
Low Cost Working Set Size Tracking ∗

Weiming Zhao1, Xinxin Jin2, Zhenlin Wang1, Xiaolin Wang2, Yingwei Luo2, and Xiaoming Li2

1Dept. of Computer Science, Michigan Technological University
2Dept. of Computer Science and Technology, Peking University

Abstract

Efficient memory resource management requires knowl-

edge of the memory demands of applications or systems

at runtime. A widely proposed approach is to construct

an LRU-based miss ratio curve (MRC), which provides

not only the current working set size (WSS) but also

the relationship between performance and target mem-

ory allocation size. Unfortunately, the cost of LRUMRC

monitoring is nontrivial. Although optimized with AVL-

tree based LRU structure and dynamic hot set sizing, the

overhead is still as high as 16% on average. Based on

a key insight that for most programs the WSSs are sta-

ble most of the time, we design an intermittent tracking

scheme, which can temporarily turn off memory track-

ing when memory demands are predicted to be stable.

With the assistance of hardware performance counters,

memory tracking can be turned on again if a significant

change in memory demands is expected. Experimental

results show that, by using this intermittent tracking de-

sign, memory tracking can be turned off for 82% of the

execution time while the accuracy loss is no more than

4%. More importantly, this design is orthogonal to exist-

ing optimizing techniques, such as AVL-tree based LRU

structure and dynamic hot set sizing. By combining the

three approaches, the mean overhead is lowered to only

2%. We show that when applied to memory balancing for

virtual machines, our scheme brings a speedup of 1.85.

1 Introduction

Modeling the relationship between physical memory al-

location and performance is indispensable for optimiz-

ing memory resource management. As early as the

∗Supported by NSF Career CCF0643664, the 973 Program of China

No. 2007CB310900, NSFC No. 90718028 and No. 60873052, the 863

Program No.2008AA01Z112, and MOE-Intel Information Technology

Foundation under No. MOE-INTEL-10-06. Many thanks to Carl Wald-

spurger for shepherding this paper.

1970s, working sets were considered as effective tools

for modeling memory demands [1]. Because working

sets provide a desirable metric for memory management,

many solutions have been proposed to track them. One

widely proposed approach is to build page-level LRU-

based miss ratio curves (MRCs). This approach tracks

memory accesses, and constructs a miss ratio curve to

correlate memory allocation with page misses. Studies

show that this approach can estimate not only the current

working set size (WSS) but also the performance impact

when the system or application’s memory allocation is

varied [2, 3, 4, 5].

However, the runtime overhead of maintaining such

miss ratio curves is nontrivial. Especially because the

complexity and data size of modern applications increase

dramatically, the overhead of MRC tracking may over-

shadow its potential benefits. For example, for SPEC

CPU2006, using a simple linked-list-based implementa-

tion, the overall execution time is increased by a factor of

1.73. Although some previous research optimizes MRC

monitoring in terms of data structures [4], the overhead

is still considerably high.

This paper introduces a low cost working set size

tracking approach. We have implemented an AVL-based

LRU structure and dynamic hot set sizing (DHS), which

are detailed in our technical report [6], to lower the

tracking overhead. However, our experiments show that

it is still as high as 16% on average.

By taking advantage of the phase behavior of pro-

grams, we further design a novel technique, intermittent

memory tracking (IMT), to lower the overhead without

a significant loss of accuracy. This idea is based on the

fact that the execution of a program can be divided into

phases, within each of which, the memory demands are

relatively stable [1]. Thus, when the monitored system

or process is predicted to stay in a phase, the memory

tracking can be temporarily disabled to avoid tracking

cost. Later on, when a phase change is predicted to oc-

cur, the memory tracking is resumed to track the working

set size of the new phase.

The key challenge is to predict phase changes when

memory tracking is off. Fortunately, we observe that the

stability of memory demands is closely correlated with

that of some hardware events such as data TLB misses,

and L1 and L2 cache misses. This inspired us to uti-

lize these hardware events to predict phase changes when

memory tracking is off. However, DTLB and cache-level

events show much higher fluctuations (noise) than mem-

ory demands, which challenge the accuracy of phase pre-

diction. Worse yet is that the noise level varies by appli-

cation or even different phases of the same program.

To solve this problem, we design a quick self-

adaptivemechanismwhich can adaptively select a phase-

detection threshold. Experimental results show that, dur-

ing an average of 82% of the time of program execution,

memory tracking can be turned off and mean relative er-

ror is merely 3.9%.

2 Background and Related Work

2.1 Working Set and Miss Ratio Curve

The active working set of an application refers to the

set of pages that it has referenced during the recent

working set window. Knowing the working set size

(WSS) enables memory resources to be utilized more ef-

ficiently. Many approaches have been proposed to esti-

mate the WSS. VMware ESX server adopts a sampling

strategy [7]. During a sampling interval, accesses to a

set of random pages are monitored. By the end of sam-

pling period, the page utilization of the set is used as an

approximation of global memory utilization. This tech-

nique can tell how much memory is inactive but it cannot

predict the performance impact when memory resources

are reclaimed. Geiger [5] detects memory pressure and

calculates the amount of extra memory needed by mon-

itoring disk I/O and inferring major page faults. How-

ever, when the memory is over-allocated, it is unable to

tell how to shrink the memory allocation.

In addition to the current WSS of a system, when

memory resource competition occurs, in order to achieve

optimal overall performance, we also need to know how

performance would be affected by varying the memory

allocation size. The miss ratio curve (MRC) that plots

the page miss ratio against various amounts of available

memory allocation solves the problem. Given an MRC,

we can redefine WSS as the size of memory that results

in less than a predefined tolerable page miss rate.

A common method to calculate an MRC is the stack

algorithm [2]. The stack orders the page numbers based

on their recency of accesses. Each stack entry i is associ-

ated with a counter, denoted as Hist(i). When a reference

hits a page, its stack distance, dist, is computed, then

Hist(dist) is incremented by one, and finally this page is

moved to the top of the stack. From Hist, the page miss

ratio with respect to various memory allocation sizes can

be computed. Constructing an MRC requires capturing

or sampling a sufficient amount of page accesses. Previ-

ous research traced MRCs through a permission protec-

tion mechanism in the OS or hypervisor [8, 3, 4]. The

OS or hypervisor can revoke access permission of pages,

so the next accesses to those pages will cause page faults

and be captured to build the MRC. For each page inter-

ception, the overheadmainly comes from page fault han-

dling and the operation to find the stack distance which

is bounded by the WSS. Zhou et al. [3] also proposed a

hardware-based approach, but it needs extra circuits.

Hypervisor exclusive cache [9] uses an LRU-based

MRC to estimate the WSS for each virtual machine. The

overhead of MRC construction is analyzed but not quan-

tified in this work. MEB [8] also uses the permission

protection mechanism to build the WSS for each VM to

support memory balancing. However, the overhead from

MRC monitoring is significantly high, especially for ap-

plications with poor locality and very large WSSs. For

example, Gems.FDTD in SPEC CPU2006 exhibits a

238% overhead. To optimize cache utilization, Zhang et

al. [10] propose to identify hot pages through scanning

the page table of each process using “locality jumping”

as an optimization. However, the cost of monitoring a

virtualized OS is not evaluated.

2.2 Phase Prediction

Most programs show a typical phasing behavior where

the program behavior in terms of IPC, branch predic-

tion, memory access patterns, etc. is stable within a

phase while there exists disruptive transition between

phases [1, 11].

Shen et al. [11] predict locality phases by a combi-

nation of offline reuse distance profiling and runtime

signal processing. Sherwood et al. [12] identify differ-

ent phases by profiling basic block frequency and using

Fourier analysis to filter out noise. However, for online

phase detection, the methods that require profiling and

sophisticated signal processing techniques are inappro-

priate. RapidMRC [13] estimates the L2 cache MRC

by utilizing the PowerPC-specific Sampled Data Address

Register. It selects L2 cache miss rate as the parameter

to detect a phase change.

3 Intermittent Memory Tracking

Most programs show typical phasing behavior in terms

of memory demands. Within a phase, the WSS remains

nearly constant. This inspired us to temporarily disable

memory tracking when the monitored program enters a

stable phase and re-enable it when a new phase is en-

countered. Through this approach, the overhead can be

substantially lowered. However, when memory tracking

is off, the memory tracking mechanism itself is unable to

detect phase transitions anymore. Hence, an alternative

method is required to wake up memory tracking when it

predicts a phase change.

We find that a phase change of WSS tends be accom-

panied by sudden changes of the occurrences of memory-

related hardware events like TLB misses, L2 misses, etc.

And when the WSS remains stable, the activeness of

those events is relatively stable too. These events can

be monitored by special registers (Performance Monitor

Counters, PMCs) built into most modern processors and

accessed with negligible overhead. The key challenge is

to differentiate phase changes from random fluctuations.

We propose a simple yet effective algorithm to detect

behavior changes for both memory demands and perfor-

mance counters. First, a moving average filter is ap-

plied for signal de-noising. Let vi denote the sampled

value (WSS or the number of occurrences of some hard-

ware event) during ith time interval. We pick f(i) =
(vi + vi−1 + . . . + vi−k+1)/k as the filtering function to

smooth the sampled values, in which k is the filtering pa-

rameter, an empirical value. When the moving average

filter has not been filled up with k data, memory track-

ing is always enabled. Once enough data have been sam-

pled, let vj be the current sampled value and let fmean =
mean({f(x)|x ∈ (j − k, j]}) , errr = f(j)/fmean and

erra = |f(j)−fmean|. errr is the relative difference be-

tween the current sampled value (smoothed) and the av-

erage of history data in the window and erra is the abso-

lute difference between the two. If errr ∈ [1−T, 1+T],
where T a small threshold of choice discussed later, we

assume the input signal is in a stable phase. Otherwise,

we assume that a new phase is encountered. In this case,

all the data in the moving average filter is cleared so the

data that belong to the previous phase will not be used.

Fixed-Threshold Phase Detection T is the key pa-

rameter in phase detection. We first propose a scheme

that uses a fixed T. One phase detector, based on past

WSS, checks if the memory demands reach a stable state

so the WSS tracking can be turned off. The other detec-

tor uses PMC values to check if a new phase is seen so

the WSS tracking should be woken up.

For the stability test of WSS, T can be set to a small

value (0.05 in our evaluation) to avoid accuracy loss. In

addition, erra can also be used to guide memory track-

ing. For example, if memory tracking is at a MB gran-

ularity, then as long as erra < 1MB, WSS can still be

assumed in a stable state even when errr > T.

For phase detection of hardware performance events,

an over-strict threshold may cause memory tracking to be

enabled unnecessarily and thus undermine performance.

On the other hand, if the threshold were too large, WSS

changes would not be detected, causing inaccurate track-

ing results. Our experiments show that, for a given hard-

ware event, the appropriate T may vary between pro-

grams or even vary between phases for the same pro-

gram. In practice, an empirical value of T can be used

though it may not be the optimal one.

Adaptive-Threshold Phase Detection To improve

upon fixed-threshold phase detection, we propose a self-

adaptive scheme which adjustsT dynamically to achieve

better performance. The key is to feed the current stabil-

ity of WSS back to the hardware performance phase de-

tector to construct a closed-loop control system, as illus-

trated in Figure 1. Initially, the PMC-based phase detec-

tor can use the same threshold as used in fixed-threshold

phase detection. When memory tracking is on, its current

stability is computed and compared with the PMC-based

phase detector’s decision.

If both of the results are consistent, nothing will be

changed. If the current memory demands are stable,

while the PMC-based detector makes the opposite de-

cision (errr > T), it implies that the current threshold

is too tight. As a result, its T is relaxed to its current

errr . Next time, with increased T, the PMC-based de-

tector will most likely find that the system enters a “sta-

ble” state and thus turn off memory tracking. On the con-

trary, if the current memory demands are unstable, while

the PMC-based phase detector assumes stable PMC val-

ues, i.e. errr < T, it implies an over-relaxed threshold.

Thus, its current T is lowered to errr . In short, when

the WSS is stable and memory tracking is on, it is only

because the PMC-based phase detector is overly sensi-

tive. As a result, T will be increased until PMC values

are considered to be stable too. Then, memory tracking

will be turned off.

However, when memory tracking is off, this self-

calibration is paused as well, which might miss the

chance to tighten the threshold as it should had mem-

ory tracking been on. To solve this problem, we intro-

duce a checkpoint design. When memory tracking has

been disabled for ckpt consecutive sampling intervals, it

is woken up to check if T should be adjusted or not. If

no adjustment is needed, it will be turned off again un-

til it reaches the next checkpoint or meets a new phase.

The value of ckpt is adaptive. Initially, it is set to some

pre-defined value ckptinit. Afterward, if no adjustment

is made in the previous checkpoint, it can be increased

by some amount (ckptstep) until it reaches a maximum

value ckptmax. Whenever an adjustment is made, ckpt
is restored to ckptinit. In the ideal case, the ratio of the

time that memory tracking is on to the whole execution

time, called up ratio, is nearly 1/ckptmax.

Figure 1: Adaptive-Threshold IMT

4 Implementation and Evaluation

To verify the effectiveness of our WSS tracking and eval-

uate its application in virtualized environments, we use

the Xen 3.4 [14] hypervisor, an open source virtual ma-

chine monitor, as the base of our implementation. When

a para-virtualized guest OS that runs in user mode at-

tempts to modify its page tables, it has to make a hyper-

call to explicitly notify the hypervisor to do the actual

update. In our modified hypervisor, once such requests

are received, our code will first perform the requested

update as usual and then revoke the access permission

by setting the corresponding bit on the page table entry.

For hardware-assisted virtualized machines (HVM), this

permission revoking mechanism can be done during the

emulation of page table writing or propagation of guest

page tables to shadow page tables. Later on, if the guest

OS attempts to access that page, it will trigger a minor

page fault, which will trap into the hypervisor first. In the

modified page fault handling routine, the miss ratio curve

is updated for that access and permission is restored.

To verify the effects of our WSS tracking in memory

balancing, we use the VMmemory balancer that was im-

plemented in [8]. Both IMT and the memory balancer

run on Dom-0, a privileged virtual machine. IMT is writ-

ten in about 300 lines of Python code, with a small C pro-

gram to initiate hypercalls. Via customized hypercalls,

IMT communicates with the WSS tracker to receive cur-

rent WSS estimation and PMC counter values and send

its decisions to the WSS tracker. Based on the assump-

tion that the memory access pattern is nearly unchanged

in a stable phase, when the WSS tracker is woken up,

it uses the same LRU list and histogram as in the last

tracking interval. In our experiments, WSS and PMCs

are sampled every 3 seconds. For checkpointing, its ini-

tial value (ckptinit), the increment, and ckptmax are set

to 10, 5, and 20 sampling intervals, respectively, which

means the minimum up ratio is nearly 0.05.

All experiments are performed on a server equipped

with one 2.8 GHz Intel Core i5 processor (4 cores with

HT enabled) and 8 GB of 800 MHz DDR2 memory.

Each virtual machine runs 64-bit Linux 2.6.18, config-

ured with 1 virtual CPU and 3 GB of memory (except in

T = 0.05 T = 0.2 T = 0.3 Adaptive

UR MRE UR MRE UR MRE UR MRE

.27 .057 .13 .100 .11 .126 .11 .039

Table 1: Mean Up Ratios and MREs of SEPC 2006

the memory balancing test). We select a variety of bench-

mark suites, including the SPEC CPU2006 benchmark

suite and DaCapo [15], a Java benchmark suite, to rep-

resent real world workload and evaluate the effectiveness

of our work.

In this section, we first evaluate the performance of

IMT with various configurations. However, even for the

same program, its WSS may not be identical among all

runs, which undermines the fairness of comparison. Be-

sides, if IMT is actually used and when it turns off mem-

ory tracking, the accuracy loss caused by IMT cannot

be precisely measured. As a result, we run IMT against

simulated inputs. Then we examine the overhead ofWSS

tracking with actual runs. Finally, we design a scenario

to demonstrate the application of WSS tracking.

4.1 Performance of IMT

The performance of IMT is evaluated by two metrics:

(1) the time it saves by turning off memory tracking,

reflected by up ratio, and (2) the accuracy loss due to

temporary inactivation of memory tracking, indicated by

mean relative error. We first run each benchmarks and

sample the WSS and PMC values every 3 seconds with-

out IMT. Then, we feed the trace results to the IMT al-

gorithm to simulate its operations. That is, given in-

puts {M0, . . . , Mi} and {P0, . . . , Pi}, the IMT algo-

rithm outputs mi, in which Mi and Pi are the i-th mem-

ory demand and i-th PMC value sampled in the trace re-

sults, respectively, and mi is the estimated memory de-

mand. When the IMT algorithm indicates the activation

of memory tracking, mi = Mi, otherwise, mi = Mj

where j is the last time that memory tracking is on.

Given a trace with n samples, its mean relative error is

computed as MRE = (

n∑

i=1

|Mi − mi|

Mi

)/n.

To evaluate the performance of fixed and adaptive

thresholds for IMT, we use a DTLB miss as the hard-

ware performance event for phase detection. We have

indeed examined three memory related hardware events,

DTLB misses, L1 references, and L2 misses as well as

their combinations, for phase detection. Interestingly,

there is no obvious difference both in accuracy and up

ratio [6]. For fixed thresholds,T varies from 0.05 to 0.3,
two extreme ends of the spectrum. Table 1 shows mean

up ratios and MREs of SPEC CPU2006. The results of

individual programs are presented in [6].

Using fixed thresholds, when T = 0.05, memory

tracking is off nearly three fourths of the time with an

MRE of about 6%. When T is increased to 0.3, mem-

ory tracking is activated for only about one tenth of the

time, while the MRE increases to 13%. With adap-

tive thresholds, its up ratio is nearly the same as that of

T = 0.3, while its MRE is even smaller than that of

T = 0.05. Clearly, adaptive thresholding outperforms

the fixed-threshold algorithm.

Figure 2 shows the results of several cases using

adaptive-threshold IMT. The upper parts of each figure

show the status of memory tracking: a high level means it

is enabled and a low level means it is disabled. In the bot-

tom parts, thick lines and thin lines plot theWSS and nor-

malized data TLB misses from the traces (sampled with-

out IMT), respectively. Dotted lines plot the WSS as-

suming IMT is enabled. Figure 2(a) shows the common

case where there are multiple phases in terms of WSS

and DTLB misses. In Figure 2(b) and Figure 2(c), two

representative cases, where checkpointing and adaptive

thresholding take effect, are presented. For Figure 2(b),

when examined from an overall scope, the WSS varies

gradually. However, the WSS looks more stable when

examined from each small time window. This makes the

program assume that the WSS is in the stable mode and

thus turns off memory tracking. Nonetheless, with the

checkpointing mechanism, the WSS variances are still

captured. Figure 2(c) shows that, though the WSS is

stable most of the time, the DTLB miss fluctuates ran-

domly. With the adaptive algorithm, the noise is filtered

by increased thresholds.

With adaptive-threshold IMT, 429.mcf shows an

MRE of 38.7% while all others are less than 8% with

a mean of 2%. For 429.mcf, as Figure 2(a) shows,

most of the time, the WSS estimation using IMT follows

the one without using IMT. The high relative error is be-

cause its WSS changes dramatically up to 9 times at the

borders of phase transitions. Though after a short de-

lay, IMT detects the phase change and wakes up memory

tracking, those exceptionally high relative errors lead to

a large MRE. More specifically, during 67% of its exe-

cution time, the relative errors are below 4%, and during

84% of the time, the relative errors remain within 10%.

4.2 Overhead Evaluation

To evaluate the actual effects of using IMT, we mea-

sure the WSS tracking overhead on actual runs. As

Table 2 shows1, even optimized with AVL-based LRU

and dynamic hot set sizing, the mean overhead of SPEC

CPU2006 is 16% due to large WSSs and/or bad locality

of some programs. For example, for high-overhead pro-

grams, such as 429.mcf and 433.milc, the average

WSSs are 859 MB and 334 MB, respectively, while the

1The complete list is in [6].

429.mcf

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200 1400 1600
 0

 0.2

 0.4

 0.6

 0.8

 1

W
S

S
 (

M
B

)

N
o
rm

a
liz

e
d
 D

T
L
B

 M
is

s
e
s

Time (sec)

WSS (No IMT)
WSS (IMT)

DTLB Misses

 0 200 400 600 800 1000 1200 1400 1600T
ra

c
k
in

g

on
off

(a) 429.mcf

416.gamess

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 0 200 400 600 800 1000 1200
 0

 0.2

 0.4

 0.6

 0.8

 1

W
S

S
 (

M
B

)

N
o
rm

a
liz

e
d
 D

T
L
B

 M
is

s
e
s

Time (sec)

WSS (No IMT)
WSS (IMT)

DTLB Misses

 0 200 400 600 800 1000 1200T
ra

c
k
in

g

on
off

(b) 416.gamess

444.namd

 138

 140

 142

 144

 146

 148

 150

 0 100 200 300 400 500 600
 0

 0.2

 0.4

 0.6

 0.8

 1

W
S

S
 (

M
B

)

N
o
rm

a
liz

e
d
 D

T
L
B

 M
is

s
e
s

Time (sec)

WSS (No IMT)
WSS (IMT)

DTLB Misses

 0 100 200 300 400 500 600 T
ra

c
k
in

g

on
off

(c) 444.namd

Figure 2: Examples of Using Adaptive-Threshold IMT

average WSSs of 401.bzip2 and 416.gamess are

only 24 MB and 45 MB, respectively.

Enhanced with fixed-threshold IMT (T = 0.2), the

mean overhead is lowered to 6%. Using adaptive-

threshold IMT, the mean overhead is further reduced to

2% by cutting off half of the up time of memory tracking.

4.3 Applications to VMMemory Balancing

One typical scenario for WSS tracking is memory bal-

ancing. Two VMs are monitored on a Xen-based host.

One VM runs 470.lbm, meanwhile, the other VM runs

433.milc. Initially, each VM is allocated 700 MB of

memory. In the baseline setting, no memory balancing

or WSS tracking is used. With memory balancing, three

variations are compared: memory tracking without IMT,

using IMT with a fixed threshold of 0.2 and using IMT

with an adaptive threshold. Figure 3 shows the normal-

ized speedups with memory balancing against the base-

line setting. Note that, the balancer is designed to reclaim

Program
Norm. Exec. Time Up Ratio

L A+D
A+D

+ If

A+D

+ Ia
If Ia

401.bzip2 1.03 1.02 1.01 1.01 0.76 0.14

416.gamess 1.01 1.01 1.00 1.00 0.18 0.09

429.mcf 59.16 1.75 1.41 1.04 0.72 0.37

433.milc 13.08 3.83 2.46 1.05 0.52 0.11

470.lbm 4.31 1.77 1.01 1.00 0.17 0.10

.
Mean 2.73 1.16 1.06 1.02 0.26 0.12

Table 2: Normalized Execution Time and Up Ratios

L: linked list, A+D: ABL and dynamic hot set, If :

fixed-threshold IMT (T = 0.2), Ia: adaptive-threshold IMT

unused memory, so the total allocated memory to the two

VMs may be less than 1400 MB.

 600
 700
 800
 900

A
llo

c
 (

M
B

)470.lbm
433.milc

 0 100 200 300 400 500 600 700 T
ra

c
k
in

gon

off

lbm

 0 100 200 300 400 500 600 700 T
ra

c
k
in

gon

off

milc

 0

 1

 2

 3

470.lbm 433.milc Overall

N
o

rm
.

S
p

e
e

d
u

p

A+D
A+D+If
A+D+Ia

Figure 3: Speed-Ups With Memory Balancing

When balanced without IMT, the performance of

470.lbm degrades by 10% due to the overhead of mem-

ory tracking, while the performance of 433.milc is

boosted by 2 times due to the extra memory it gets from

the other VM. Using IMT, the performance impact of

memory tracking on 470.lbm is lowered to 4%. For

433.milc, with fixed-threshold or adaptive-threshold

IMT, its speedup is increased from 2.96 to 3.06 and 3.56
respectively. The overall speedups of balancing without

IMT, with fixed-threshold IMT and adaptive-threshold

IMT are 1.63, 1.72 and 1.85. Hence, using adaptive-

threshold IMT, an additional 22% speedup is gained.

5 Conclusion and Future Work

LRU-based working set size estimation is an effec-

tive technique to support memory resource management.

This paper makes this technique more applicable by sig-

nificantly reducing its overhead. We present a novel in-

termittent memory tracking scheme. Experimental eval-

uation shows that our solution is capable of reducing the

overheadwith sufficient precision to improvememory al-

location decisions. In an application scenario of balanc-

ing memory resources for virtual machines, our solution

boosts the overall performance. In the future, we plan

to develop theoretical models that verify the correlations

among various memory events.

References

[1] P. J. Denning. Working sets past and present. IEEE Trans-

actions on Software Engineering, SE-6(1), 1980.

[2] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Eval-

uation techniques for storage hierarchies. IBM System

Journal, 9(2):78–117, 1970.

[3] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman,

Y. Zhou, and S. Kumar. Dynamic tracking of page miss

ratio curve for memory management. In ASPLOS’04,

pages 177–188, 2004.

[4] T. Yang, E. D. Berger, S. F. Kaplan, and J. Eliot B. Moss.

CRAMM: virtual memory support for garbage-collected

applications. In OSDI’06, pages 103–116, 2006.

[5] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Geiger: monitoring the buffer cache in a vir-

tual machine environment. SIGOPS Oper. Syst. Rev.,

40(5):14–24, 2006.

[6] W. Zhao, X. Jin, Z. Wang, X. Wang, Y. Luo, and X. Li.

Efficient LRU-based working set size tracking. Technical

Report CS-TR-11-01, Department of Computer Science,

Michigan Tech University, 2011.

[7] C. A. Waldspurger. Memory resource management

in VMware ESX server. SIGOPS Oper. Syst. Rev.,

36(SI):181–194, 2002.

[8] W. Zhao and Z. Wang. Dynamic memory balancing for

virtual machines. In VEE’09, 2009.

[9] P. Lu and K. Shen. Virtual machine memory access trac-

ing with hypervisor exclusive cache. InUSENIX ATC’07,

pages 1–15, 2007.

[10] X. Zhang, S. Dwarkadas, and K. Shen. Towards prac-

tical page coloring-based multi-core cache management.

In Proceedings of the 4th ACM European Conference on

Computer Systems, 2009.

[11] X. Shen, Y. Zhong, and C. Ding. Locality phase predic-

tion. In ASPLOS’04, 2004.

[12] T. Sherwood, E. Perelman, and B. Calder. Basic block

distribution analysis to find periodic behavior and simu-

lation points in applications. In PACT’01, pages 3 –14,

2001.

[13] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.

RapidMRC: Approximating l2 miss rate curves on com-

modity systems for online optimizations. In ASPLOS’09,

pages 121–132, 2009.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen

and the art of virtualization. SIGOPS Oper. Syst. Rev.,

37(5):164–177, 2003.

[15] S. M. Blackburn, R. Garner, and C. Hoffman et al. The

DaCapo benchmarks: Java benchmarking development

and analysis. In OOPSLA’06, pages 169–190, 2006.

