtutech for the simulator, and the folks at SuSe for do-
ing the Linux toolchain work.

References

[1] Jason Thorpe: A Machine-Independent DMA
Framework for NetBSD, Usenix 1998 Annual tech-
nical conference.

[2] Advanced Micro Devices, Inc: The AMD x86-64
Architecture Programmers Overview,
http://www.amd.com/products/cpg/64bit/pdf/x86-
64_overview.pdf

[3] Hubicka, Jaeger, Mitchell: x86-64 draft ABI,
http://x86-64.org/abi.pdf

[4] Intel Corporation: Pentium 4 manuals,
http://developer.intel.com/design/Pentium4/manuals/

[5] Chris Demetriou: NetBSD bus_space(9) manual
page, originally in NetBSD 1.3, 1997.

