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Abstract

A fundamental question when studying underlying friend-
ship and interaction graphs of Online Social Networks
(OSNs) is how closely these graphs mirror real-world
associations. The presence of phantom or fake profiles
dilutes the integrity of this correspondence. This paper
looks at the presence of phantom profiles in the context
of social gaming, i.e., profiles created with the purpose of
gaining a strategic advantage in social games. Through
a measurement-based study of a Facebook gaming appli-
cation that is known to attract phantom profiles, we show
statistical differences among a subset of features associ-
ated with genuine and phantom profiles. We then use su-
pervised learning to classify phantom profiles. Our work
represents a first-step towards solving the more general
problem of detecting fake/phantom identities in OSNs.

1. Introduction

Over the last five years, Online Social Networks (OSNs)
such as Facebook, MySpace, and Orkut have carved out
a massive following of nearly 700 million users world-
wide. The core reason for the success of OSNGs is the fre-
quency of fresh user-generated content and personal in-
formation (e.g., status updates, pictures and comments).
As users have become accustomed to expect fresh con-
tent almost every single time they access the OSNs, so-
cial networking sites tend to enjoy a high level of engage-
ment. This is especially true for Facebook, where 50%
of its total user base returns every day’.

User-generated content, although frequently updated,
might not be as high quality or engaging as, say, cre-
atively designed gaming content. Facebook’s pioneer-
ing Platform paved the way for massive, viral distribu-
tion of online games. The Facebook Platform currently
hosts 95,000+ applications for its over-400 million ac-
tive users. The Facebook Platform breathed life into the
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virtual goods economy through social games especially
in the US, which has now become more than a billion
dollar a year market, and continues to grow at break-
neck speeds. Open-API platforms such as Facebook’s
are becoming an increasingly large contributor to Inter-
net traffic with social games exhibiting higher quality (in
terms of user engagement and graphical content) with
each passing month, especially as big players such as
Electronic Arts enter the social gaming space?.

Existing research on OSNs is mostly focussed on graph
theoretic properties of social networks, user behavior and
traffic patterns of OSNs and their applications. Given the
growing contribution of social games to Internet traffic
and user engagement in OSNs, it is important to con-
sider the general trend in online user engagement, the
approaches taken to achieve this engagement, and its ef-
fects on the structure of the underlying social graph. In
this spirit, we focus on a previously unidentified issue
with social games: the creation of phantom or fake user
profiles on OSNs to target higher rewards in social games.

1.1  What are Phantom User Profiles?

User profiles on OSNs can be created to suit different
purposes. Consider, for example, a user who creates sep-
arate profiles for work, friends and family, dating and for
playing social games. She may also decide to abandon
one profile (without disabling it) and create another pro-
file for the same purpose. Furthermore, she might wish to
indulge in activities that are untraceable to her real iden-
tity. OSNs such as Facebook prefer creation of one user
profile per real user, and provide tools such as content fil-
ter lists to accommodate users that may potentially wish
to separate groups of acquaintances.

In this paper, we consider the specific problem of users
creating multiple phantom gaming profiles on OSNs in
order to achieve a strategic advantage within social games.
Our experience shows that the multiple phantom profiles
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are used by one or more gamers to achieve higher status
within the social game. As an example, consider that so-
cial games tend to reward users for introducing friends to
the game to achieve growth. Using these phantom iden-
tities, users fool the games’ point-based systems into be-
lieving they are contributing to the growth of the appli-
cation (in number of users), and are thus rewarded with
higher privilege (i.e., points, higher rankings on ‘Halls
of Fame’, unlocked items, new missions, etc.). Further-
more, to give the phantom identity the appearance of a
real user (in order to avoid detection by the OSN ad-
ministrators), the phantom identity is advertised to (but
not restricted to) the creator’s friends, resulting in a high
number of OSN friendships, or trust relationships, being
formed with the phantom user profile. This clearly dis-
torts the underlying social graph, and contaminates user
experience on the social game itself.

We identify three conditions relevant to OSNs them-
selves that would motivate the creation of phantom pro-
files. First, for every set of randomly drawn users, if there
exists a user who is strictly better off if some additional
users join the interaction, then the user will have incen-
tive to add/invite new participants. This ‘word-of-mouth’
recruiting property is the essence of a successfully grow-
ing OSN and social games. The second condition is the
low (or zero) cost for participation, e.g., for joining an
OSN or subscribing to an OSN-based game. Lastly, the
user identities are non-verifiable since most OSNs do not
verify identities of users out of privacy concerns. Pri-
vate information required during the sign-up phase is not
shared publicly with other users.

1.2  Motivation and Contributions

We present a case study using almost two years of
data from one of our popular social gaming applications
on Facebook, Fighters’ Club (FC) [11]. Similar to any
multiplayer game, players in FC are rewarded/penalized
as function of interactions with other players in the game.
This characteristic of social games in general tends to
motivate users to create phantom profiles in OSNs.

The success of social gaming, as well as online so-
cial networking, is reliant on the integrity of the underly-
ing social graph. In order to preserve this integrity, as
well as the intended user experience on social games,
it is imperative that phantom user profile detection and
elimination is considered seriously. Facebook’s current
efforts at eliminating phantom user profiles rely on man-
ual examination of individual user profiles, if they are at
all reported by other OSN users. This paper, however,
performs empirical characterization of phantom profiles
and proposes methods to detect and potentially eliminate
phantom user profiles used in social games. Our contri-
butions are summarized as follows:

e We document our experiences with a real Facebook

gaming application, Fighters’ Club (FC), that is known
to motivate phantom profile creations.

e We perform a measurement-based characterization of
phantom and genuine user profiles interacting on FC
and provide evidence of differences in some of the
features recorded (Section 4).

e We explore how a learning technique using Support
Vector Machines (SVMs) can be applied to classify
phantom profiles.

The rest of the paper is structured as follows. We dis-
cuss related work in Section 2 and our methodology in
Section 3. Section 4 presents the results of our measurement-
based characterization of phantom and genuine user pro-
files. Section 5 discusses the results of applying SVM
to classify phantom user profiles and Section 6 describes
potential future work.

2. Related Work

Online social networking has garnered much academic
interest recently [7]. Researchers have focused on var-
ious aspects of OSNs, including graph theoretic prop-
erties of social networks, usage patterns of individual
OSNs [10, 3, 14], aggregated activity data from mul-
tiple OSNs [1, 5], as well as privacy and security is-
sues [8]. We have previously studied network-level de-
lays and user interaction on different types of social ap-
plications through home-grown social applications [11,
12]. A recent study [13] utilizes large ISP traces across
two continents to study user interactions with various
OSNs by examining actual user clickstreams.

Yu et. al’s work on Sybil attacks in [15] is the most rel-
evant to this paper. A Sybil attack is defined as a “mali-
cious user obtaining multiple fake identities and pretend-
ing to be multiple, distinct nodes in the system.” [15]
used the insight that fake identities (in the case of Sybil
attacks) are inherently less trusted than normal users, i.e.,
the number of trust relationships formed between fake
identities might be high, but the number of trust relation-
ships between fake identities and normal users must be
low. This observation was used to develop an algorithm
for identification of fake identities in Sybil attacks.

The problem introduced in this paper considers phan-
tom identities formed by real users that wish to use the
phantom profiles to achieve greater strategic advantage
in a social game. Once created, the phantom identity is
often advertised to one’s real friends, who similarly wish
to advance on the social game through the phantom pro-
file. Moreover, since point-based social games require
users target friends (because the application must spread
in a social medium), phantom profiles can form a high
number of trust relationships with genuine users and their
friends. The assumption of lack of trust relationships in



Sybil attacks, and hence the solution developed in [15] is
thus inapplicable in our scenario.

To the best of our knowledge, this paper is the first at-
tempt to characterize and classify phantom profiles through
online social games.

3. Measurement Methodology

We suspect that activities of fake/phantom users are in-
herently different from genuine users. Hence, a detailed
empirical study of a large OSN user population that con-
tains both genuine and phantom profiles can help reveal
the distinct nature of the latter. An ideal approach is to
analyze complete OSN-resident user data, such as user-
entered data, uploaded photographs, activity patterns within
the OSN, etc. While OSNs such as Facebook certainly do
have this complete data, it is not publicly available. We
adopted an alternate approach: by exploiting Facebook
Developer Platform and launching home-grown social
applications, we collected users’ activity data within ap-
plications as well as limited (anonymized) OSN-specific
user information. Our previous research utilized such
data from eight highly popular Facebook applications that
have collectively reached over 18 million users on Face-
book to date [11, 12]. We analyzed social utility and
social gaming applications. As discussed in Section 1.1,
the incentives for creation of phantom user profiles ex-
ist mainly in social gaming applications. We launched
two social games on Facebook, of which Fighters’ Club
(peak at 140,000+ daily users), became vastly more pop-
ular. We therefore employ Fighters’ Club to gather rele-
vant data for the case study in this paper.

3.1 Case Study: Fighters’ Club

Fighters’ Club (FC) was launched on Jun 19, 2007 on
the Facebook Developer Platform. One of the first games
to launch on Facebook, FC has been played by 6 million
users on Facebook to date. The game’s success was due
to the addictive gameplay it fosters among friends and
friends-of-friends. Specifically, FC enables users to pick
virtual fights with their Facebook friends. These fights
can last from 15 to 48 hours, during which time each
player may request support from their Facebook friends,
who then help the requesting individual’s team defeat the
opposing user’s team through a series of virtual “hits” to
decrease the strength of the target opponents. The team
with the higher cumulative strength at the end of the fight
is declared the winner. Players in a single fight on FC
belong to one of the following three roles:

Offender: The user instigating the fight by choosing a
friend to fight against and selecting a fight duration.
Defender: The Facebook friend fought by the offender.
Supporter: The offender and defender may advertise the

fight to their Facebook friends, who then pick one side
and support the chosen user’s team.

Supporters may withdraw support or change sides un-
til the last 2 hours of the fight. FC players accumulate
virtual money, as well as ‘street cred’ points (which de-
termine the ‘strength’ of the player). When the offender
wins, they gain a percentage of the defender’s strength

(and vice versa). The winner (offender/defender) is awarded

X money per opposing team member. Supporters gain/lose
a fifth of the strength the Supportee gained/lost, but do
not gain or lose money from the fight. FC also incorpo-
rates a leveling system (six levels) to reward user loyalty.

Users need to win Y number of fights (as offender/defender)

to advance to the next level in the game. Each higher
level grants users higher upper-bound on strength, or ‘street
cred’ points.

Data Gathered: Third-party social applications such
as FC allow us to gather and store an impressive amount
of user data including their IPs, browser information, etc.
in addition to user activity data (i.e., who picked a fight
with whom, who hit whom, time of fight, time of hit, time
of support, etc.) from the game itself. The case study
presented here relies mainly on user activity data from
the game itself, along with some anonymized Facebook-
resident data. Table 1 summarizes the data set used in our
study. We manually contacted a subset of users® to ver-
ify the existence of 545 phantom and 520 genuine user
profiles (which we used as ground truth). We extracted
the following attributes per profile:

1. FNJ: No. of Facebook Networks Joined

. FW: No. of Posts on Facebook Wall visible to FC

. FFC: No. of Friends using FC

. FB: No. of Facebook Friends

. ATFP: Average Time to Fight Participation

. AFPs: Average No. of Fights Picked/sec

. AFDur: Average Fight Duration

. TFP: Total No. of Fights Picked

9. ASPF: Average No. of Supporters in Picked Fights
10. AOPF: Average No. of Opponents in Picked Fights
11. TFD: Total No. of Fights Defended

12. ASDF: Average No. of Supporters in Defended
Fights

13. AODF: Average No. of Opponents in Defended
Fights

0NN BN

4. Characterizing Phantom User Profiles

In this section, we perform empirical characterization
of the various attributes described in Section 3.1 with
the goal of identifying distinctive traits that can help dif-
ferentiate phantom from genuine profiles. For each at-
tribute, we computed and compared the conditional cu-

3Most phantom users were verified after reports by FC players,
while all genuine users were randomly selected and verified.



Table 1: Data Set Analyzed

# of Fights 2,532,779
# of Support Requests 80,174,483
# of Unique Users 264,606
# of Unique Installed Users 30,990
# of Known Phantom Users 545
# of Known Genuine Users 520
# of Fights Instigated by Genuine Users 70,209
# of Fights Targeting Genuine Users 61,751
# of Fights Instigated by Phantom Users 105,704
# of Fights Targeting Phantom Users 341,389

mulative distributions (CDFs) associated with genuine
and phantom profiles, respectively. Due to space con-
straints, we only show the empirical CDFs for a subset
of the attributes in Figure 1.

We hinted at some of the characteristic features of phan-
tom user profiles on OSNs in Section 1.1. Considering
OSN-specific characteristics of phantom users, phantom
profiles have the incentive to “blend in” by forming trust
relationships with other genuine OSN users. As shown
in Figures 1(a) and 1(b), the empirical distribution of the
number of Facebook friends (FB) and number of friends
playing FC (FFC) for the known phantom and genuine
user profiles show virtually no difference. Similar obser-
vations were made for other OSN-specific features, such
as number of Facebook networks joined (FNJ) and num-
ber of posts on a user’s Facebook wall (FW). This obser-
vation that phantom profiles form similar trust relation-
ships as genuine user profiles differentiates our problem
from the Sybil attacks [15].

On the other hand, we found that phantom user pro-
files tend to exhibit different characteristics (compared
to genuine profiles) on game-specific features of FC. For
instance, the FC point-system and rewards are centered
around winning or losing fights. Since the FC point-
system encourages competition among users, enthusias-
tic FC players tend to use phantom profiles as a tool to
follow one or multiple of the following strategies (which
help explains some of the observed deviation of phantom
user activities from the activities of genuine users).

Strategy 1: Fight weaker players to win fights and
gain higher status in FC. Genuine users focus on achiev-
ing higher rank in FC to compete with friends. Phan-
tom profiles, on the other hand, are not real entities and
hence are not focussed on achieving higher rank solely
for competition. They instead are used by genuine users
as weaker opponents that are easier to defeat, and that
do not carry any social cost as opponents. As a result,
phantom users tend to pick, as well as defend in, slightly
more fights than genuine users. This is shown in the CDF
plots in Figures 1(c) and 1(d) for instigated and defended
fights (TFP and TFD), respectively. Furthermore, phan-

tom users tend to serve multiple genuine users as weaker
opponents, and hence instigate slightly more fights in
their lifetime of activity (AFPs) than do genuine users
(see Figure 1(e)). Figure 1(f) shows they also experience
a slightly larger number of opponents on average (AOPF)
in fights.

Strategy 2: Support stronger players to accumulate
more FC rewards. Genuine users wish to support stronger
players to increase chances of victory to earn higher re-
wards. The large number of opponents (AOPF) to phan-
tom users seen in Figure 1(f) is a result of this strategy
as well. In contrast, phantom users experience smaller
number of supporting users (ASDF) in fights as com-
pared to genuine users (Figure 1(g)). This further reflects
that the purpose of phantom profiles is to serve as weaker
players in the game for the benefit of genuine players.

Strategy 3: Instigate or defend in fights of smaller du-
ration. As described previously, FC fights last from be-
tween 15 to 48 hours. The large duration gap was intro-
duced to accommodate for user response times in OSNSs.
Our analysis of the average duration of fights (AFDur)
shows that phantom users tend to opt for smaller fight
durations, as shown in Figure 1(h). Since there is a limit
to the number of active fights one user may instigate or
defend in simultaneously, phantom users choose smaller
fight durations to increase their benefit to genuine users.

Strategy 4: Participate later in fights to improve chances
of team victory. The structure of FC gameplay is geared
towards fostering higher engagement in users. One major
source of engagement is the ability to participate in fights
towards the end of fights’ durations. Specifically, the
later a user participates in a fight, the higher the chances
for their team’s victory. Since phantom users have less
incentive to win fights, phantom users tend to participate
in fights regardless of the remaining duration of the fight.
Figure 1(i) shows the resulting CDF plot for phantom and
genuine user profiles, which hints at a slightly relaxed
participation time for phantom user profiles.

To explore if any of the attributes mentioned above
can provide a basis for accurate discrimination between
phantom and genuine user profiles, we use ‘Kullback-
Leibler (K-L) Divergence’ metric. This metric measures
the difference between the conditional distributions of an
attribute associated with two classes, phantom vs. gen-
uine profiles, as denoted by P and G, respectively.

The K-L divergence of G from P is defined as:

P(i)
G (i)

Dra(PIIG) =) P(i)log (1)

Dpg, however, is asymmetric. Instead, we present
our results in terms of symmetrized divergence metric,
sDpg, which is simply defined as

sDpg = Dpg + Dap 2
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Figure 1: Empirical Distributions for Selected Attributes for Genuine vs. Phantom Profiles

Table 2 reports the sD pg for each of the 13 attributes
that we analyzed. Although a few of our attributes’ K-L
Divergence values stand out, e.g., in the case of aver-
age time to fight participation (ATFP), the apparent large
divergence in distributions is due to the large variance
(noise) and does not indicate meaningful differentiation
between phantom and genuine user profile distributions.
We also analyzed the Entropy E for the various attributes
of phantom (P) and genuine () user profiles, as well as
the standard deviation among values for the phantom and
genuine users’ data sets. Unfortunately, for attributes that
exhibit high s D pg, its entropy and variance are also very
high. Hence, no individual attribute qualifies as a distinct
metric for discrimination between phantom and genuine
user profiles.

In the next section, we explore how more elaborate
learning techniques may be applied on multiple attributes
to classify phantom profiles.

5. Classification of Phantom User Profiles

We now turn our attention to using the attributes (fea-
tures) detailed in Section 4 to distinguish between phan-
tom and genuine user profiles. We employ a supervised
learning method that generalizes information about user
profiles known to be phantom or genuine, and use it to
determine the authenticity of other profiles. We focus on
Support Vector Machines (SVMs) for this classification.

We use the following standard statistical metrics [4] to
characterize the performance of our classifier:

e Accuracy (ACC): The fraction of correctly classified
profiles.

e Positive Predictive Value (PPV): The ratio of cor-
rectly classified phantom profiles to the total number
of profiles classified as phantom.

e Negative Predictive Value (NPV): The ratio of cor-
rectly classified genuine profiles to the total number



Attribute | sDpg | E(P) E(G) | E(P+G) | Std. Dev (P) | Std. Dev (G) | Std. Dev (P + G)
1 FNJ 0.4595 | 0.0492 | 0.5009 0.3119 0.0741 0.3164 0.2329
2 FW 0.7497 | 0.4620 | 1.0462 0.8146 4.3201 7.0376 6.0537
3 FFC 8.0768 | 6.9674 | 6.6666 7.1439 260.3930 413.1073 343.4374
4 FB 10.1985 | 7.1288 | 7.5132 7.7262 334.5041 459.8524 401.4987
5 ATFP 17.9400 | 8.3813 | 8.6048 9.1234 1.58e04 2.82e04 1.96e04
6 AFPs 1.6235 | 1.2663 | 1.70667 1.5741 0.2317 0.4215 0.3485
7 AFDur 9.72 5.5135 | 4.4706 5.3616 7.8763 12.2083 10.4386
8 TFP 8.6535 | 7.1032 | 5.5456 6.7091 207.0386 222.4157 216.0614
9 ASPF 3.6993 | 1.2342 | 3.3766 2.5450 101.9091 181.5344 146.3723
10 AOPF 3.6795 | 5.0210 | 3.0993 4.4248 9.5909 9.4245 10.7106
11 TFD 9.4761 | 7.3296 | 4.8066 6.5118 732.3210 236.1243 568.8518
12 ASDF 1.3978 | 2.0042 | 2.6408 2.4079 4.5865 8.9286 7.1097
13 | AODF 1.8512 | 4.7619 | 3.8897 4.5156 8.5263 7.6326 8.7494

Table 2: KL Divergence, Entropy and Standard Deviations for our data set for FC. Note that none of the
attributes on its own stands out for accurate discrimination between phantom and genuine user profiles.

of profiles classified as genuine profiles.

o True Positive Rate (TPR): The ratio of phantom pro-
files classified as phantom to the total number of phan-
tom profiles.

e Fulse Positive Rate (FPR): The ratio of genuine pro-
files that are classified as phantom to the total number
of genuine profiles.

5.1 SVM Classifier

Support Vector Machines (SVMs) represent a general
class of supervised learning methods that have been suc-
cessfully applied in fields ranging from text recognition
to bio-informatics [2]. The general idea behind an SVM
is to project the training inputs to a high (possibly in-
finite) dimension space. The SVM can then construct
hyper-planes that divide the high dimension space into
regions that correspond to the classification categories.
Our objective is to find hyper-planes that optimally or
maximally separate phantom and genuine user profiles.

We use the Rapid Miner learning environment [9] to
conduct our SVM based classification experiment. We
use the libsvm learner [6] supported by Rapid Miner,
and employ the Radial Basis Function (RBF) as our ker-
nel function so that our classifier can create a non-linear
classification*. Furthermore, depending upon the SVM
parameter, the RBF kernel can model the linear and sig-
moid kernels [6].

Training Data for SVM Classification: Our training
data consists of input-label pairs. The label is a binary
variable indicating whether a profile is a phantom profile
or not. Our inputs are represented by a vector of real val-
ues. We use the 13-element vector of features detailed

*We expect non-linear classification methods to provide satis-
factory accuracy in discriminating between phantom and gen-
uine user profiles.

in Section 4. Our data set has 545 feature vectors for
phantom user profiles, and 520 feature vectors for gen-
uine user profiles. Each feature is distributed between
some range. Since features in greater numerical ranges
can dominate those in smaller numerical ranges [6], we
linearly scale each attribute between -1 and 1.

We define different categories of input sets, where each

category consists of a specific number of phantom and
genuine user profiles. We generate 10 input sets by ran-
domly selecting 50, 100, ... 500 phantom profiles. Each
input set also contains a fixed number (500) of genuine
user profiles. Therefore, the ratio between phantom pro-
files to genuine profiles ranges between 0.1 to 1 for our
input set categories.
Feature Selection: Some of the 13 features we use may
not contribute to a good discrimination between phan-
tom and genuine user profiles. Such features can de-
crease the accuracy of our classification, and should be
removed. We, therefore, conduct a preliminary feature-
selection step using the backward-elimination algorithm.
This algorithm starts with all 13 features and iteratively
removes the feature that results in the largest increase in
performance. It continues doing so until removing a fea-
ture does not result in any performance increase.

We measure the performance as the accuracy (ACC)
averaged over our 10 X 10 input sets using a 10-fold cross
validation for each set. Our cross-validation sets use
stratified sampling so that the ratio of phantom to gen-
uine profiles is preserved in each set. We set the SVM pa-

rameters to certain default values. The backward-elimination

heuristic eliminates three features: 1) TFP, 2) TFD, and
3) ATFP. Without these features, the average accuracy
(ACC) for our selected SVM increases from 69.43% to
81.05%. Furthermore, repeated experiments with differ-
ent SVM parameter settings also result in the elimination



of the same features. We, therefore, reduce our feature
set to exclude these features.

Parameter Optimization: Our SVM is characterized by
two parameters, the penalty parameter C' and the RBF
kernel parameter v > 0 [6]. Our default settings for the
feature selection experiment had C' = 0 and v = 1—15
(reciprocal of the size of the global feature set). This re-
sulted in an average accuracy (ACC) of 81.05%. Since
tuning the SVM parameters can potentially improve per-
formance, we use a two-phased grid search approach to
ascertain the optimal values of C and ~.

In the first phase, we select C from {275,273, ..., 215},
and ~y from {2715 2713 . 23}, Figure 2(a) shows the
accuracy (ACC) of different combinations of C' and ~
averaged over 10-fold cross validation tests for all our
input sets. The average accuracy across the points on our
search grid is 76.31%. We use this step to further narrow

down the parameter search space to the sets {0, 5, 10, ..., 50}

and {1x1076}U{2x107%,2x1075,...,2x107*} forC
and v, respectively. This improves the average accuracy
across points on our search grid to 85.321%. Figure 2(b)
shows that the accuracy does not vary much across the
points of our refined grid. Since the highest accuracy is
86.14% for C' = 150 and v = 2 x 107°, we select these
values for our SVM for all the following results.

5.2 Classification Results

We now look at the classification performance of our
learner in greater detail. In Figure 3(a), we show the ac-
curacy (ACC), positive predictive value (PPV), and the
negative predictive value (NPV) for the 10-fold cross val-
idation experiments for each category. The results are
averaged over the 10 random input sets of each category.
Figure 3(a) shows that our SVM has a high ACC for all
input categories. On the other hand, the PPV and NPV
values vary. We see that the PPV is very low when there
are only 50 phantom profiles compared to 500 genuine
profiles in the input set. Our SVM classifier, therefore,
is biased towards classifying more profiles as genuine re-
sulting in more false negatives. However, we see that the
PPV steadily improves as we increase the representation
of phantom profiles in the input set. Understandably, the
NPV decreases slightly as this representation of phantom
profiles increases.

We report similar results for a slightly different exper-
iment setting. That is, instead of looking at the cross-
validation results, we use the entire input set to train our
SVM. We then test the learned model on the remaining
labelled data that was not included in the corresponding
input set. The results are shown in Figure 3(b).

The major trend seen in Figure 3(a) is also seen in Fig-
ure 3(b), i.e., PPV monotonically increases with the ra-
tio of phantom profiles to genuine profiles in the input
set. Furthermore, we see that the PPV value for each

category is close to the corresponding PPV value for our
cross-validation experiments. However, we do not see
any clear trend for the NPV. This is because the testing
set only contains 520 — 500 = 20 genuine profiles. The
results are, therefore, not statistically significant. Since
phantom profiles dominate the test set, we see that the
overall accuracy (ACC) closely mirrors the PPV.

Figure 4(a) and Figure 4(b) plot the receiver operat-
ing characteristic (ROC) [4] for our cross-validation and
our segregated testing set experiments. We would like
the ROC to be as close to the upper-left corner i.e, false
positive rate (FPR) close to 0%, and true positive rate
(TPR) close to 100%. The ROC for the cross-validation
experiments are close to this ideal scenario for all our in-
put categories. Figure 4(a) suggests that a good tradeoff
between the FPR and TPR is when we have 250 phan-
tom profiles and 500 genuine profiles in our input set
(FPR=13.4%, TPR=86.4%). Our classification using sep-
arate testing sets show similar TPR values. However, as
indicated previously, the FPR has greater variance be-
cause of the very low number of genuine profiles.

We use SVMs trained on input sets in this category to
classify close to 30,000 unlabeled users whose activity
and information are captured in our traces. Figure 5.2
shows the percentage of these unlabeled profiles that are
classified as phantom. The SVM computes a probabil-
ity that a certain profile is phantom. By default, if this
probability is greater than 0.5, the profile is classified to
be phantom. However, we see that this default threshold
results in 33%-+ profiles being classified as phantom for
most of our learned SVM models. We suspect this corre-
sponds to a very high FPR even though in some random
samples we found the number of phantom profiles to be
close to 20%. We can set a higher confidence threshold to
lower the number of profiles classified as phantom. Fig-
ure 5.2 shows the percentage of our unlabeled profiles
that are classified as phantom for different thresholds.

6. Discussion and Conclusion

Our experience in hosting a major Facebook social
gaming application (FC) has granted us anecdotal evi-
dence of phantom users created to gain strategic gaming
advantage. The presence of such phantom users have sig-
nificant measurement, security, and trust implications.

We identified phantom and genuine profiles and sin-
gled out features representing users’ general Facebook
activities, information about their social network friends,
as well as more specific information about users’ appli-
cation usage. However, a statistical characterization of
these features does not suggest any obvious discrimi-
nants between phantom and genuine users. We, there-
fore, require more elaborate machine learning techniques
to detect phantom users.
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Figure 2: Parameter Tuning Experiment
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Figure 3: Classification Performance for different Input Categories
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Figure 5: Predicted phantom profiles

Our use of SVMs resulted in very accurate classifica-
tion for the phantom and genuine profiles we have iden-
tified. One of the major challenges in employing su-
pervised learning techniques is correctly procuring the
ground truth used to train the classifier. Our identifica-
tion of phantom and genuine users is through a tedious
manual process. A specific drawback of our method is

that we do not know the relative proportion of phan-
tom users and genuine users in the global population.
Furthermore, there is potential for our training data to
be biased if the users that are manually identifiable by
us have selective properties that are different from the
unidentifiable users. There is some evidence of such
bias in that our SVM classifier determines an unexpect-
edly high number of our unlabeled users to be phantom
(Figure 5.2). Mitigating this bias is an area of future
work. We plan to diverge from our binary classification
(i.e., into phantom or genuine users) by defining multiple
classes corresponding to our confidence levels in manual
identification of users.

We also intend to explore other supervised learning
methods for the phantom user detection problem. More-
over, we considered a restricted set of features in this
paper. Mining more detailed demographic and behavio-
rial data about users has the potential to provide signif-
icant information that can be used for classification. It
is also interesting to explore if (and how) different OSN
applications can collaborate to detect phantom profiles.
An interesting and associated problem is to identify the
genuine users who create or benefit from such phantom
users. Furthermore, an accurate detection technique for
phantom users in gaming applications may also help us
identify/explain patterns in their off-game social activi-
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Figure 4: Receiver Operating Characteristic (ROC)

Lastly, our data can help support sociological stud-

ies, e.g., understanding incentives or personal traits that
influence cheating vs. complying behaviors.
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