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Abstract

Memory hardware reliability is an indispensable part

of whole-system dependability. This paper presents the

collection of realistic memory hardware error traces (in-

cluding transient and non-transient errors) from produc-

tion computer systems with more than 800GB memory

for around nine months. Detailed information on the er-

ror addresses allows us to identify patterns of single-bit,

row, column, and whole-chip memory errors. Based on

the collected traces, we explore the implications of differ-

ent hardware ECC protection schemes so as to identify

the most common error causes and approximate error

rates exposed to the software level.

Further, we investigate the software system suscepti-

bility to major error causes, with the goal of validating,

questioning, and augmenting results of prior studies. In

particular, we find that the earlier result that most mem-

ory hardware errors do not lead to incorrect software ex-

ecution may not be valid, due to the unrealistic model of

exclusive transient errors. Our study is based on an effi-

cient memory error injection approach that applies hard-

ware watchpoints on hotspot memory regions.

1 Introduction

Memory hardware errors are an important threat to

computer system reliability [37] as VLSI technologies

continue to scale [6]. Past case studies [27,38] suggested

that these errors are significant contributing factors to

whole-system failures. Managing memory hardware er-

rors is an important component in developing an overall

system dependability strategy. Recent software system

studies have attempted to examine the impact of memory

hardware errors on computer system reliability [11, 26]

and security [14]. Software system countermeasures to

these errors have also been investigated [31].

Despite its importance, our collective understanding

about the rate, pattern, impact, and scaling trends of
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memory hardware errors is still somewhat fragmented

and incomplete. The lack of knowledge on realistic er-

rors has forced failure analysis researchers to use syn-

thetic error models that have not been validated [11, 14,

24, 26, 31]. Without a good understanding, it is tempt-

ing for software developers in the field to attribute (often

falsely) non-deterministic system failures or rare perfor-

mance anomalies [36] to hardware errors. On the other

hand, anecdotal evidence suggests that these errors are

being encountered in the field. For example, we were

able to follow a Rochester student’s failure report and

identify a memory hardware error on a medical System-

on-Chip platform (Microchip PIC18F452). The faulty

chip was used to monitor heart rate of neonates and it re-

ported mysterious (and alarming) heart rate drops. Using

an in-circuit debugger, we found the failure was caused

by a memory bit (in the SRAM’s 23rd byte) stuck at ‘1’.

Past studies on memory hardware errors heavily fo-

cused on transient (or soft) errors. While these errors re-

ceived a thorough treatment in the literature [3,30,41,42,

44], non-transient errors (including permanent and inter-

mittent errors) have seen less attention. The scarcity of

non-transient error traces is partly due to the fact that col-

lecting field data requires access to large-scale facilities

and these errors do not lend themselves to accelerated

tests as transient errors do [44]. The two studies of non-

transient errors that we are aware of [10, 35] provide no

result on specific error locations and patterns.

In an effort to acquire valuable error statistics in real-

world environments, we have monitored memory hard-

ware errors in three groups of computers—specifically,

a rack-mounted Internet server farm with more than 200

machines, about 20 university desktops, and 70 Planet-

Lab machines. We have collected error tracking results

on over 800GB memory for around nine months. Our

error traces are available on the web [34]. As far as we

know, they are the first (and so far only) publicly avail-

able memory hardware error traces with detailed error

addresses and patterns.

One important discovery from our error traces is that

non-transient errors are at least as significant a source

of reliability concern as transient errors. In theory, per-

manent hardware errors, whose symptoms persist over



time, are easier to detect. Consequently they ought to

present only a minimum threat to system reliability in an

ideally-maintained environment. However, some non-

transient errors are intermittent [10] (i.e., whose symp-

toms are unstable at times) and they are not necessarily

easy to detect. Further, the system maintenance is hardly

perfect, particularly for hardware errors that do not trig-

ger obvious system failures. Given our discovery of non-

transient errors in real-world production systems, a holis-

tic dependability strategy needs to take into account their

presence and error characteristics.

We conduct trace-driven studies to understand hard-

ware error manifestations and their impact on the soft-

ware system. First, we extrapolate the collected traces

into general statistical error manifestation patterns. We

then perform Monte Carlo simulations to learn the error

rate and particularly error causes under different mem-

ory protection mechanisms (e.g., single-error-correcting

ECC or stronger Chipkill ECC [12]). To achieve high

confidence, we also study the sensitivity of our results to

key parameters of our simulation model.

Further, we use a virtual machine-based error injection

approach to study the error susceptibility of real software

systems and applications. In particular, we discovered

the previous conclusion that most memory hardware er-

rors do not lead to incorrect software execution [11,26] is

inappropriate for non-transient memory errors. We also

validated the failure oblivious computing model [33] us-

ing our web server workload with injected non-transient

errors.

2 Background

2.1 Terminology

In general, a fault is the cause of an error, and errors

lead to service failures [23]. Precisely defining these

terms (“fault”, “error”, and “failure”), however, can be

“surprisingly difficult” [2], as it depends on the notion of

the system and its boundaries. For instance, the conse-

quence of reading from a defective memory cell (obtain-

ing an erroneous result) can be considered as a failure of

the memory subsystem, an error in the broader computer

system, or it may not lead to any failure of the computer

system at all if it is masked by subsequent processing.

In our discussion, we use error to refer to the incidence

of having incorrect memory content. The root cause of

an error is the fault, which can be a particle impact, or

defects in some part of the memory circuit. Note that an

error does not manifest (i.e., it is a latent error) until the

corrupt location is accessed.

An error may involve more than a single bit. Specif-

ically, we count all incorrect bits due to the same root

cause as part of one error. This is different from the con-

cept of a multi-bit error in the ECC context, in which case

the multiple incorrect bits must fall into a single ECC

word. To avoid confusions we call these errors word-

wise multi-bit instead.

Transient memory errors are those that do not per-

sist and are correctable by software overwrites or hard-

ware scrubbing. They are usually caused by temporary

environmental factors such as particle strikes from ra-

dioactive decay and cosmic ray-induced neutrons. Non-

transient errors, on the other hand, are often caused (at

least partially) by inherent manufacturing defect, insuf-

ficient burn-in, or device aging [6]. Once they manifest,

they tend to cause more predictable errors as the deteri-

oration is often irreversible. However, before transition-

ing into permanent errors, they may put the device into a

marginal state causing apparently intermittent errors.

2.2 Memory ECC

Computer memories are often protected by some form

of parity-check code. In a parity-check code, information

symbols within a word are processed to generate check

symbols. Together, they form the coded word. These

codes are generally referred to as ECC (error correcting

code). Commonly used ECC codes include SECDED

and chipkill.

SECDED stands for single-error correction, double-

error detection. Single error correction requires the code

to have a Hamming distance of at least 3. In binary

codes, it can be easily shown that r bits are needed for

2r − 1 information bits. For double-error detection, one

more check bit is needed to increase the minimum dis-

tance to 4. The common practice is to use 8 check bits

for 64 information bits forming a 72-bit ECC word as

these widths are used in current DRAM standards (e.g.,

DDR2).

Chipkill ECC is designed to tolerate word-wise multi-

bit errors such as those caused when an entire mem-

ory device fails [12]. Physical constraints dictate that

most memory modules have to use devices each provid-

ing 8 or 4 bits to fill the bus. This means that a chip-

fail tolerant ECC code needs to correct 4 or 8 adjacent

bits. While correcting multi-bit errors in a word is the-

oretically rather straightforward, in practice, given the

DRAM bus standard, it is most convenient to limit the

ECC word to 72 bits, and the 8-bit parity is insufficient

to correct even a 4-bit symbol. To address this issue,

one practice is to reduce the problem to that of single-

bit correction by spreading the output of, say, 4 bits to 4

independent ECC words. The trade-off is that a DIMM

now only provides 1/4 of the bits needed to fill the stan-

dard 64-data-bit DRAM bus, and thus a system needs a

minimum of 4 DIMMs to function. Another approach is

to use b-adjacent codes with much more involved matri-



ces for parity generation and checking [7]. Even in this

case, a typical implementation requires a minimum of 2

DIMMs. Due to these practical issues, chipkill ECC re-

mains a technique used primarily in the server domain.

3 Realistic Memory Error Collection

Measurement results on memory hardware errors, par-

ticularly transient errors, are available in the literature.

Ziegler et al. from IBM suggested that cosmic rays may

cause transient memory bit flips [41] and did a series of

measurements from 1978 to 1994 [30, 42, 44]. In a 1992

test for a vendor 4Mbit DRAM, they reported the rate

of 5950 failures per billion device-hour. In 1996, Nor-

mand reported 4 errors out of 4 machines with a total of

8.8Gbit memory during a 4-month test [29]. Published

results on non-transient memory errors are few [10, 35]

and they provide little detail on error addresses and pat-

terns, which are essential for our analysis.

To enable our analysis on error manifestation and soft-

ware susceptibility, we make efforts to collect realistic

raw error rate and patterns on today’s systems. Specif-

ically, we perform long-term monitoring on large, non-

biased sets of production computer systems. Due to the

rareness of memory hardware errors, the error collection

can require enormous efforts. The difficulty of acquiring

large scale error data is aggravated by the efforts required

for ensuring a robust and consistent collection/storage

method on a vast number of machines. A general under-

standing of memory hardware errors is likely to require

the collective and sustained effort from the research com-

munity as a whole. We are not attempting such an am-

bitious goal in this study. Instead, our emphasis is on

the realism of our production system error collection. As

such, we do not claim general applicability of our results.

Many large computer systems support various forms

of error logging. Although it is tempting to exploit these

error logs (as in some earlier study [35]), we are con-

cerned with the statistical consistency of such data. In

particular, the constantly improving efficacy of the error

statistics collection can result in higher observed error

rates over time by detecting more errors that had been left

out before, while there could be no significant change in

the real error rates. Also, a maintenance might temporar-

ily suspend the monitoring, which will leave the faulty

devices accumulate and later swarm in as a huge batch of

bad chips once the monitoring comes back online. These

factors all prevent a consistent and accurate error obser-

vation.

To ensure the statistical consistency of collected data,

we perform proactive error monitoring under controlled,

uniform collection methodology. Specifically, we moni-

tor memory errors in three environments—a set of 212

production machines in a server farm at Ask.com [1],

about 20 desktop computers at Rochester computer sci-

ence department, and around 70 wide-area-distributed

PlanetLab machines. Preliminary monitoring results

(of shorter monitoring duration, focusing exclusively on

transient errors, with little result analysis) were reported

in another paper [25]. Here we provide an overview of

our latest monitoring results on all error types. Due to

factors such as machine configuration, our access priv-

ileges, and load, we obtained uneven amount of infor-

mation from the three error monitoring environments.

Most of our results were acquired from the large set of

server farmmachines, where we have access to the mem-

ory chipset’s internal registers and can monitor the ECC-

protected DRAM of all machines continuously. Below

we focus our result reporting on the data obtained in this

environment.

All 212machines from the server farm use Intel E7520

chipset as memory controller hub [20]. Most machines

have 4GB DDR2 SDRAM. Intel E7520 memory con-

troller is capable of both SECDED or Chipkill ECC. In

addition to error detection and correction, the memory

controller attempts to log some information about mem-

ory errors encountered. Unfortunately, this logging ca-

pability is somewhat limited—there are only two regis-

ters to track the addresses of two distinct errors. These

registers will only capture the first two memory errors

encountered. Any subsequent errors will not be logged

until the registers are reset. Therefore, we periodically

(once per hour) probe the memory controller to read out

the information and reset the registers. This probing is

realized through enhancements of the memory controller

driver [5], which typically requires the administrative

privilege on target machines.

Recall that when a memory cell’s content is corrupted

(creating a latent error), the error will not manifest to our

monitoring system until the location is accessed. To help

expose these latent errors, we enable hardware memory

scrubbing—a background process that scans all mem-

ory addresses to detect and correct errors. The intention

is to prevent errors from accumulating into more severe

forms (e.g., multi-bit) that are no longer correctable. It

is typically performed at a low frequency (e.g., 1.5 hours

for every 1GB) [20] to minimize the energy consump-

tion and contention with running applications. Note that

scrubbing does not help expose faults—writing varying

values into memory does that. Since we monitored the

machines for an extended period of time (9 months), the

natural usage of the machines is likely to have exposed

most (if not all) faults.

We collected error logs for a period of approximately

9 months (from November 30, 2006 to September 11,

2007). In the first 2 months we observed errors on 11 ma-

chines. No new errors were seen for 6 months and then

1 more erroneous machine appeared in the most recent
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Figure 1. The visualization of example error patterns on physical memory devices. Each cross represents an

erroneous cell at its row/column addresses. The system address to row/column address translation is obtained from

the official Intel document [20].

month of monitoring. We choose 6 erroneous machines

with distinct error patterns and show in Figure 1 how the

errors are laid out on the physical memory arrays. Based

on the observed patterns, all four memory error modes

(single-cell, row, column, and whole-chip [4]) appear in

our log. Specifically, M10 contains a single cell error.

M7 and M12 represent a row error and a column error

respectively. The error case on M1 is comprised of mul-

tiple row and columns. Finally, for machine M8, the er-

rors are spread all over the chip which strongly suggests

faults in the chip-wide circuitry rather than individual

cells, rows, or columns. Based on the pattern of error

addresses, we categorize all error instances into appro-

priate modes shown in Table 1.

While the error-correction logic can detect errors,

it cannot tell whether an error is transient or not.

We can, however, make the distinction by continued

observation—repeated occurrences of error on the same

address are virtually impossible to be external noise-

induced transient errors as they should affect all elements

with largely the same probability. We can also identify

non-transient errors by recognizing known error modes

related to inherent hardware defects: single-cell, row,

column, and whole-chip [4]. For instance, memory row

errors will manifest as a series of errors with addresses

on the same row. Some addresses on this row may be

caught on the log only once. Yet, the cause of that er-

ror is most likely non-transient if other cells on the same

row indicate non-transient errors (loggedmultiple times).

ConsiderM9 in Figure 1 as an example, there are five dis-

tinct error addresses recorded in our trace, two of which

showed up only once while the rest were recorded multi-

ple times. Since they happen on the same row, it is highly

probable that they are all due to defects in places like the

word line. We count them as a row error.

4 Error Manifestation Analysis

We analyze how device-level errors would be exposed

to software. We are interested in the error manifestation

rates and patterns (e.g., multi-bits or single-bit) as well

as leading causes for manifested errors. We explore re-

sults under different memory protection schemes. This

is useful since Chipkill ECC represents a somewhat ex-

treme trade-off between reliability and other factors (e.g.,

performance and energy consumption) and may remain

a limited-scope solution. In our memory chipset (In-

tel E7520) for example, to provide the necessary word

length, the Chipkill design requires two memory chan-

nels to operate in a lock-stepping fashion, sacrificing

throughput and power efficiency.



Machine Cell Row Column Row-Column Whole-Chip

M1 1

M2 1

M3 1 (transient)

M4 1

M5 1 (transient)

M6 1

M7 1

M8 1

M9 1

M10 1

M11 1

M12 1

Total 5 (2 transient) 3 1 1 2

Table 1. Collected errors and their modes (singlecell, row, column, multiple rows and columns, or wholechip errors).

Two of the collected errors are suspected to be transient. Over a ninemonth period, errors were observed on 12

machines out of the full set of 212 machines being monitored.

DRAM technology DDR2

DIMM No. per machine 4

Device No. per DIMM 18

Device data width x4

Row/Column/Bank No. 214/211/4

Device capacity 512 Mb

Capacity per machine 4 GB

ECC capability None,

SECDED,

or Chipkill

Table 2. Memory configuration for our server farm ma

chines.

4.1 Evaluation Methodology

We use a discrete-event simulator to conduct Monte-

Carlo simulations to derive properties of manifested er-

rors. We simulate 500 machines with the exact configu-

ration as the Ask.com servers in Section 3. The detailed

configuration is shown in Table 2. We first use the er-

ror properties extracted from our data to generate error

instances in different memory locations in the simulated

machines. Then we simulate different ECC algorithms

to obtain a trace of manifested memory errors as the out-

put. Our analysis here does not consider software sus-

ceptibility to manifested errors, which will be examined

in Section 5. Below, we describe several important as-

pects of our simulation model, including temporal error

distributions, device-level error patterns, and the repair

maintenance model.

Temporal error distributions— We consider transient

and non-transient errors separately in terms of tem-

poral error distribution. Since transient errors are

mostly induced by random external events, it is well

established that their occurrences follow a mem-

oryless exponential distribution. The cumulative

distribution function of exponential distribution is

F (t) = 1 − e−λt, which represents the probability

that an error has already occurred by time t. The

instantaneous error rate for exponential distribution

is constant over time, and does not depend on how

long the chip has been operating properly.

The non-transient error rate follows a “bathtub”

curve with a high, but declining rate in the early “in-

fant mortality” period, followed by a long and stable

period with a low rate, before rising again when de-

vice wear-out starts to take over. Some study has

also suggested that improved manufacturing tech-

niques combined with faster upgrade of hardware

have effectively made the wear-out region of the

curve irrelevant [28]. In our analysis, we model

16 months of operation and ignore aging or wear-

out. Under these assumptions, we use the oft-used

Weibull distributions which has the following cu-

mulative distribution function: F (t) = 1 − e(t/β)α

.

The shape parameter α controls how steep the rate

decreases, and the scale parameter β determines

how “stretched out” the curve is. Without consider-

ing the wear-out region, the shape parameter in the

Weibull distribution is no more than 1.0, at which

point the distribution degenerates into an exponen-

tial distribution. The temporal error occurrence in-

formation in our data suggested a shape parameter

of 0.11.

Device-level error patterns— For transient errors,

prior studies and our own observation all point

to the single-bit pattern. For non-transient errors,



we have the 10 distinct patterns in our trace as

templates. When a non-transient error is to be

generated, we choose one out of these templates in

a uniformly random fashion. There is a problem

associated with using the exact template patterns—

error instances generated from the same templates

are always injected on the same memory location

and thus they would always be aligned together

to cause an uncorrectable error in the presence of

ECC. To address this problem, we shift the error

location by a random offset each time we inject an

error instance.

Repair maintenance model— Our model requires a

faulty device repair maintenance strategy. We em-

ploy an idealized “reactive” repair without preven-

tive maintenance. We assume an error is detected as

soon as it is exposed to the software level. If the er-

ror is diagnosed to be non-transient, the faulty mem-

ory module is replaced. Otherwise the machine will

undergo a reboot. In our exploration, we have tried

two other maintenance models that are more proac-

tive. In the first case, hardware scrubbing is turned

on so that transient errors are automatically cor-

rected. In the second case, we further assume that

the memory controller notifies the user upon detect-

ing a correctable non-transient error so that faulty

memory modules can be replaced as early as pos-

sible. We found these preventive measures have a

negligible impact on our results. We will not con-

sider these cases in this paper.

Below, Section 4.2 provides evaluation results using

the above described model. Due to the small number

of errors in the collected error trace, the derived rate

and temporal manifestation pattern may not provide high

statistical confidence. To achieve high confidence, we

further study the sensitivity of our results to two model

parameters—the Weibull distribution shape parameter

for non-transient errors (Section 4.3) and the temporal

error rate (Section 4.4).

4.2 Base Results

Here we present the simulation results on failures. The

failure rates are computed as the average of the simulated

operational duration. We describe our results under dif-

ferent memory protection schemes.

Figure 2(A) illustrates the failure rates and the break-

down of the causes when there is no ECC protection. In

this case, any error will be directly exposed to software

and cause a failure. As a result, we can study the errors in

isolation. With our measurement, the transient error rate

is 2006FIT 1 for each machine’s memory system. De-

1FIT is a commonly used unit to measure failure rates and 1 FIT
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Figure 2. Base failure rates and breakdown causes

for no ECC and SECDED ECC. Results (with varying

machine operational durations) are for Section 4.2.

pending on the operational time of the machines, the av-

erage non-transient error rates would vary, and so are the

corresponding failure rates. Overall, for machines with-

out ECC support, both transient and non-transient errors

contribute to the overall error rate considerably.

SECDED ECC can correct word-wise single-bit er-

rors. For the errors in our trace, it could correct all but

one whole-chip error, one row error, and one row-column

error. These three cases all have multiple erroneous bits

(due to the same root cause) in one ECC word, prevent-

ing ECC correction. Theoretically, a failure can also oc-

cur when multiple independent single-bit errors happen

to affect the same ECC word (such as when a transient

error occurs to an ECC word already having a single-bit

non-transient error). However, since errors are rare in

general, such combination errors are even less probable.

In our simulations, no such instance has occurred. Fig-

ure 2(B) summarizes the simulation results.

When using the Chipkill ECC, as expected, the mem-

ory system becomes very resilient. We did not observe

any uncorrected errors. This result echoes the conclusion

of some past study [12].

equals one failure per billion device-hour. To put the numbers into

perspectives, IBM’s target FIT rates for servers are 114 for undetected

(or silent) data corruption, 4500 for detected errors causing system ter-

mination, and 11400 for detected errors causing application termina-

tion [8]. Note that these rates are for the whole system including all

components.



4.3 Shape Parameter Sensitivity for Non-
Transient Error Distribution

To reach high confidence in our results, we consider a

wide range of the Weibull shape parameters for the non-

transient error temporal distribution and study the sensi-

tivity of our results to this parameter. We use a machine

operational duration of 16 months, which is the age of

the Ask.com servers at the end of our data collection.

Prior failure mode studies in computer systems [16,

40], spacecraft electronics [17], electron tubes [22], and

integrated circuits [19] pointed to a range of shape pa-

rameter values in 0.28–0.80. Given this and the fact

that the Weibull distribution with shape parameter 1.0

degenerates to an exponential distribution, we consider

the shape parameter range of 0.1–1.0 in this sensitivity

study.

In both ECC mechanisms, the non-transient error rate

depends on the Weibull shape parameter. The lower the

shape parameter, the faster the error rate drops, and the

lower the total error rate for the entire period observed.

Note that the transient error rate also fluctuates a little be-

cause of the non-deterministic nature of ourMonte-Carlo

simulation. But the change of transient error rates does

not correlate with the shape parameter. For no-ECC, as

Figure 3(A) shows, for machines in their first 16 months

of operation, the difference caused by the wide ranging

shape parameter is rather insignificant.

In the case of SECDED shown in Figure 3(B), the im-

pact of the Weibull shape parameter is a bit more pro-

nounced than in the case of no ECC but is still relatively

insignificant. Also, even though error rates are signifi-

cantly reduced by SECDED, they are still within a factor

of about five from those without ECC.

4.4 Statistical Error Rate Bounds

Due to the small number of device-level errors in our

trace, the observed error rate may be quite different from

the intrinsic error rate of our monitored system. To ac-

count for such inaccuracy, we use the concept of p-value

bounds to provide a range of possible intrinsic error rates

with statistical confidence.

For a given probability p, the p-value upper bound

(λu) is defined as the intrinsic error rate under which

Pr{X≤n} = p. Here n is the actual number of errors

observed in our experiment. X is the random variable

for the number of errors occurring in an arbitrary exper-

iment of the same time duration. And likewise, the p-

value lower bound (λl) is the intrinsic error rate under

which Pr{X≥n} = p. A very small p indicates that

given n observed errors, it is improbable for the actual

intrinsic error rate λ to be greater than λu or less than λl.

Given p, the probability distribution of random vari-

able X is required to calculate the p-value for our data.
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Figure 3. Failure rates and breakdown causes for no

ECC and SECDED ECC, with varying Weibull shape

parameter for nontransient error distribution. Results

are for Section 4.3.

Thankfully, when the memory chips are considered iden-

tical, we can avoid this requirement. This is because in

any time interval, their probability of having an error is

the same, say q. Let N be the total number of memory

chips operating, then the actual number of errors happen-

ing in this period, X , will be a random variable which

conforms to binomial distribution: PN,q{X = k} =
(

N
k

)

qk(1 − q)N−k. When N is very large (we simulated

thousands of chips), we can approximate by assuming N

approaches infinity. In this case the binomial distribution

will turn into Poisson distribution. For the ease of cal-

culation, we shall use the form of Poisson distribution:

Pλ{X = k} =
e−λλk

k!
, where λ = q · N is the expecta-

tion of X .

Based on the analysis above and the observed er-

ror rates, we have calculated the 1% upper and lower

bounds. For instance, the transient error rate in non-

ECC memory system is 2006FIT as mentioned ear-

lier. The corresponding 1%-upper-bound and 1%-lower-

bound are 8429FIT and 149FIT respectively. The

bounds on the various manifested error rates, derived

from different raw error rates, are shown in Figure 4.

From left to right, the bars show the 1%-lower-bound, the

originally observed rate, and the 1%-upper-bound. As

can be seen, for manifestations caused by non-transient
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Figure 4. Manifested errors when input devicelevel

error rates are the originally observed and 1%

lower/upperbounds. Results are for Section 4.4.

errors, the two 1% bounds are roughly 2x to either direc-

tion of the observed rate. The ranges are narrow enough

such that they have little impact to the qualitative conclu-

sions.

For Chipkill ECC, the 1%-upper-bound offers a better

chance to observe failures in the outcome of our simu-

lation. With this increased rate, we finally produced a

few failure instances (note there were none for Chipkill

in the base simulations done in previous sub-sections).

The patterns of the failures are shown in Figure 4(C). All

of the failures here are caused by a transient error hitting

an existing non-transient chip error.

4.5 Summary

We summarize our results of this part of the study:

• In terms of the absolute failure rate, with no ECC

protection, error rates are at the level of thousands

of FIT per machine. SECDED ECC lowers the

rates to the neighborhood of 1000FIT per machine.

Chipkill ECC renders failure rates virtually negligi-

ble.

• Non-transient errors are significant (if not domi-

nant) causes for all cases that we evaluated. Partic-

ularly on SECDED ECC machines, manifested fail-

ures tend to be caused by row errors, row-column

errors, and whole-chip errors. With Chipkill ECC,

the few failures occur when a transient error hits

a memory device already inflicted with whole-chip

non-transient errors.

• In terms of the error patterns, word-wise multi-bit

failures are quite common.

Major implications of our results are that memory

hardware errors exert non-negligible effects on the sys-

tem dependability, even on machines equipped with

SECDED ECC. Further, system dependability studies

cannot assume a transient-error-only or single-bit-error-

only model for memory hardware errors.

5 Software System Susceptibility

A memory error that escaped hardware ECC correc-

tion is exposed to the software level. However, its cor-

rupted memory value may or may not be consumed by

software programs. Even if it is consumed, the soft-

ware system and applications may continue to behave

correctly if such correctness does not depend on the con-

sumed value. Now we shift our attention to the suscep-

tibility of software systems and applications to memory

errors. Specifically, we inject the realistic error patterns

from our collected traces and observe the software be-

haviors. Guided by the conclusion of Section 4, we also

take into account the shielding effect of ECC algorithms.

There is a rich body of prior research on software sys-

tem reliability or security regarding memory hardware

errors [11,14,24,26,31,33]. One key difference between

these studies and ours is that all of our analysis and dis-

cussions build on the realism of our collected error trace.

In this section, we tailor our software susceptibility eval-

uation in the context of recent relevant research with the

hope of validating, questioning, or augmenting prior re-

sults.

5.1 Methodology of Empirical Evaluation

Memory Access Tracking and Manipulation To run

real software systems on injected error patterns, we must

accomplish the following goals. First, every read ac-



cess to a faulty location must be supplied with an er-

roneous value following the injection pattern. This can

be achieved by writing the erroneous value to each in-

dividual faulty address at the time of injection. Second,

for every write access to a faulty location, if the error is

non-transient, we must guarantee the erroneous value is

restored right after the write. The injection is then fol-

lowed by error manifestation bookkeeping. The book-

keeping facility has to be informed whenever a faulty ad-

dress is accessed so that it would log some necessary in-

formation. The key challenge of such error injection and

information logging is to effectively track and manipu-

late all the accesses to locations injected with errors (or

tracked locations).

Traditional memory tracking approaches include:

• Hardware watchpoints [26]—employing hardware

memory watchpoints on tracked locations. Due to

the scarcity of hardware watchpoints on modern

processors, this approach is not scalable (typically

only able to track a fewmemory locations at a time).

• Code instrumentation [39]—modifying the binary

code of target programs to intercept and check

memory access instructions. This approach may in-

cur excessive overhead since it normally must inter-

cept all memory access instructions before know-

ing whether they hit on tracked memory locations.

Further, it is challenging to apply this approach on

whole-system monitoring including the operating

system, libraries, and all software applications.

• Page access control [39]—applying virtual memory

mechanism to trap accesses to all pages containing

tracked memory locations and then manipulating

them appropriately with accesses enabled. For this

approach, it is important to reinstate the page ac-

cess control after each page fault handling. This is

typically achieved by single-stepping each trapped

memory access, or by emulating the access within

the page fault handler. This approachmay also incur

substantial overhead on false memory traps since all

accesses to a page trigger traps even if a single lo-

cation in the page needs to be tracked.

We propose a new approach to efficiently track a large

number of memory locations. Our rationale is that al-

though the whole system may contain many tracked

locations exceeding the capacity of available hardware

watchpoints, tracked locations within an individual page

are typically few enough to fit. Further, the locality of

executions suggests a high likelihood of many consecu-

tive accesses to each page. By applying hardware watch-

points on tracked locations within the currently accessed

hot page, we do not have to incur false traps on accesses

to non-tracked locations within this page. At the same

time, we enforce access control to other pages contain-

ing tracked locations. When an access to one such page is

detected, we set the new page as hotspot and switch hard-

ware watchpoint setup to tracked locations within the

new page. We call our approach hotspot watchpoints. Its

efficiency can be close to that of hardware watchpoints,

without being subject to its scalability constraint. Note

that it is possible that tracked locations within a page still

exceed the hardware watchpoint capacity. If such a page

is accessed, we fall back to the memory access single-

stepping as in the page access control approach.

There is a chance for a single instruction to access

multiple pages with tracked locations. For example, an

instruction’s code page and its data page may both con-

tain tracked locations. If we only allow accesses to one

tracked page at a time, then the instruction may trap

on the multiple tracked pages alternately without mak-

ing progress—or a livelock. We detect such livelock by

keeping track of the last faulted program counter. Upon

entering the page-fault handler, we suspect a livelock if

the current faulting program counter address is the same

as the last one. In such a situation we fall back to the

memory access single-stepping while allowing accesses

to multiple tracked pages that are necessary. It is possible

that a recurring faulted program counter does not corre-

spond to an actual livelock. In this case, our current ap-

proach would enforce an unnecessary instruction single-

stepping. We believe such cases are rare, but if needed,

we may avoid this slowdown by more precise tracking of

execution progresses (e.g., using hardware counters).

We should also mention a relevant memory monitor-

ing technique called SafeMem [32], originally proposed

for detecting memory leaks and corruptions. With mod-

est modifications, it may be used for continual memory

access tracking as well. SafeMem exploits the mem-

ory ECC mechanisms to trap accesses to all cachelines

containing tracked locations. Because typical cacheline

sizes (32–256bytes) are smaller than the typical page

size of 4KB, false memory traps (those trapped memory

accesses that do not actually hit tracked locations) under

cacheline access control can be significantly fewer than

that under page access control. Nevertheless, our hotspot

watchpoints technique can further reduce the remaining

false memory traps. In this case, hardware watchpoints

will be set upon tracked locations within the current hot

cacheline (or cachelines) instead of the hot page.

Error Monitoring Architecture If the error injection

and monitoring mechanisms are built into the target sys-

tem itself (as in [26]), these mechanisms may not be-

have reliably in the presence of injected memory er-

rors. To avoid this potential problem, we utilize a vir-

tual machine-based architecture in which the target sys-

tem runs within a hosted virtual machine while the error



injection and monitoring mechanisms are built in the un-

derlying virtual machine monitor. We enable the shadow

page table mode in the virtual machine memory man-

agement. Error injections only affect the shadow page

tables while page tables within the target virtual machine

are not affected. We also intercept further page table

updates—we make sure whenever our faulty pages are

mapped to any process, we will mark the protection bit

in the corresponding page table.

In order to understand software system susceptibility

to memory hardware errors, we log certain information

every time an error is activated. Specifically, we record

the access type (read or write), access mode (kernel or

user), and the program counter value. For kernel mode

accesses, we are able to locate specific operating system

functions from the program counter values.

System Setup and Overhead Assessment Our exper-

imental environment employs Xen 3.0.2 and runs the tar-

get system in a virtual machine with Linux 2.6.16 op-

erating system. We examine three applications in our

test: 1) the Apache web server running the static re-

quest portion of the SPECweb99 benchmarkwith around

2GB web documents; 2) MCF from SPEC CPU2000—a

memory-intensive vehicle scheduling program for mass

transportation; and 3) compilation and linking of the

Linux 2.6.23 kernel. The first is a typical server work-

load while the other two are representative workstation

workloads (in which MCF is CPU-intensive while ker-

nel build involves significant I/O).

We assess the overhead of our memory access tracking

mechanism. We select error pattern M8 (illustrated in

Figure 1), the one with most number of faulty bits in our

overhead assessment. This error pattern consists of 1053

faulty 32-bit long words scattered in 779 pages, among

which 668 pages contain only one erroneous word. Note

that in this overhead evaluation, we only specify the spots

to be tracked without actually flipping the memory bits.

So the correctness of system and application executions

should not be affected.

We compare the overhead of our approach to that of

page access control. Results in Figure 5 suggest that

our approach can significantly reduce the overhead com-

pared to the alternative page access control approach.

In particular, for Linux kernel build, our approach can

reduce the execution time by almost a factor of four.

The efficiency of our hotspot watchpoints approach also

makes it a promising technique to support other utiliza-

tion of memory access tracking [39] beyond the hard-

ware error injection in this paper. Across the three appli-

cations, kernel build incurs the greatest amount of slow-

down due to memory access tracking. We are able to

attribute much (about two thirds) of the slowdown to the

kernel function named vma merge whose code section
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Figure 5. Benchmark execution time of our hotspot

watchpoints approach, compared to the page access

control approach [39]. The execution time is normal

ized to that of the original execution without memory

access tracking. The slowdown was evaluated with the

wholechip error pattern of M8. Note for web server,

the execution time is for requesting all the 2 GB data in

a sweepthrough fashion.

contains a tracked location. This function is triggered

frequently by the GNU compiler when performingmem-

ory mapped I/O.

5.2 Evaluation and Discussion

Evaluation on Failure Severity Two previous stud-

ies [11, 26] investigated the susceptibility of software

systems to transient memory errors. They reached simi-

lar conclusions that memory errors do not pose a signif-

icant threat to software systems. In particular, Messer et

al. [26] discovered that of all the errors they injected, on

average 20%were accessed, among which 74% are over-

written before being really consumed by the software. In

other words, only 5% of the errors would cause abnormal

software behaviors. However, these studies limited their

scope for single-bit transient errors only. Our findings in

Section 4 show non-transient errors are also a significant

cause of memory failures. When these errors are taken

into account, the previous conclusions may not stand in-

tact. For example, non-transient errors may not be over-

written, and as a result, a portion of the 74% overwritten

errors in [26] would have been consumed by the software

system if they had been non-transient.

Table 3 summarizes the execution results of our three

benchmark applications when non-transient errors are in-

jected. Since our applications all finish in a short time (a

few minutes), we consider these non-transient errors as

permanent during the execution. In total we had 12 dif-

ferent error patterns. M3 and M5 are transient errors and

therefore we do not include them in this result. M8 is so

massive that as soon as it is injected, the OS crashes right

away. We also exclude it from our results.



Application Web server MCF Kernel build

No ECC

M1 (row-col error) WO AC AC

M2 (row error) OK

M4 (bit error) OK

M6 (chip error) KC WO AC

M7 (row error) WO WO

M9 (row error) OK

M10 (bit error) OK

M11 (bit error)

M12 (col error) WO

SECDED ECC

M1 (row-col error) WO WO AC

M7 (row error) WO WO

Table 3. Error manifestation for each of our three appli

cations. The abbreviations in the table should be inter

preted as follows, with descending manifestation sever

ity: KC—kernel crash; AC—application crash; WO—

wrong output; OK—program runs correctly. The blank

cells indicate the error was not accessed at all.

The table includes results for both cases of no ECC

and SECDED ECC. Since errors are extremely rare on

Chipkill machines (see conclusions of Section 4), here

we do not provide results for Chipkill. For no ECC,

briefly speaking, out of the 27 runs, 13 have accessed

memory errors and 8 did not finish with expected cor-

rect results. This translates to 48% of the errors are acti-

vated and 62% of the activated errors do lead to incorrect

execution of software systems. In the SECDED case,

single-bit errors would be corrected. Most errors (except

M1 and M7) are completely shielded by the SECDED

ECC. However, for the six runs with error patterns M1

andM7, five accessed the errors and subsequently caused

abnormal behaviors.

Overall, compared to results in [26], non-transient er-

rors evidently do cause more severe consequences to

software executions. The reason for the difference is

twofold— 1) non-transient errors are not correctable by

overwriting and 2) unlike transient errors, non-transients

sometimes involve a large number of erroneous bits. To

demonstrate reason #1, we show in Table 4, when these

errors are turned into transient ones (meaning they can

be corrected by overwritten values), quite a few of the

execution runs would finish unaffected.

Validation of Failure-Oblivious Computing This

evaluation study attempts to validate the concept of

failure-oblivious computing [33] with respect to memory

hardware errors. The failure-oblivious model is based

on the premise that in server workloads, error propaga-

tion distance is usually very small. When memory er-

rors occur (mostly they were referring to out-of-bound

Application Web server MCF Kernel build

No ECC

M1 (row-col error) WO AC OK

M2 (row error) OK

M4 (bit error) OK

M6 (chip error) KC OK OK

M7 (row error) WO OK

M9 (row error) OK

M10 (bit error) OK

M11 (bit error)

M12 (col error) WO

SECDED ECC

M1 (row-col error) WO OK OK

M7 (row error) WO OK

Table 4. Error manifestation for each of our three ap

plications, when the errors are made transient (thus

correctable by overwrites). Compared to Table 3, many

of the runs are less sensitive to transient errors and

exhibit no misbehavior at the application level.

memory accesses), a failure-oblivious computing model

would discard the writes and supply the read with arbi-

trary values and try to proceed. In this way the error

occurred will be confined within the local scope of a re-

quest and the server computation can be resumed without

being greatly affected.

The failure-oblivious concept may also apply to mem-

ory hardware errors. It is important to know what the

current operating system does in response to memory er-

rors. Without ECC, the system is obviously unaware of

any memory errors going on. Therefore it is truly failure-

oblivious. With ECC, the system could detect some of

the uncorrectable errors. At this point the system can

choose to stop, or to continue execution (probably with

some form of error logging). The specific choices are

configurable and therefore machine dependent.

For our web server workload, we check the integrity

of web request returns in the presence of memory errors.

Table 5 lists the number of requests with wrong contents

for the error cases. We only show error cases that trigger

wrong output for the web server (as shown in Table 3).

The worst case is M1, which caused 15 erroneous request

returns (or files with incorrect content). However, this is

still a small portion (about 0.1%) in the total 14400 files

we have requested. Our result suggests that, in our tested

web server workload, memory-hardware-error-induced

failures tend not to propagate very far. This shows the

promise of applying failure-oblivious computing in the

management of memory hardware errors for server sys-

tems.

Discussion on Additional Cases Though error testing

data from the industry are seldom published, modern



No ECC

M1 (row-col error) Wrong output (15 requests)

M7 (row error) Wrong output (2 requests)

M12 (col error) Wrong output (1 request)

SECDED ECC

M1 (row-col error) Wrong output (8 requests)

M7 (row error) Wrong output (1 request)

Table 5. Number of requests affected by the errors in

SPECweb99driven Apache web server. We only show

error cases that trigger wrong output for the web server

(as shown in Table 3). We request 14400 files in the

experiment.

commercial operating systems do advocate their coun-

termeasures for faulty memory. Both IBM AIX [18] and

Sun Solaris [38] have the ability to retire faulty mem-

ory when the ECC reports excessive correctable mem-

ory errors. Our results suggest that with ECC protection,

the chances of errors aligning together to form an uncor-

rectable one is really low. However, this countermeasure

could be effective against those errors that gradually de-

velop into uncorrectable ones by themselves. Since our

data does not have timestamps for most of the error in-

stances, it is hard to verify how frequently these errors

occur. On Chipkill machines [18], however, this coun-

termeasure seems to be unnecessary since our data shows

that without any replacement policy, Chipkill will main-

tain the memory failure rate at an extremely low level.

A previous security study [14] devised a clever attack

that exploits memory errors to compromise the Java vir-

tual machine (JVM). They fill the memory with pointers

to an object of a particular class, and through an acci-

dental bit flip, they hope one of the pointers can point

to an object of another class. Obtaining a class A pointer

actually pointing to a class B object is enough to compro-

mise the whole JVM. In particular, they also provided an

analysis of the effectiveness of exploiting multi-bit er-

rors [14]. It appears that they can only exploit bit flips in

a region within a pointer word (in their case, bit 2:27 for

a 32-bit pointer). In order for an error to be exploitable,

all the bits involved must be in the region. The proba-

bility that they can exploit the error decreases with the

number of erroneous bits in the word. Considering that

the multi-bit errors in our collected error trace are mostly

consecutive rather than distributed randomly, we can be

quite optimistic about successful attacks.

Another previous study [31] proposed a method to

protect critical data against illegal memory writes as well

as memory hardware errors. The basic idea is that soft-

ware systems can create multiple copies of their critical

data. If a memory error corrupts one copy, a consistency

check can detect and even correct such errors. The ef-

ficacy of such an approach requires that only one copy

of the critical data may be corrupted at a time. Using

our collected realistic memory error patterns, we can ex-

plore how the placement of multiple critical data copies

affects the chance for simultaneous corruption. In partic-

ular, about half of our non-transient errors exhibit regu-

lar column or row-wise array patterns. Therefore, when

choosing locations for multiple critical data copies, it is

best to have them reside in places with different hardware

row and column addresses (especially row addresses).

6 Related Work

The literature on memory hardware errors can be

traced back over several decades. In 1980, Elkind

and Siewiorek reported various failure modes caused by

low-level hardware fault mechanisms [13]. Due to the

rareness of these errors, collecting error samples at a rea-

sonable size would require a substantial amount of time

and resource in field tests. Such field measurements have

been conducted in the past (most notably by Ziegler at

IBM) [29, 30, 43, 45]. These studies, however, have ex-

clusively dedicated to transient errors and single-bit error

patterns. Our previous study on transient error rates [25]

also falls into this category.

Studies that cover non-transient errors are relatively

few. In 2002, Constantinescu [10] reported error

collection results on 193 machines. More recently,

Schroeder et al. [35] examinedmemory errors on a larger

number of servers from six different platforms. The large

dataset enabled them to analyze statistical error correla-

tions with environmental factors such as machine tem-

perature and resource utilization. However, these studies

provide no detail on error addresses or any criteria for

categorizing transient and non-transient errors. Such re-

sults are essential for the error manifestation analysis and

software susceptibility study in this paper.

Previous research has investigated error injection ap-

proaches at different levels. Kanawati et al. [21] altered

target process images from a separate injection process

that controls the target using ptrace calls. This is a user-

level method that cannot inject errors to the operating

system image. Li et al. [24] injected errors into hardware

units using a whole-system simulator. This approach al-

lows failure analysis over the whole system but the slow

simulator speed severely limits the analysis scale.

Several studies utilized debugging registers for error

injection at close-to-native speed. Gu et al. [15] fo-

cused on injecting faults in instruction streams (rather

than memory error injection in our study). Carreira et

al. [9] resorted to external ECC-like hardware to track

the activation of memory errors whereas our approach

is a software-only approach and therefore it can be ap-

plied on off-the-shelf hardware. In addition, they cannot

monitor non-transient errors without completely single-



stepping the execution. Messer et al. [26] also targeted

transient errors. And their direct use of the watchpoint

registers limited the number of simultaneously injected

errors. In contrast, our hotspot watchpoint technique

allows us to inject any number of transient and non-

transient errors at high speed.

7 Conclusion

Memory hardware reliability is an indispensable part

of whole-system dependability. Its importance is evi-

denced by a plethora of prior studies of memory error’s

impact on software systems. However, the absence of

solid understanding of the error characteristics prevents

software system researchers from making well reasoned

assumptions, and it also hinders the careful evaluations

over different choices of fault tolerance design.

In this paper, we have presented a set of memory

hardware error data collected from production computer

systems with more than 800GB memory for around

9 months. We discover a significant number of non-

transient errors (typically in the patterns of row or col-

umn errors). Driven by the collected error patterns and

taking into account various ECC protection schemes, we

conducted a Monte Carlo simulation to analyze how er-

rors manifest at the interface between the memory sub-

system and software applications. Our basic conclusion

is that non-transient errors comprise a significant por-

tion of the overall errors visible to software systems. In

particular, with the conventional ECC protection scheme

of SECDED, transient errors will be almost eliminated

while only non-transient memory errors may affect soft-

ware systems and applications.

We also investigated the susceptibility of software sys-

tem and applications to realistic memory hardware er-

ror patterns. In particular, we find that the earlier re-

sults that most memory hardware errors do not lead to

incorrect software execution [11, 26] may not be valid,

due to the unrealistic model of exclusive transient er-

rors. At the same time, we provide a validation for

the failure-oblivious computing model [33] on a web

server workload with injected memory hardware errors.

Finally, as part of our software system susceptibility

study, we proposed a novel memory access tracking tech-

nique that combines hardware watchpoints with coarse-

grained memory protection to simultaneously monitor

large number of memory locations with high efficiency.
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