
USENIX Association

Proceedings of the
BSDCon 2002

Conference

San Francisco, California, USA
February 11-14, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Advanced Synchronization in Mac OS X: Extending Unix
to SMP and Real-Time

Louis G. Gerbarg
Apple Computer, Inc.

louis@apple.com

Abstract

Throughout the years, as Unix has grown
and evolved so has computer hardware. The
4.4BSD-Lite2 distribution had no support
for two features that are becoming more
and more important: SMP and real-time
processing.

With the release Mac OS X Apple has
made extensive alterations to our kernel in
order to support both SMP and real-time
processing. These alterations affected both
the BSD and Mach portions of our kernel, as
well as shaping our driver system, IOKit.

These changes range from scheduling
policies, enabling support for kernel pre-
emption, altering locking hierarchies, and
defining new serialization primitives, as well
as designing a driver architecture that allows
developers to easily make their drivers SMP
and preemption safe.

1 Introduction

Traditional BSD kernels do some things
very well. SMP is not one of them. The
4.4BSD-Lite2 source, on which NetBSD,
FreeBSD, OpenBSD, and Mac OS X are
based did not have support for SMP. Its lock-
ing mechanisms were not set up for multiple
processors, the kernel was not reentrant, and
bottom half (interrupt time) drivers always
work directly within an interrupt context.

As FreeBSD, Mac OS X, and NetBSD have
moved to support SMP they have had to
overcome these shortcomings. Some aspects
of their solutions are similar, some are wildly
divergent. Both xnu and FreeBSD have
decided to adopt interrupt thread contexts,
as well as a number of similar new locking
primitives.

2 An Introduction to xnu

Before delving into the intricacies of
Mac OS X’s advanced features a brief
overview of the kernel architecture and its
history is necessary. Mac OS X is based
around a BSD distribution known as Dar-
win. At the heart of Darwin is its kernel,
xnu. xnu is a monolithic kernel based on
sources from the OSF/mk Mach Kernel,
the BSD-Lite2 kernel source, as well as
source that was developed at NeXT. All of
this has been significantly modified by Apple.

xnu is not a traditional microkernel as
its Mach heritage might imply. Over the
years various people have tried methods of
speeding up microkernels, including colloca-
tion (MkLinux), and optimized messaging
mechanisms (L4)[microperf]. Since Mac OS
X was not intended to work as a multi-server,
and a crash of a BSD server was equivalent
to a system crash from a user perspective the
advantages of protecting Mach from BSD
were negligible. Rather than simple collo-
cation, message passing was short circuited
by having BSD directly call Mach functions.
While the abstractions are maintained within

the kernel at source level, the kernel is in fact
monolithic. xnu exports both Mach 3.0 and
BSD interfaces for userland applications to
use. Use of the Mach interface is discouraged
except for IPC, and if it is necessary to
use a Mach API it should most likely be
used indirectly through a system provided
wrapper API.

3 Basic Synchronization

Operating systems use a number of
structures and algorithms to ensure proper
synchronization between various parts of the
kernel. xnu uses several different locking
structures, including the BSD lockmanager,
Mach mutexes, simple locks, read-write
locks, and funnels. Additionally thread
control is complicated by the use of Mach
continuations, and kernel preemption.

3.1 Simple Locks

Simple locks in Mach are standard spin
locks. When a thread attempts to access
a simple lock that is in use it loops until
the lock becomes free. This is useful when
allowing the thread to sleep could cause a
deadlock, or when one of the threads could
be running in an interrupt context.

Simple locks are the safest general syn-
chronization primitive to use when in doubt,
but their CPU cost is very high. In general is
is better to use a mutex if at all possible. If
a piece of code attempts to acquire a simple
lock it already holds it will result in a kernel
panic.

void

simple_lock_init(

usimple_lock_t,etap_event_t);

void

simple_lock(usimple_lock_t);

void

simple_unlock(usimple_lock_t);

unsigned

int simple_lock_try(usimple_lock_t);

3.2 Mutexes

Mach mutexes are very primitive. Since
they are sleep locks, and do not have the
rich semantics that FreeBSDs mutexes have.
They are sleep locks, when a thread attempts
to access an inuse mutex it will sleep until
that mutex is available. Mutexes can be
used from a thread context (though it is
not always the best performance decision
for things like drivers). If a piece of code
attempts to acquire a mutex it already holds
it will result in a kernel panic.

//The etap_event parameter is

//deprecated, just pass a value of 0.

mutex_t *

mutex_alloc (etap_event_t);

void

mutex_free (mutex_t*);

void

mutex_lock (mutex_t*);

void

mutex_unlock (mutex_t*);

boolean_t

mutex_try (mutex_t*);

3.3 Read-Write Locks

Many variables within the kernel are
safe to be read, so long as they are not
being written. If a lock is highly contended,
generally it is primarily being protected for
readers. Read-write locks solve this problem
by allowing either multiple reads, or a single
writer to possess the lock. While there are
API’s for promoting and demoting locks
between the read and write states, their
usage is discouraged and subject to change.

void

lock_write (lock_t*);

void

lock_read (lock_t*);

void

lock_done (lock_t*);

#define lock_read_done(l) \

lock_done(l);

#define lock_write_done(l) \

lock_done(l);

3.4 Continuations

One of the costs typically associated with
context switches is saving and restoring
thread stacks. This uses both CPU time
and wired memory. In order to avoid this
cost, Mac OS X uses Mach continuations
whenever possible. A continuation allows the
kernel to avoid saving or restoring a kernel
stack across schedulings of the thread.

Continuations work within a non-
preemptible context. Since the thread
is not going to be preempted, its entry and
exit points are well-defined. The thread
begins executing through a call to a function
pointer. It ends execution by making a call
that tells the scheduler to schedule a new
thread, and leaves a pointer to a function
that should be executed the next time
the thread is scheduled. It is the thread’s
responsibility to save and restore its own
variables.

While it is useful to be aware of continua-
tions, it is not generally necessary to directly
interact with them. They may be useful for
doing extremely low overhead threading, but
in general it is best to use them indirectly
through other kernel mechanisms such as
IOWorkLoops.

void thread_set_cont_arg(int);

int thread_get_cont_arg(void);

4 Funnels: Serializing access to
BSD

Funnels are quite possibly one of the most
confusing elements of xnu for people familiar
with other BSD kernels. They are not a
lock in the traditional sense of the word
(though they are sometimes referred to as
“flock” within the kernel). Funnels are used
to serialize access to the BSD segment of
the kernel. This is necessary because that
portion on the codebase does not have fine-
grained locking, and is not fully reentrant.
There are currently two funnels within the
kernel, the kernel funnel (it might be more
appropriate to call it the filesystem funnel,
though it does protect a few calls besids the
file systems), and the network funnel.

4.1 Funnels

Funnels first appeared into Digital
UNIX[dgux], though their implementation
in Mac OS X is entirely different, and
significantly improved. Funnels are actually
built on top of Mach mutexes. Each funnel
backs into a mutex, and once a thread gains
a funnel it is holding that funnel while
it is executing. The difference between a
funnel and a mutex is that a mutex is held
across rescheduling. The scheduler drops a
thread’s funnel when it is rescheduled, and
reacquires the funnel when it is rescheduled.
That means that holding a funnel does
not guarantee that another thread will not
enter a critical section before a thread drops
the funnel. What it does mean is that on
a multiprocessor system it is guaranteed
that no other thread will access the section
concurrently from another CPU.

Originally there was a single funnel pro-
tecting the entirety of the BSD kernel. It
was in many ways analoguous to FreeBSD-
current’s Giant mutex (more on that later).
Since networking and other kernel functions
are generally seperate, splitting the funnel
into two is a major win for dual processor
machines. Unfortunately, since holding

both funnels can result in nasty deadlocks
and other problems, holding both at the
same time causes a panic. This can cause
significant problems for entities that need
to access items that are protected by each
funnel. The primary entities this effects are
network file systems. The funnel API has
a call for swapping funnels, but in some
cases this has proven to be too complicated
to orchestrate (such as NFS serving). The
API also provides a merge call which will
combine the two funnels into a single funnel,
backed by a single mutex. Unfortunately, the
funnels cannot be unmerged, which causes a
net performance loss.

The primary difference between Digital
UNIX funnels and Mac OS X funnels are
that on Digital UNIX there can only be one
funnel, and it always will be on the primary
CPU. On Mac OS X there can be multiple
funnels, and funnels can run on any CPU
(although a particular funnel may only be on
one CPU at any given time).

There are primitives for creating funnels,
but in general nobody should be creating
new funnels. All control of the funnels is
done through the thread funnel set call().

boolean_t

thread_funnel_set

(funnel_t * fnl, boolean_t funneled);

4.2 So long spl...

In BSD the various spl priority levels
formed a locking hierarchy that could be
used to guarantee synchronization between
the interrupt and non-interrupt segments of
a driver. Unfortunately the spl’s definitions
got less and less fine-grained over the years,
and they were never particularly well suited
for SMP. For these reasons Mac OS X no
longer uses them. Instead it manages its
synchronization through mutexes, and the
BSD funnel serializations.

If this sounds familiar to FreeBSD users,
that is probably because FreeBSD-current
actually has a funnel (or rather a magic
mutex), Giant. FreeBSD plays scheduler
games with Giant that are almost identical
to what xnu does with funnels, although Mac
OS X deals with them explicitly, through
a different API than its mutexes. Like
FreeBSD, xnu has replaced the function-
ality of the spl’s with these more flexible
syncronization primitives. Unlike FreeBSD,
the spl calls are still sprinkled through the
kernel. Through the development of xnu
they have been no-ops, wrappers to getting
the funnels, and most recently they act as
asserts to make sure the funnels are in the
correct state when they are called.

5 Real-Time

There are two important aspects to
real-time scheduling. One is the scheduling
algorithm, the other is guaranteeing latencies
within the kernel are not excessive. While
both will be discussed, this section focuses
mostly on the latencies related issues.

5.1 Interrupt Handling

True interrupt handlers cannot be pre-
empted, and cannot sleep. Therefore, if there
is a long path in an interrupt handler it
will lead to high latency. In order to handle
this, xnu generally uses a simple interrupt
handler that processes the interrupt by
triggering a handler in a regular kernel
thread context that a driver has registered
for the interrupt handler. This “pseudo
interrupt” handler is run in a normal kernel
thread context, where it can access the full
kernel API. If true interrupt handling is
necessary the correct mechanism is generally
an IOFilterInterruptEventSource (see below).

5.2 Scheduling Bands

xnu internally has 128 priority levels,
ranging from 0 (lowest priority) to 127 (high-
est priority). They are divided into several
major bands. 0 through 51 correspond to
what is available through the traditional
BSD interface. The default priority is 31. 52
through 63 correspond to elevated priorities.
64-79 are the highest priority regular threads,
and are used by things like WindowServer.
80 through 95 are for kernel mode threads.
Finally 96 through 127 correspond to real-
time threads, which are treated differently
than other threads by the scheduler.

5.3 Fixed and Degrading priorities

By default the scheduler creates threads
with degradable priorities. These threads will
have lower and lower effective priorities as
they use (and abuse) their time allocations.
This is particularly significant for real-time
threads, since if they are truly abusive they
will eventually degrade into non-real-time
threads. This mechanism means that it is
possible to allow non-superusers to create
real-time threads.

There are also mechanisms to create fixed
priority threads which will not degrade.
Their creation is much more restrictive than
degradable threads, since they can be used
very effectively to perform a denial of service
against a system.

5.4 Kernel Preemption

Kernel preemption is the main tool xnu
uses to achieve low latencies. The kernel is
preemptible, though in standard usage kernel
preemption is turned off. Kernel preemption
begins when a real-time thread is scheduled.
Since the real-time thread has a higher
priority than a kernel thread it should be
scheduled in favor of the kernel thread, and

that is the point at which kernel preemption
is activated.

Preemption changes the runtime char-
acteristics of the kernel dramatically.
Continuations are no longer nearly as use-
ful, since the thread may be rescheduled
at any point, which will require a stack.
Additionally, all sorts of new deadlocks
can arise. In order to cope with this the
locking primitives have been modified to
work with preemption. Simple locks disable
preemption while they are spinning. Mutexes
only disable preemption while the thread is
trying to gain access to its interlock (a spin
lock protecting the mutexes private data
structures). Additionally the true interrupt
handler is not preemptible

What this means is that well written code
should not need to be at all aware of the
fact that kernel preemption is enabled, and
should just work if they properly use the
locking primitives. It should be transparent
to most kernel extensions and drivers. It
may not be transparent if the driver uses
an IOFilterInterruptEventSource, or does
not make proper use of an IOWorkLoop, as
described in the next section.

6 IOKit

IOKit is the driver subsystem of the Mac
OS X kernel. IOKit provides a number of syn-
chronization primitives, ranging from simple
wrappers to the Mach primitives, all the way
through complex new synchronization con-
structs that massively simplify writing drivers
for devices that are SMP clean and pre-
emptible. IOKit is implemented in eC++
[eC++], a subset of C++, and uses a custom
runtime type system.

6.1 IOLocks

IOKit provides wrappers to the Mach
locking primitives. These wrappers provide
some convenience as well as a consistent
interface to the locking primitives.

6.1.1 IORWLock

IORWLock provides a wrapper to the stan-
dard Mach read-write locks.

IORWLock *

IORWLockAlloc(void);

void

IORWLockFree(IORWLock * lock);

void

IORWLockRead(IORWLock * lock);

void

IORWLockWrite(IORWLock * lock);

void

IORWLockUnlock(IORWLock * lock);

6.1.2 IORecursiveLock

IORecursiveLock provides a wrapper to the
standard Mach mutexes. Additionally, it has
an internal reference counting mechanism
that allows it to be locked recursively.

IORecursiveLock *

IORecursiveLockAlloc(void);

void

IORecursiveLockFree(

IORecursiveLock * lock);

void

IORecursiveLockLock(

IORecursiveLock * lock);

boolean_t

IORecursiveLockTryLock(

IORecursiveLock * lock);

void

IORecursiveLockUnlock(

IORecursiveLock * lock);

6.1.3 IOLock

IOLock provides a wrapper to the standard
Mach mutexes. The semantics are the same.
Recursive locking is not allowed.

IOLock *

IOLockAlloc(void);

void

IOLockFree(IOLock * lock);

void

IOLockLock(IOLock * lock);

boolean_t

IOLockTryLock(IOLock * lock);

void

IOLockUnlock(IOLock * lock);

6.1.4 IOSimpleLock

IOSimpleLock provides a wrapper to the
standard Mach simple locks. Additionally, it
has an interface for enabling and disabling
interrupts (drivers should probably be using
a IOWorkLoop for synchronization, which
will take care of interrupt related issues).

IOSimpleLock *

IOSimpleLockAlloc(void);

void

IOSimpleLockFree(IOSimpleLock * lock);

void

IOSimpleLockLock(IOSimpleLock * lock);

boolean_t

IOSimpleLockTryLock(IOSimpleLock * lock);

void

IOSimpleLockUnlock(IOSimpleLock * lock);

IOInterruptState

IOSimpleLockLockDisableInterrupt(

IOSimpleLock * lock);

void

IOSimpleLockUnlockEnableInterrupt(

IOSimpleLock * lock,

IOInterruptState state);

6.2 IOWorkLoop

IOWorkLoops are constructs designed
to simplify synchronization issues that
arise when working with hardware in the
multi-threaded, reentrant, preemptible en-
vironment present within xnu. Unlike the
other locking primitives discussed earlier
in this paper, the IOWorkLoop is a very
complex entity that takes care of most of
the more mundane synchronization issues
for driver writers. Its interface is rather
extensive, and somewhat complex.

The basic idea behind a work loop is that
it forces anything attached to the work loop
to run effectively single threaded. So while
anything is holding the work loop none of
the other event handlers or runActions asso-
ciated can run. This effectively synchronizes
the various items that are attached to the
work loop. It also provides a convenient
mechanism for servicing interrupts and
timers while keeping them synchronized.

The work loop also takes care of a bunch
of mundane issues such as turning on and off
interrupts during certain locking procedures,
meaning that driver writers can concentrate
on getting their drivers working, not keeping
their locking straight. Inherently there is
some overhead in using work loops, and
they do not serve every purpose, but they
are quite flexible, and allow programmers
to write correct drivers without intimate
knowledge of xnu’s internal synchronization
mechanisms.

6.2.1 EventSources

IOEventSources are very flexible constructs
for dealing with asynchronous events. While
it is possible to implement new event
sources, in general the provided IOInter-
ruptEventSource and IOTimerEventSource
are sufficient.

Event sources allow functions to be as-
sociated with asynchronous events, such as
interrupts and timers. The full details and
subtleties of how they work falls outside the
scope of this paper, but the basic interfaces
for creating new event sources are provided
below.

Once an event source has been created it
can then be added to a work loop. After
that any time the event happens it will
automatically be processed by the function
that was specified when it was created, and
in the work loop context.

IOTimerEventSource *

IOTimerEventSource::timerEventSource(

OSObject *owner, Action action = 0);

IOInterruptEventSource *

IOInterruptEventSource::interruptEventSource(

OSObject *owner, Action action,

IOService *provider = 0,

int intIndex = 0);

virtual IOReturn

IOWorkLoop::addEventSource(

IOEventSource *newEvent);

virtual IOReturn

removeEventSource(

IOEventSource *toRemove);

6.2.2 runActions

Event sources solve a significant amount
of the synchronization issues drivers face
dealing with the bottom half (interrupt time)
of the driver, but they do not deal with the
synchronizing the top half (non-interrupt)

and bottom half of the driver. This syn-
chronization is achieved through the use of
runActions.

runActions simply link a particular invo-
cation of a function to the work loop. While
the runAction is operating it is holding the
work loop, thus forcing synchronization with
everything else on the work loop, including
the interrupt and timer event handlers.

typedef IOReturn (*Action)

(OSObject *target,

void *arg0, void *arg1,

void *arg2, void *arg3);

virtual IOReturn

IOWorkLoop::runAction

(Action action, OSObject *target,

void *arg0 = 0, void *arg1 = 0,

void *arg2 = 0, void *arg3 = 0);

6.3 IOFilterInterruptEventSource

IOFilterInterruptEventSource is a subclass
of IOInterruptEventSource It is special be-
cause in addition to running within the work
loop thread’s context it runs directly on the
primary interrupt context. This allows for
much faster interrupt response time, but also
means that an IOFilterInterruptEventSource
cannot block, and must not use any kernel
API that may block. In general IOFilterIn-
terruptEventSoures should be used for cases
where there are a lot of potential spurious
interrupts, such as when a device shares an
interrupt, or when processing only needs to
be performed after several interrupts. The
IOFilterInterruptSource can choose to ignore
the interrupts that do not need processing,
and pass the ones that do need processing
onto an IOInterruptEventSource. A full
description of limitations imposed on code
running within the primary interrupt context
is beyond the scope of this paper.

7 Conclusions

Darwin provides a number of synchroniza-
tion primitives, both traditional and unique.
They provide mechanisms for writing high
performance drivers, without requiring driver
writers to become intimately familiar with
the OS. This both simplifies driver bring up,
and encourages more people to write Mac
OS X drivers for their devices.

Mac OS X is an evolving system, and
many of these features are still in their
infancy. Over time it will likely evolve into a
more fine grained locking model, with certain
compromises that are currently present will
be phased out. The basic architecture needed
to support SMP and real-time exists, and
for most things the interfaces should remain
stable for the foreseeable future.

References

[eC++] eC++ Overview,
http://www.infoxpress.com/reviewtracker/reprints.asp?page id=840, (1997)

[dgux] Digital UNIX Writing Device Drivers: Advanced Topics,
http://www.unix.digital.com/docs/dev doc/ DOCUMENTATION/PDF/AA-Q7RPB.PDF,
(1996)

[iokit] Mac OS X: I/O Kit Fundamentals,
http://developer.apple.com/techpubs/macosx/Darwin/
IOKitFundamentals/index.html, (2001)

[kernenv] Mac OS X: Kernel Environment,
http://developer.apple.com/techpubs/macosx/Darwin/General/
KernelEnvironment/ndex.html, (2001)

[microperf] Herman Härtig, Michael Hohmuth, Jochen Liedtke, Sebastion Schoönberg, and
Jean Wolter, The Performance of µ-Kernel-Based Systems, 16th ACM Symposium on
Operating System Principles (1997)

