Low Cost Working Set Size Tracking

Weiming Zhao, Xinxin Jin, Zhenlin Wang, Xiaolin Wang, Yingwei Luo, Xiaoming Li
Motivation

- Page Level Miss Ratio Curve (MRC)
 - Wide Applications:
 - Working Set Size (WSS) Estimation
 - Memory Resource Balancing
 - Expensive
 - Mean Runtime Overhead of SPEC CPU 2006: 16%

- Goal of This Research
 - Low Cost MRC Construction With Enough Accuracy
Background

- Overhead & Existing Optimizations
 - Memory Intercept # x (time to find LRU distance)
 - Dynamic hot set sizing
 - Less interception if overhead is too high
 - Undermines accuracy
 - Bounded by WSS
 - AVL-Tree LRU list → Linked List
 - O(log(WSS)) → O(WSS)

- Program Phases
 - Most programs show phasing behaviors
 - IPC, WSS, branch prediction, etc.
 - Stable within a phase, disruptive transitions between phases
Our Idea

- Intermittent Memory Tracking (IMT)
 - When WSS is stable, disable memory tracking
 - Re-enable when a phase change occurs
 - How to detect when memory tracking is off?
 - A key observation:
 - Monitor HW events (PMCs) => detect PMC phase changes
 - predict WSS phase changes
 - Challenge
 - Quick and accurate online phase detection
Examples: Correlation Between WSS And Hardware Events

- **429.mcf**
- **473.astar**
- **450.soplex**

HW Events: degree of fluctuation varies among programs

A challenge to PMC phase detector

All data are normalized
Phase Detection
- Moving average filter for de-noising, $f(i)$
- Stable phase: $f(i) / (\text{historic mean}) \in [1 \pm T]$
- T: detection threshold

T For WSS Phase Detection
- A fixed, empirical value of $T_{wss} = 0.05$
 - Works well because of relatively small fluctuations

T For PMC Phase Detection
- A fixed value of T_{PMC}
 - Average performance, not the best fit for all programs
Framework of IMT

- Adaptive Threshold for PMC Phase Detection
 - Compare detection results, if inconsistent:
 - WSS is stable but PMC phase detected: $\uparrow T_{PMC}$
 - WSS phase detected but PMC is stable: $\downarrow T_{PMC}$
 - "Checkpointing": periodically wake up WSS tracker
Experimental Results

- Implementation
 - WSS Tracker in Xen 3.2
 - IMT in Dom–0

- IMT Configuration
 - Use Data TLB misses for PMC phase detection
Evaluation of IMT

- **Metrics**
 - Mean Relative Error (MRE): \(\frac{\sum_{i=1}^{n} |M_i - m_i|}{n} \)
 - Up Ratio (UR): memory tracking time / total time

IMT Performance of SPEC CPU 2006

- MRE: 3.9%
- Up Ratio: 12%
Overhead Of WSS Tracking

SPEC CPU 2006

- **Reg Opt**
- **Reg Opt + IMT (adaptive)**

![Graph showing overhead percentages for various SPEC CPU 2006 benchmarks](attachment:image.png)

- **No IMT:** 16%
- **IMT:** 2%

Regular optimizations:
- Dynamic hot set sizing
- AVL-tree based LRU list
Application to Memory Balancing For Virtual Machines

Two VMs on one host:
VM1: 470.lbm
VM2: 433.milc

Baseline: 700 MB Memory / VM

Speed-Ups With Memory Balancing

Bal. w/ Reg Opt
Bal. w/ Reg Opt + IMT (adapt.)

470.lbm 433.milc Overall
2.96 3.56 1.63 1.85
Conclusion

- Our Novel Design Is Capable Of Tracking WSS
 - With very low cost
 - With little accuracy loss
 - Orthogonal to existing optimizations

- More Details Are In Our Technical Report
THANKS!