
Page 1

Mailman: The GNU Mailing List Manager (Extended Abstract)

John Viega
Reliable Software Technologies

viega@rstcorp.com

Barry Warsaw and Ken Manheimer
Corporation for National Research Initiatives

bwarsaw@cnri.reston.va.us
klm@cnri.reston.va.us

Abstract

Electronic mailing lists are ubiquitous
community-forging tools that serve the important
needs of Internet users, both experienced and
novice. The most popular mailing list managers
generally use textual mail-based interfaces for all
list operations, from subscription management to
list administration. Unfortunately, anecdotal
evidence suggests that most mailing list users, and
many list administrators and moderators are novice
to intermediate computer users; textual interfaces
are often difficult for such people to use effectively.

This paper describes Mailman, the GNU
mailing list manager, which offers a dramatic step
forward in usability and integration over other
mailing list management systems. Mailman brings
to list management an integrated Web interface for
nearly all aspects of mailing list interaction,
including subscription requests and option settings
by members, list configuration and Web page
editing by list administrators, and post approvals by
list moderators. Mailman offers a mix of
robustness, functionality and ease of installation and
use that is unsurpassed by other freely available
mailing list managers. Thus, it offers great benefits
to site administrators, list administrators and end
users alike. Mailman is primarily implemented in
Python, a free, object-oriented scripting language;
there are a few C wrapper programs for security.

Mailman’s architecture is based on a
centralized list-oriented database that contains
configuration options for each list. This allows for
several unique and flexible administrative
mechanisms. In addition to Web access, traditional
email-command based control and interactive
manipulation via the Python interpreter are also

supported. Mailman also contains extensive bounce
and anti-spam devices.

While the features discussed in this paper are
generally improvements over all mailing list
packages, we will focus our comparisons on
Majordomo, which is almost certainly the most
widely used freely available mailing list manager
(MLM) at present.

Extended Abstract

[Reviewers: Images showing the system’s interface
have been omitted from this extended abstract in the
interest of space.]

Introduction

Electronic mailing lists often have humble
beginnings: a user collects a list of email addresses
of like-minded people, and these people begin
sending email to each other using an explicit
distribution list. This type of simple list is fairly
easy for a novice user to start, and many end-user
mail applications let the user set up such
distribution lists.

Often however, lists will grow from this
original distribution list, and as they do, explicit
lists of addresses become extremely unwieldy. List
administrators quickly tire of adding and removing
subscribers manually, and answering email
pertaining to the list. As a result, administrators
generally turn to MLM software to automate the
process.

The first generation of mailing list managers
automated tedious administrative functions such as
subscribing and unsubscribing from mailing lists, as
well as many of the other common requests, such as
getting background information on a list, and
getting a list of subscribed members. They also

Page 2

allowed for lists to be administrated via an email
interface, so that list administrators would not need
to have direct access to the machine on which the
list software ran. However, this generation of
MLMs has traditionally been quite complex; users
are often unable to figure out how to get on or off a
list, leading to many messages along the lines of
“please unsubscribe me”. List administrators often
find it time consuming and difficult to perform
administrative tasks by email, especially when
editing special message headers is required, as is the
case with approving held messages in Majordomo.
In fact, many of the most popular mail user agents
(MUAs) of today (including the Netscape mail
reader) make it fairly difficult for the user to edit
arbitrary headers. System administrators frequently
have a difficult time setting up such software,
especially when many commonly desired features
such as list archiving are only available as third-
party add-ons, if at all.

Mailman is helping to pioneer the second
generation of free mailing list managers. While
even three years ago email messages were the only
reasonable user interface that would make mailing
lists accessible to every Internet user, today the
World Wide Web is generally considered
ubiquitous. In fact, the Web offers a high level of
familiarity and usability for mailing list users, who
are typically at least as experienced, if not more so,
at browsing the Web. Considering the frequency
with which most users interact with the
administrative interface of a mailing list, using a
Web form that presents all the options is much less
of a burden than having to learn or relearn an arcane
syntax for mail commands. Ironically enough,
instructions for interacting with mailing lists are
commonly found on Web pages.

Functionality Overview

Mailman’s primary distinction from other
mailing list managers is its Web interface, which is
discussed in the following section. However, in
addition to having all of the features people expect
from a MLM, such as digests and moderators,
Mailman integrates a rich set of general-purpose
features.

One such feature is automatic bounce handling.
Much like the SmartList mailing list manager
[Sma98], Mailman looks at all delivery errors, and

uses pattern matching to figure out which email
addresses are. By default, once the number of
bounces from an address reaches a configurable
threshold, the address becomes disabled, but not
removed. The administrator is then sent a message
and can decide whether the address should be re-
enabled or removed. However the administrator
could set the list to be more aggressive,
automatically removing addresses after a certain
number of bounces.

We have examined several thousands of
bounce messages received while administrating
Majordomo-based lists, from which we determined
the current set of patterns. Applying these patterns
to bounces has a two-fold benefit: we do not need to
answer “−request” mail, and we rarely need to
handle bounce disposition manually. On large lists,
this automation can be important, since bounced
email can easily produce 10 to 100 times as much
email as actual list submissions [Lev97].

Mailman also contains several anti-spam
devices that significantly reduce the amount of
spam that reaches end users. First, member
addresses are never presented in a form that
traditional spammer-launched webcrawlers will
recognize. Second, Mailman's delivery scripts
apply a number of configurable and extensible
filters to the incoming message, such as requiring
the list address to be named in the To: or Cc:
fields, or rejecting messages from known spam
sites. These, as well as other measures, have proven
to be very effective in preventing most spam from
reaching the list, while still allowing valid messages
to propagate.

Mailman also offers integrated support for
many things that have traditionally been provided in
add-on packages, or have required hacking with
other MLMs. Mailman is distributed with such
features as archiving messages sent to a list, fast
bulk mailing by multiplexing SMTP connections,
multi-homing for virtual domains and gating mail to
and from NNTP news groups. Mailman also uses
the GNU autoconf tool to make the setup process
easy; in contrast, the Majordomo maintainers admit
that Majordomo is extremely difficult to install
[Bar98].

Thus, Mailman is able to provide a system
administrator with a mailing list manager that is not
only easy to install, but also is easy to use at every

Page 3

level, and includes the major pieces of functionality
a list administrator might want without requiring
additional searches and downloads.

Web Interfaces to Mailing Lists

While Mailman does provide Majordomo-like
mail-based commands for compatibility, we
downplay it, as we feel that a good Web-based user
interface is much more desirable to the majority of
users. Our Web-based interface allows for full
access to all of Mailman’s features, including
subscription and option requests, browsing lists on
the same (potentially virtual) host, viewing Web-
based Hypermail-like archives, etc.

Mailman’s administrative interface requires
authentication, but optional short-lived cookies can
be used to lower the barrier imposed by continually
entering the administrative password. Once
authenticated, administrators have control over all
the usual options, including the administrator's
contact address, identifying headers and footers
placed on every message, welcome messages, and
the content of the general list information Web
pages. Administrators can control general list
privacy options, maximum message sizes, digest
and archival options, bounce policies and anti-spam
devices. They may also review and act upon posts
and requests that are being held for approval.

There are many third-party Web front-ends to
Majordomo [Bar98]. However, most of them are
little more than simplistic interfaces to subscribing
and unsubscribing. The most notable exception is
MajorCool [Hou96], which additionally provides
end users with a way of browsing all mailing lists
on a machine, as well as a full-featured interface to
the list configuration. However, MajorCool suffers
from several usability problems, all of which are
addressed by Mailman.

First, MajorCool has the problem that
malicious users can subscribe and unsubscribe other
people from mailing lists over the Web. Mailman,
on the other hand, requires confirmation emails for
subscriptions. For unsubscribing, users must enter a
password into a CGI field, which can be generated
by Mailman, and delivered to the subscribed email
address on request.

Second, MajorCool requires that it and an
HTTP server must be co-located on the machine

running Majordomo and Sendmail [Hou98]. In
contrast, Mailman has been tested with a mail
transport and Web server running on separate
machines in an NFS environment, and has been
tested with the transport, Web server, and Mailman
all running on separate machines, where Mailman
scripts are run via rsh or ssh.

Third, MajorCool’s interaction with end users
is limited. Its goal with respect to end users is to
give them a way to browse all the lists on a
machine, not to provide a nice Web-based
mechanism for interacting with the mailing list.
Mailman provides full support for editing options
such as digest mode, visibility on the subscriber list,
whether posts to a list should be sent back to the
user, and so on.

Finally, MajorCool’s administrative interface
is mainly geared towards interfacing to the
traditional Majordomo configuration. In contrast,
many of Mailman’s administrative options allow for
customization of the list’s Web interface. In fact,
Mailman also allows the list administrator to
provide a “real” Web page for his list. He may edit
HTML via a password protected Web-based
interface. MajorCool essentially lacks the notion of
each list having its own home page.

Architecture

Mailman is written almost completely in
Python [Pyt98], a freely available object-oriented
scripting language. There are a few C wrapper
programs for security purposes. Mailman currently
requires at least Python 1.5, which is freely
available from http://www.python.org/.

Mailman's architecture provides great
flexibility for accessing list data structures. Each
list has an associated database containing
configuration options and member addresses. This
database can be accessed via the Web interface (the
most common mode of access), via a Majordomo-
like email command language, and most uniquely,
via interactive sessions with the Python interpreter.

[Reviewers: we will also discuss other aspects of
the architecture in a full-blown paper, such as our
system for site configurations, the OO design of
Mailman, and its positive impact on extensibility.]

While Mailman is too new to have much hard
data in the way of performance metrics, we do

Page 4

know that, given a well designed MLM, the
performance of the mail transport agent (MTA) will
have a much more important impact than the MLM
implementation. Also, we have found that even a
low-end configuration can handle large amounts of
traffic. For example, one mailing list managed by
Mailman has had up to 3000 subscribers, and often
receives 100 messages in a day (i.e., hundreds of
thousands of daily deliveries). The list runs on a
low-end Pentium with 48MB of RAM. The
machine runs Sendmail on GNU/Linux. The
machine also hosts an NNTP news feed for a small
ISP, and is able to handle the load, although
Sendmail sometimes needs to queue messages.

[Reviewers: we intend to gather more detailed
performance data by the date of publication.]

Future Directions

Mailman development is ongoing and highly
active. Major projects to be undertaken in the near
future include:

• Integrating searching with list archives.

• Manually configurable and automatically used
relays for distributing server and network load
(along the lines of RFC 1429 [Tho93]).

• An optional threaded persistent server, as
opposed to the current “start-by-request” model
shared with Majordomo.

• A separation of the roles of list administrator
and list moderator.

• PGP integration.

Mailman for System Administrators

Mailman 1.0 is currently in beta release, but is
already being used at a number of sites. More
information on Mailman can be had at
http://www.list.org.

[Reviewers: this URL will almost certainly change
to a gnu.org address by the time of final
submission; the beta status of the software is also
subject to change by that time.]

Mailman should work out of the box on any
Unix-based platform on which Python runs. It is
known to work on SunOS, Solaris, all major
distributions of Linux, FreeBSD, Irix and NextStep.

Mailman will work with any MTA, since it
communicates via the SMTP port instead of through
a command. However, Mailman currently
generates sendmail-style aliases only. Therefore,
aliases for MTAs such as qmail must be modified
and installed by hand.

Also, Mailman should work with any HTTP
daemon that allows for CGI directories. It is known
to work with Apache, NCSA, and Java Web Server.

For current Majordomo users, the transition to
Mailman is straightforward; there is a command-
line script in the distribution that imports a
Majordomo list into Mailman.

Acknowledgements

Mailman was originally written by John Viega.
It has since been extended, and is currently being
developed and maintained by John Viega, Ken
Manheimer, and Barry Warsaw. The Mailman-
developers mailing list and the Python community
have provided invaluable feedback on this software,
including Guido van Rossum, Scott Cotton, Janne
Sinkkonen, Michael McLay and Hal Schechner.

Mailman uses free software by Timothy
O’Malley for dealing with HTTP cookies. It also
integrates Pipermail, free software by Andrew
Kuchling that handles message archiving. The
archiving code also uses free software by Aaron
Watters.

We would like to give special thanks to the
Python Software Activity (PSA), and the
Corporation for National Research Initiatives
(CNRI) for hosting the PSA.

We would also like to give special thanks to
Richard Stallman and the Free Software Foundation
for their support and guidance.

References

[Bar98] D. Barr. The Majordomo FAQ.
http://www.greatcircle.com/
majordomo/majordomo-faq.html

[Cha92] D. Chapman. Majordomo: “How I Manage
17 Mailing Lists Without Answering “-
request” Mail”. Proc. Usenix LISA VI, Oct.
1992.

[Hou96] B. Houle. “MajorCool: A Web Interface To

Page 5

Majordomo”. Proc. Usenix LISA X, Oct.
1996.

[Hou98] B. Houle.
http://ncrinfo.ncr.com/pub/
contrib/unix/MajorCool/Docs

[Lev97] J. Levitt. Ten Questions For Majordomo
(An Interview With D. Brent Chapman).
http://techweb.cmp.
com/iw/author/Internet8.htm

[Pyt98] The Python Language Website.
http://www.python.org/

[Sma98] The SmartList FAQ.
http://www.mindwell.com/. April
1998 revision.

[Tho93] E. Thomas. RFC1429: Listserv Distribute
Protocol. Feb. 1993. Available from:
http://www.faqs.org/
rfcs/rfc1429.html

