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Abstract

Heap-based attacks depend on a combination of mem-
ory management errors and an exploitable memory allo-
cator. Many allocators include ad hoc countermeasures
against particular exploits, but their effectiveness against
future exploits has been uncertain.

This paper presents the first formal treatment of the
impact of allocator design on security. It analyzes a
range of widely-deployed memory allocators, includ-
ing those used by Windows, Linux, FreeBSD, and
OpenBSD, and shows that they remain vulnerable to at-
tack. It then presents DieHarder, a new allocator whose
design was guided by this analysis. DieHarder provides
the highest degree of security from heap-based attacks
of any practical allocator of which we are aware, while
imposing modest performance overhead. In particular,
the Firefox web browser runs as fast with DieHarder as
with the Linux allocator.

1 Introduction
Heap-based exploits are an ongoing threat. Internet-
facing applications, such as servers and web browsers,
remain especially vulnerable to attack. Attackers have
recently developed exploits that can be triggered by
viewing apparently benign objects such as PDFs and
images. The use of memory-safe programming lan-
guages like Flash, Java, or JavaScript does not eliminate
these vulnerabilities because the language implementa-
tions themselves are typically written in C or C++.

A heap-based exploit requires both a memory man-
agement error in the targeted program and an exploitable
heap implementation. Exploitable memory management
errors include:

• Heap overflows/underflows, when heap objects
are too small to hold their input, or when an index
into the object can be hijacked to force an overflow.
• Dangling pointers, or “use-after-free” errors,

when a program prematurely frees an object that
is still in use.
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• Double free, when an object is deleted multiple
times.
• Invalid free, when a program deletes objects it

never allocated (such as the middle of an array or a
stack pointer).
• Uninitialized reads, when programs read from

newly allocated objects (which generally contain
data from previously-freed objects).

The key to a successful exploit is the interaction be-
tween the memory management error and the heap lay-
out. For example, an attacker can exploit an overflow
to overwrite data in an adjacent vulnerable object like a
function pointer. This attack requires the ability to force
the heap to place these two objects next to each other,
and to overflow into that object without detection.

Fixing a particular bug prevents exploits that depend
on it, but any latent memory errors leave programs vul-
nerable. Rather than trusting applications to be error-
free, vendors have sought to harden allocators against
attack.

Heap exploits have led to an arms race, where exploits
are followed by countermeasures, which, in turn, are fol-
lowed by new exploits that work around the countermea-
sures. For example, the Windows XP SP2 memory allo-
cator added one-byte random “cookies” to the headers
that precede every allocated object. The memory alloca-
tor checks the integrity of these cookies when an object
is freed. However, other heap metadata was not pro-
tected, so a new attack quickly followed. This sequence
of attack-countermeasure has continued (see Section 5).

These ad hoc countermeasures have failed because
it has not been possible to predict their effectiveness
against new attacks. In effect, these modifications are
often attempts to “fight the last war”, addressing only
known vulnerabilities. Their susceptibility to future at-
tacks has remained an open question.

Contributions
This paper provides an extensive analysis of the secu-
rity of existing memory allocators, including Windows,
Linux, FreeBSD, and OpenBSD. It presents the first for-
mal treatment of the impact of allocator design on se-
curity, and shows that all widely-used allocators suffer
from security vulnerabilities.



It then presents the design and analysis of a new,
security-focused allocator called DieHarder. We show
that its design—comprising a combination of the best
features of DieHard [8, 9] and OpenBSD’s new allo-
cator [22]—significantly reduces the exposure of pro-
grams to heap exploits. An empirical evaluation demon-
strates that DieHarder provides its security gains with
modest performance overhead. Across a suite of CPU-
intensive benchmarks, DieHarder imposes an average
20% performance penalty versus OpenBSD, and the
Firefox web browser’s performance with DieHarder is
effectively identical to running with the Linux allocator.

Outline
The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of memory allocator algo-
rithms and data structures, focusing on allocators in wide
use. Section 3 motivates and describes our threat model.
Section 4 describes heap-based attacks—abstractly and
concretely—that target the weaknesses of these alloca-
tors, and Section 5 discusses the countermeasures em-
ployed to address these vulnerabilities. Section 6 de-
scribes the design of DieHarder, together with a secu-
rity analysis that shows its advantages over previous
allocators, and Section 7 presents empirical results on
CPU-intensive benchmarks and the Firefox browser that
demonstrate its modest performance overhead. Section 8
discusses related work, and Section 9 concludes.

2 Overview: Memory Allocators
The functions that support memory management for C
and C++ (malloc and free, new and delete) are
implemented in the C runtime library. On different op-
erating systems and platforms, these functions are im-
plemented differently, with varying design decisions and
features. However, in nearly all cases, these allocators
were designed primarily for high speed and low mem-
ory consumption [37], with little or no focus on security.

Certain aspects of memory management APIs make it
challenging to implement allocators both efficiently and
securely. Most significantly, the standard C/C++ APIs
are asymmetric: calls to free and delete omit the
size of the object being freed. The allocator needs to
track the size of every allocated object, and must be able
to locate this size quickly to make deallocation efficient.
A common implementation strategy places this metadata
directly before the allocated object in an object header.
As we show, this placement makes such allocators inher-
ently vulnerable to attack.

In this section, we describe the allocation algorithms
used by Windows, Linux, FreeBSD, and OpenBSD, fo-
cusing on implementation details with security implica-
tions. Table 1 summarizes the security characteristics of
these allocators.

2.1 Freelist-based Allocators
The memory managers used by both Windows and
Linux are freelist-based: they manage freed space on
linked lists organized into bins corresponding to a range
of object sizes. Figure 1 illustrates objects within the
Lea allocator (DLmalloc). Version 2.7 of the Lea allo-
cator forms the basis of the GNU libc allocator [18].

Inline metadata Like most freelist-based allocators,
the Lea allocator prepends a header to each allocated
object that contains its size and the size of the previous
object. This metadata allows it to efficiently place freed
objects on the appropriate free list (since these are or-
ganized by size), and to coalesce adjacent freed objects
into a larger chunk.

In addition, freelist-based allocators typically thread
the freelist through the freed chunks in the heap (not
shown here). Freed chunks thus contain the size infor-
mation in the headers as well as pointers to the next and
previous free chunks on the appropriate freelist (inside
the freed space itself). This implementation has a signif-
icant advantage over external freelists since it requires
no additional memory to manage the linked list of free
chunks.

Unfortunately, inline metadata also provides an excel-
lent attack surface. Even small overflows from applica-
tion objects are likely to overwrite and corrupt alloca-
tor metadata. This metadata is present in all applica-
tions, allowing application-agnostic attacks. Attackers
have found numerous ways of exploiting this inherent
weakness of freelist-based allocators, including the abil-
ity to perform arbitrary code execution (see Section 4
for attacks on freelist-based allocators, and Section 5 for
countermeasures).

2.2 BiBOP-style Allocators
In contrast to Windows and Linux, FreeBSD’s PHKmal-
loc [16] and OpenBSD’s current allocator (derived from
PHKmalloc) employ a different heap organization (see
Figure 2). The allocator divides memory into contiguous
areas that are a multiple of the system page size (typi-
cally 4K). This organization into pages gives rise to the
name “Big Bag of Pages”, or “BiBOP” [15]. BiBOP
allocators were originally used to provide cheap access
to type data for high-level languages, but they are also
suitable for general-purpose allocation.

Both PHKmalloc and OpenBSD’s allocator also en-
sure that all objects in the same page have the same
size—in other words, objects of different sizes are seg-
regated from each other, making them both examples of
segregated-fits BiBOP-style allocators.

The allocator stores object size and other information
in metadata structures either placed at the start of each
page (for small size classes), or allocated from the heap



Windows DLMalloc 2.7 PHKmalloc OpenBSD DieHarder
No freelists (§ 2.1) X X X
No headers (§ 2.1) X X X
BiBOP (§ 2.2) X X X
Fully-segregated metadata (§ 2.2.1) X X
Destroy-on-free (§ 2.2.1) X? X
Sparse page layout (§ 2.2.1) X X
Placement entropy (bits) (§ 2.2.1) 0 0 0 4 O(logN) (§ 6)
Reuse entropy (bits) (§ 2.2.1) 0 0 0 5.4 O(logN) (§ 6)

Table 1: Allocator security properties (see the appropriate section for explanations). A check indicates the presence of
a security-improving feature; a question mark indicates it is optional. While both OpenBSD’s allocator and DieHarder
(§ 6) employ the full range of security features, DieHarder provides higher entropy for certain key features (where N
is the size of the heap) and is thus more secure.
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Figure 1: A fragment of a freelist-based heap, as used by Linux and Windows (§ 2.1). Object headers hold the sizes
of the current and preceding object. These chunk sizes act as relative pointers from the start of any allocated object
and make it easy to free and coalesce objects, but also allow overflows to corrupt the heap.
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Figure 2: A fragment of a segregated-fits BiBOP-style heap, as used by the BSD allocators (PHKmalloc and
OpenBSD, § 2.2). Memory is allocated from page-aligned chunks, and metadata (size, type of chunk) is maintained
in a page directory. A bitmap is used to manage small objects (¡ 2K) inside each chunk.

itself. A pointer to this structure is stored in the page
directory, one per each managed page. Each page direc-
tory entry includes the size of objects held within each
page, and indicates whether the page is a “chunk” hold-
ing small objects, or the part of a large allocated object
(the first or “following” page). The page directory lets
the allocator locate metadata for individual pages in con-
stant time by masking off the low-order bits and comput-
ing an index into the page directory.

Allocation and deallocation of large objects is handled
by removing or returning pages to an address-ordered
freelist of empty pages. When allocating small ob-
jects (¡ 2K), PHKmalloc first finds a page containing
an appropriately sized free chunk. It maintains a list
of non-full pages within each size class. These freelists
are threaded through the corresponding page metadata
structures. Upon finding a page with an empty chunk, it

scans the page’s bitmap to find the first available free
chunk, marks it as allocated, and returns its address.
PHKmalloc deallocates small objects by first locating
metadata by indexing into the page directory, and then
resetting the appropriate bit in the bitmap.

Page-resident metadata As opposed to freelist-based
heaps, BiBOP-style allocators generally have no inline
metadata: they maintain no internal state between allo-
cated objects or within freed objects. However, they of-
ten store heap metadata at the start of pages, or within
metadata structures allocated adjacent to application ob-
jects. This property can be exploited to allow arbitrary
code execution when a vulnerable application object ad-
jacent to heap metadata can be overflowed [6] (see Sec-
tion 4.1).



2.2.1 OpenBSD Allocator
OpenBSD originally used PHKmalloc, but recent ver-
sions of OpenBSD (since version 4.4, released in 2008)
incorporate a new allocator based on PHKmalloc but
heavily modified to increase security [22]. It employs
the following techniques:

• Fully-segregated metadata. OpenBSD’s alloca-
tor maintains its heap metadata in a region com-
pletely separate from the heap data itself, so over-
flows from application objects cannot corrupt heap
metadata.
• Sparse page layout. The allocator allocates ob-

jects on pages provided by a randomized mmap
which spreads pages across the address space. This
sparse page layout effectively places unmapped
“guard pages” between application data, limiting
the exploitability of overflows.
• Destroy-on-free. Optionally, OpenBSD’s allocator

can scramble the contents of freed objects to de-
crease the exploitability of dangling pointer errors.
• Randomized placement. Object placement within

a page is randomized by a limited amount: each
object is placed randomly in one of the first 16 free
chunks on the page.
• Randomized reuse. The allocator delays reuse

of freed objects using a randomly-probed delay
buffer. The buffer consists of 16 entries, and on
each free, a pointer is stored into a random index
in this buffer. Any pointer already occupying that
index is then actually freed.

Together, these modifications dramatically increase se-
curity, although the randomized placement and reuse al-
gorithms are of limited value. We discuss these limita-
tions further in Sections 4.1.3 and 4.3.1.

3 Threat Model
This section characterizes the landscape for heap-based
attacks and presents our threat model.

The power of heap attacks is affected by several fac-
tors: the presence of memory errors, the kind of appli-
cation being attacked, and whether the attacker has the
ability to launch repeated attacks.

Presence of memory errors The first and most im-
portant factor is the existence of a memory error, and the
attacker’s ability to trigger the code path leading to the
error. A program with no memory errors is not vulnera-
ble to heap-based attacks.

Application class The kind of application under attack
affects the attacker’s ability to control heap operations.
Many attacks assume an unfragmented heap, where the
effects of heap operations are predictable. For exam-
ple, when there are no holes between existing objects,

new objects will be allocated contiguously on a fresh
page. Many attack strategies assume the ability to allo-
cate enough objects to force the heap into a predictable
state before launching the actual attack.

When attacking a web browser, the attacker can run
scripts written in JavaScript or Flash. In most current
browsers, JavaScript objects are allocated in the same
heap as the internal browser data, allowing the attacker
to control the state of the application heap. Sotirov de-
scribes a sophisticated technique called Heap Feng Shui
that allows attacks on browsers running JavaScript to en-
sure predictable heap behavior [34].

Server applications are generally less cooperative.
The number and types of allocated objects can be fixed
by the application. However, an attacker may be able to
place the heap into a predictable state by issuing concur-
rent requests, forcing the application to allocate a large
number of contemporaneously live objects.

Other applications may provide attackers with no
ability to cause multiple object allocations. For ex-
ample, many local exploits target setuid root binaries
which may run for a short time and then terminate. In
many cases, the attacker is limited to controlling the
command-line arguments and the resulting heap layout.

Ability to launch repeated attacks An application’s
context defines the attacker’s ability to repeatedly launch
attacks. In a web browser, if the first attempt fails and
causes the browser to crash, the user may not attempt
to reload the page. In this case, the attack has only
one chance to succeed per target. On the other hand,
server applications generally restart after crashes to en-
sure availability, providing the attacker with more op-
portunities. If the server assumes an attack is in progress
and does not restart, then the vulnerability becomes a
denial of service.

Given enough time, an attacker with any probability
of success will eventually succeed. However, if the al-
locator can decrease this probability, the system main-
tainer may be able to analyze the attack and fix the ap-
plication error before the attacker succeeds.

Randomization techniques such as address-space lay-
out randomization (ASLR) are designed to provide such
unpredictability. For example, Shacham et al. showed
that ASLR on 32-bit systems provides 16 bits of entropy
for library address and can thus be circumvented after
about 216 seconds [32]. On 64-bit systems providing 32
bits of entropy, however, the attack would require an ex-
pected 163 days. During this time, it would be feasible
to fix the underlying error and redeploy the system.

While one can imagine a hypothetical supervisor pro-
gram that detects incoming attacks, such a system would
be hard to make practical. While it could detect a series
of crashes coming from a single source, sophisticated at-



tackers control large, distributed networks which allow
them to coordinate large numbers of attack requests from
different sources. Shacham et al. discuss the limitations
of such systems in more detail [32].

However, more sophisticated techniques can limit
the vulnerability of systems to repeated attacks. Sys-
tems such as Rx [29], Exterminator [24, 25], and
ClearView [28] can detect heap errors and adapt the ap-
plication to cope with them. For example, Exterminator
can infer the size of an overflow and pad subsequent al-
locations to ensure that an overflow of the same size does
not overwrite data.

The threat model We assume the attacker has the
power to launch repeated attacks and allocate and free
objects at will. Repeated attacks are most useful against
Internet servers, while the unlimited ability to allocate
and free objects is most useful against web browsers (es-
pecially when executing JavaScript). This model thus
assumes the worst-case for prime attack targets in the
real world.

We analyze vulnerabilities based on a single exploit
attempt. The lower the likelihood of success of a single
attack, the longer the expected time before the applica-
tion is compromised. Given enough time, the error can
be corrected manually, or a system like Exterminator can
adapt the application to correct it.

4 Attacks
We now explain in detail how heap-based exploits work,
and how these interact with the underlying heap imple-
mentations. Exploits often directly exploit heap-based
overflows or dangling pointer errors (including double
frees), but can also start with heap spraying attacks [14]
and then later exploit a vulnerability.

We abstract out each of these attacks into an attack
model. We illustrate these models with examples from
the security literature, and show how particular mem-
ory management design decisions facilitate or compli-
cate these attacks.

4.1 Heap Overflow Attacks
Perhaps the most common heap attack strategy exploits
an overflow of an object adjacent to heap metadata or
application data.

4.1.1 Overflow attack model
Abstractly, an overflow attack involves two regions of
memory, one source chunk and one or more target
chunks. Target chunks can include application data or
heap metadata, including allocator freelist pointers. The
attacker’s goal is to overwrite some part of target chunk
with attacker-controlled data.

A real attack’s success or failure depends on the appli-
cation. For example, an attack overwriting virtual func-
tion table pointers only succeeds if the application per-
forms a virtual call on a corrupted object. However, de-
tailed application behavior is beyond the scope of our
attack model, which focuses only on the interaction be-
tween the heap allocator and overflows. For purposes of
analysis, we are pessimistic from the defender’s view-
point: we assume that an attack succeeds whenever a
target chunk is overwritten.

Note that the attacker’s ability to exploit a heap over-
flow depends on the specific application error, which
may allow more or less restricted overflows. For ex-
ample, off-by-one errors caused by failure to consider
a null string termination byte allow only the overflow of
1 byte, with a specific value. In general, strcpy-based
attacks do not allow the attacker to write null bytes. On
the other hand, some errors allow overwrites of arbitrary
size and content.

4.1.2 Specific attacks
An overflow attack may target either heap metadata or
application data. In some cases, a single, specific heap
object may be the target, such as a string containing a
filename. In others, there may be many targeted chunks.
For example, a potential target for application data at-
tacks is the virtual function table pointer in the first word
of C++ objects with virtual functions. In some applica-
tions, many objects on the heap have these pointers and
thus are viable targets for attack. Other attacks target
inline heap metadata, present in the first words of every
free chunk.

Early attacks The earliest heap overflow attacks tar-
geted application data such as filename buffers and func-
tion pointers [12]. A susceptible program allocates two
objects, the source (overflowed) chunk and an object
containing a function pointer (the target chunk). A suc-
cessful attack forces the allocator to allocate the source
chunk and victim chunk contiguously. It then over-
flows the buffer, overwriting the function pointer with
an attacker-controlled address. If the chunks are not ad-
jacent, a more general attack may overwrite multiple ob-
jects in between the buffer and the vulnerable object.

Freelist metadata attacks Solar Designer first de-
scribed an attack relying on specifics of the heap im-
plementation [33]. The attack applies to any allocator
that embeds freelist pointers directly in freed chunks,
such as DLmalloc and Windows. The specific attack de-
scribed allowed a hostile web server to send a corrupt
JPEG image allowing arbitrary code execution within
the Netscape browser.

This attack overwrites words in the free chunk header,
overwriting the freelist pointers with a specific pointer



(generally to shellcode) and the address of a target loca-
tion. Candidate target locations include function point-
ers in heap metadata structures, such as free hook
in DLmalloc, which is called during each free opera-
tion. When the corrupted free chunk is reallocated, the
allocator writes the pointer to the target location.

In the worst case for this attack, every free chunk is
a target. Once a free chunk is corrupted, the attacker
can simply force allocations until the chunk is reused.
However, existing attacks in the literature target a single,
attacker-controlled free chunk.

Other metadata attacks BBP describes overflow at-
tacks targeting PHKmalloc metadata, which resides at
the beginning of some pages and is also allocated within
the heap itself [6]. In this case, the attacker does not di-
rectly control the target chunks. However, it is possible
to indirectly force the allocation of a metadata object by
allocating a page worth of objects of certain size classes.

4.1.3 Allocator Analysis
A number of allocator features have a direct impact on
their vulnerability to overflow attacks.

Inline metadata Allocators such as DLmalloc and
Windows that use inline metadata inherently provide
many target chunks. For some attacks, effectively any
chunk in the heap could be overwritten to cause a remote
exploit. For example, a patient attacker relying on freel-
ist operations (an “unlink attack”) could overwrite the
freelist pointers in an arbitrary free chunk, then simply
wait for that chunk to be reused. These allocators are
similarly vulnerable to other such attacks, such as those
targeting an object’s size field.

Page-resident metadata Allocators with no inline
metadata, such as PHKmalloc, may still have allocator
metadata adjacent to heap objects. PHKmalloc places
page info structures at the beginning of some pages
(those containing small objects), and allocates others
from the heap itself, in between application objects.
Those allocated from the heap itself are obviously vul-
nerable to overwrites, especially if the attacker can con-
trol where they are allocated due to determinism in ob-
ject placement. PHKmalloc also lacks guard pages,
meaning that the page info structures placed at the be-
ginning of pages may also be adjacent to overflowable
application chunks.

Guard pages Guard pages can protect against over-
flows in multiple ways. First, for allocators like PHK-
malloc which place metadata at the beginning of some
pages, guard pages could be used to protect that meta-
data against overflows (though they are not). Deter-
ministically placing a guard page before each page with
metadata provides protection against contiguous over-

runs (the most common case), but not against underruns
or non-contiguous overflows (such as an off-by-one on a
multidimensional array).

Second, guard pages provide gaps in memory that
cannot be spanned by contiguous overflow attacks, lim-
iting the number of heap chunks that can be overwritten
by a single attack. In this sense, guard pages protect
application data itself. However, if the allocator is suffi-
ciently deterministic, an attacker may be able to ensure
the placement of the source chunk well before any guard
page, allowing an attack to overwrite many chunks.

Canaries The use of canaries to protect heap meta-
data an application data may protect against overflows
in some cases. However, their effectiveness is limited by
how often the canaries are checked. Metadata canaries
may be checked during every heap operation and can
substantially protect metadata against overflows. How-
ever, allocators that place canaries between heap objects
must trade off runtime efficiency for protection. For ex-
ample, an overflow targeting a function pointer in appli-
cation data requires no heap operations: only the over-
write and a jump through the pointer. Since allocators
that check canaries only do so on malloc and free,
they cannot protect against all such attacks.

Randomized placement All existing allocators that
do not explicitly randomize object placement can be
forced to allocate contiguous objects, assuming enough
control of allocations and frees by the attacker. Tech-
niques like Heap Feng Shui force the allocator into a
deterministic state that enables reliable exploitation of
vulnerabilities.

The OpenBSD allocator randomizes placement of
heap objects to a limited extent. Random placement re-
duces the effectiveness of overflow exploits by random-
izing which heap chunks are overwritten by any single
overflow. It also complicates attacks that depend on con-
tiguous objects, since it is unlikely that any given objects
will be contiguous in memory.

However, overflow attacks able to span multiple heap
chunks need not rely on contiguously-allocated objects.
As long as the target object is placed after the source
object on the same page, the attacker can overwrite the
target. The extent of placement randomization thus af-
fects the probability of such an attack’s success.

OpenBSD’s limited randomization allows certain
such attacks to succeed with high probability. In an un-
fragmented heap, successive allocations of the same size
objects will be clustered on the same page, even though
their placement is randomized within that page. An at-
tacker that can control heap operations so that the source
and target are allocated on the same page has a 50%
probability of allocating the source at a lower address
than the target, enabling the attack to succeed.



For small objects, object placement is not fully ran-
domized within a page because the allocator uses only
4 bits of entropy for a single allocation. For example,
two successive allocations on a fresh page will always
lie within 16 chunks of each other. An attack can exploit
this property to increase attack reliability by limiting the
length of the overflow, reducing the risk of writing past
the end of a page and causing the application to crash.

4.2 Heap Spraying Attacks
Heap spraying attacks are used to make exploitation of
other vulnerabilities simpler. In modern systems, guess-
ing the location of heap-allocated shellcode or the ad-
dress of a specific function for a return-to-libc attack can
be difficult due to ASLR. However, on many systems,
the heap lies within a restricted address space. For ex-
ample, on 32-bit systems the heap generally lies within
the first 2 GB of virtual address space. If the attacker
allocates hundreds of megabytes of shellcode, jumping
to a random address within this 2 GB region has a high
probability of success.

4.2.1 Heap spraying attack model
To successfully exploit a heap spray, the attacker must
guess the address contained within some (large) set of
attacker-allocated objects. However, the attacker need
not guess a pointer out of thin air. The simplest at-
tack exploits an overflow to overwrite an application
pointer with the guessed value. However, if this pointer
already references the heap, overwriting only the low-
order bytes of the pointer on a little-endian machine re-
sults in a different pointer, but to an address close to the
original address. An attacker often knows the address of
a valid heap object and can use this knowledge to guess
the address of a sprayed object. This knowledge may be
acquired either implicitly due to a partial overwrite, or
explicitly based on information leakage.

To account for these effects, we consider two heap
spraying attack models. Both require the attacker to
guess the address of one of a specific set of sprayed ob-
jects, V . The models differ in the information known to
the attacker. In the first model, we assume the attacker
has no a priori knowledge of any valid heap addresses.

In the second model, we assume the attacker knows
the address of at least one valid heap object. An attacker
may be able to control when the known object is allo-
cated. For example, allocating it temporally between
two shellcode buffers makes it easy to guess a shellcode
address if the heap allocates objects contiguously. This
model is more general and significantly stronger than the
ability to partially overwrite a pointer value. In the lat-
ter case, the attacker does not know an exact address,
and can only guess addresses within 256 or 64K bytes
(when overwriting 1 or 2 bytes, respectively).

4.2.2 Allocator Analysis
We quantitatively analyze allocator design choices with
respect to heap spraying attacks under both attack mod-
els.

No a priori knowledge First, we analyze the probabil-
ity of an attacker guessing the address of one of a set V
of target objects without a priori information. V models
the set of objects sprayed into the heap. Note that un-
like the overflow case, the attacker can cause |V | to be
close to |H|, the size of the heap. Thus, the probabil-
ity of guessing the address of heap-allocated shellcode
or other target heap data is equivalent to guessing the
address of any heap object in the limit.

More formally, we consider the probability P (a ∈
V ), that is, the probability of address a pointing to a
valid heap object. Under this model, the attacker knows
only the approximate value of |H|, the amount of allo-
cated heap memory.
P (a ∈ V ) is almost entirely dependent on the target

system’s ASLR implementation. For example, on sys-
tems without ASLR, an attacker knowing the the size of
the heap can always guess a valid address. Even with
ASLR, an attacker spraying hundreds of megabytes of
data into the heap on a 32-bit system has a high proba-
bility of guessing the address of a sprayed object. Note
that P (a ∈ V ) need not be uniform with respect to a: if
the system allocates memory contiguously and |H| > 2
GB, then address a = 0x80000000 must contain valid
data. However, if the allocator allocates pages randomly
and non-contiguously, then the probability need not de-
pend on a itself.

On 64-bit systems, however, the situation is vastly im-
proved. Even on modern x86-64 systems which limit the
effective virtual address range to 48 or 52 bits, physical
memory limitations restrict the attacker’s ability to fill
a significant portion of this space. If ASLR random-
izes the addresses of the mmap region across the entire
space, the probability of guessing a valid address is low.
(See Shacham et al. [32] and Whitehouse [35] for further
evaluation of existing ASLR systems.)

Known address attacks From the allocator’s perspec-
tive, the problem of guessing the address of an object in
V given the address of a heap object o ∈ V depends
upon the correlation of valid addresses with that of o. In
most allocators, this correlation is due to contiguous ob-
ject allocation. The addresses of contiguous objects are
dependent upon each other. For example, if the entire
heap is contiguous, then the addresses of all heap objects
are mutually dependent, and thus amenable to guessing.

Quantitatively, we can evaluate the predictability of
object addresses by considering the conditional proba-
bility distribution P (a ∈ V | o ∈ H). An allocator
that minimizes this probability for all a 6= o is the least



predictable.
In a contiguous heap, the address distribution is highly

correlated. An address δ bytes after the known object o
is valid if and only if o lies within the first H − δ bytes
of the heap. In the worst case, we have no knowledge
of the position of o within the heap. The probability of
a being a valid address is thus dependent on its distance
from o. The validity of the addresses surrounding o are
highly correlated.

By contrast, consider the Archipelago allocator [19].
Archipelago allocates each object in a random position
on a separate page, compressing cold pages to limit its
consumption of physical memory. By allocating objects
randomly across a large address space, Archipelago min-
imizes correlation because all object addresses are inde-
pendent. The probability P (a ∈ V | o ∈ H) is thus
close to P (a ∈ V ).

While Archipelago works well for programs with
small heap footprints and allocation rates, it is by no
means a general purpose allocator. Practical allocators
must allocate multiple objects on the same page to al-
low the virtual memory system to exploit spatial locality.
The page granularity thus limits the entropy an allocator
can provide, and thus the protection it can supply against
heap spray attacks.

4.3 Dangling Pointer Attacks
Temporal attacks rely on an application’s use of a free
chunk of memory. If the use is a write, the error is gen-
erally called a dangling pointer error. If the subsequent
use is another free, it is called a double-free error. There
are two general attack strategies targeting these errors,
one based on reuse of the prematurely freed object, and
another based on a freelist-based allocator’s use of free
chunks to store heap metadata.

4.3.1 Reuse Vulnerabilities
The first strategy exploits the reuse of chunks still re-
ferred to by a dangled pointer. The attacker’s goal is
to change the data contained in the object so that the
later (incorrect) use of the first pointer causes an unin-
tended, malicious effect. For example, if the dangled
object contains a function pointer, and the attacker can
force the allocator to reuse the chunk for an attacker-
controlled object, he can overwrite the function pointer.
Later use of the original pointer results in a call through
the overwritten function pointer, resulting in a jump to
an attacker-controlled location. This attack strategy has
been described elsewhere [36], but we know of no spe-
cific attacks described in the literature.

This strategy exploits the predictability of object reuse
by the allocator. A reliable attack can only be created
if the attacker knows when the dangled chunk will be
recycled. We formalize this by designating the dangled

chunk as the target chunk. The attacker succeeds by
forcing the allocator to recycle the target chunk.

Unlike buffer overflows, where each attempt by the at-
tacker may cause the program to crash (e.g., by attempt-
ing to overflow into unmapped memory), repeated at-
tempts to reallocate the dangled chunk need not perform
any illegal activity. The attacker just allocates objects
and fills them with valid data. This strategy limits the
ability the runtime system to cope with such an attack,
unless it somehow prevents the original dangling pointer
error (e.g., via conservative garbage collection).

To combat reuse-based attacks, an allocator can im-
plement a variety of strategies to delay reuse. First, it
can delay reuse for as long as possible, e.g., by using
a FIFO freelist. Unfortunately, in a defragmented heap,
this policy has little effect.

The allocator could also impose a minimum thresh-
old before objects are recycled. While a fixed threshold
would be predictable and thus exploitable, randomized
reuse would generally make attacks less reliable. For
example, if an attacker has only one chance to force an
application to call the overwritten function pointer, ran-
domized object reuse reduces the probability of success.

OpenBSD implements limited reuse randomization
by storing freed pointers in a random index of a 16-
element array. The object is only actually freed when
a subsequent free maps to the same array index. Each
subsequent free is thus a Bernoulli trial with a 1/16 prob-
ability of success, making the distribution of t, the time
before the object is reused, follow a geometric distribu-
tion with approximately 5.4 bits of entropy.

4.3.2 Allocator Analysis
In this section, we analyze the effect of allocator design
on the predictability of object reuse. We evaluate each
allocator feature by analyzing the entropy of t, the ran-
dom variable representing the number of allocations be-
fore a just-freed object is recycled.

Freelists Freelist-based allocators commonly use
LIFO freelists. Independent of other allocator features
such as coalescing, such freelists always return the most-
recently allocated object, providing zero entropy and
thus perfect predictability.

BiBOP-style allocators BiBOP-style allocators may
implement different reuse policies. PHKmalloc tracks
a freelist of pages, and allocates in address-ordered first-
fit within the first page on the freelist. Thus, t depends
on the number of free chunks on a page. If the freed
object creates the only free chunk on the page, the page
was not previously on the freelist, and so the allocator
will place it at its head. The subsequent allocation will
choose this page, and return the only free chunk, which
is the just-freed chunk. An attacker can force this behav-



ior by allocating objects from the same size class as the
target in order to eliminate fragmentation before the call
to free.

Coalescing Most freelist-based allocators perform co-
alescing, the merging of adjacent free chunks. When
a free chunk is coalesced with an existing free chunk,
its size class will change, and thus be placed on an un-
predictable freelist. While coalescing is deterministic, it
relies on several aspects of the heap layout, making it
difficult to create attacks when it occurs. However, in a
defragmented heap, the probability of coalescing occur-
ring is low, making it straightforward to work around in
existing allocators.

4.3.3 Specific Attack: Inline Metadata
The second strategy relies on the behavior of the alloca-
tor itself. Freelist-based allocators write metadata into
the contents of free chunks. If a dangling pointer points
to a free chunk, then it points to overwritten, invalid data.
If the attacker can control or predict the data the allocator
writes into the freed chunk, he can maliciously corrupt
the contents of the object.

Example Afek describes an exploit that relies on the
object layout of C++ objects, combined with the freel-
ist behavior of the Windows heap [1]. On most imple-
mentations, the first word of a C++ object with virtual
functions contains the pointer to the virtual function ta-
ble. This same word is also used by freelist-based alloca-
tors to store the pointer to the next object on the freelist.
Afek’s technique allocates a fake vtable object contain-
ing pointers to shellcode, then frees the object. Then, the
dangling pointer error is triggered, placing the dangled
chunk at the head of the freelist and storing a reference
to the fake vtable in the first word. When the applica-
tion erroneously uses the dangled pointer and performs
a virtual function call, the runtime looks up the address
of the target function from the forged vtable installed by
the allocator, resulting in a jump to shellcode.

4.3.4 Allocator Analysis
This vulnerability is specific to freelist-based alloca-
tors, and does not affect allocators with no inline meta-
data. BiBOP-style allocators do not write metadata to
free chunks, so they cannot be forced to write attacker-
controlled data into dangled objects. This vulnerability
also exploits deterministic reuse order, discussed in de-
tail in Section 4.3.2.

5 Countermeasures
Allocator implementors have introduced a variety of
techniques to protect inline metadata against attacks.
The first countermeasures were freelist integrity checks,
included in modern freelist-based allocators to prevent

unlink attacks. Instead of naı̈vely trusting the free chunk
header, the allocator ensures that memory pointed to by
the heap chunk header is a valid chunk that refers back to
the supplied chunk, and thus forms a valid doubly-linked
list.

In addition to freelist integrity checks, Windows XP
SP2 added an additional countermeasure. Each object
header contains a 1-byte cookie computed from a per-
heap pseudorandom value and the chunk address. The
allocator checks the integrity of this cookie on each
free operation, (possibly) aborting the program if it
fails. An attack that contiguously overflows the previous
object must correctly forge this value in order to over-
write freelist pointers. However, some heap metadata,
notably the size field, lies before the cookie, allowing
small overwrites to modify the inline metadata without
corrupting the cookie. McDonald et al. describe a tech-
nique that can achieve a single null byte overflow, such
as a string terminator [20] (used in the “heap desynchro-
nization” attack described in that work). Furthermore,
there are only 256 possible 1-byte values, so if an attack
can repeatedly guess random cookies, it will succeed af-
ter a relatively low number of trials.

Despite the introduction of these countermeasures,
attackers have found new methods of corrupting heap
metadata to allow arbitrary code execution. McDon-
ald and Valasek present a comprehensive summary
of attacks against the Windows XP Service Pack 2/3
heap [20], and Ferguson provides an accessible overview
of techniques targeting DLmalloc [13].

While freelist integrity checks were added to the Win-
dows XP heap in service pack 2, a similar structure
called the lookaside list (LAL) was left unprotected, al-
lowing similar attacks. Similarly, the allocator did not
consistently check the header cookie (in particular, dur-
ing LAL operations), making it possible exploit certain
chunk header overwrites without guessing the correct
value [4].

More comprehensive protection for chunk headers
was added in Windows Vista. In Vista, the entire chunk
header is “encrypted” by XORing with a random 32-bit
value. All uses of header fields must be decrypted before
use, meaning that the allocator must consistently check
the header integrity in order to function correctly. In or-
der to supply a specific value to a header field, an at-
tacker must determine the 32-bit value, which is harder
to brute force than the single-byte cookie.

While header encryption has effectively eliminated
the ability of simple buffer overflows to successfully at-
tack heap metadata, the technique is just the most recent
reaction to inline metadata attacks. All of these tech-
niques simply cope with an underlying design flaw: al-
locators with no inline data are not susceptible to this
kind of attack.
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(b) DieHarder’s heap organization (§ 6.3). Among other changes, Die-
Harder extends DieHard with a level of indirection, allocating memory at
random across discontiguous pages.

Figure 3: DieHard and DieHarder heap organizations. In each diagram, the left column is an array of size classes,
each with its own inUse field (the total number of objects in use for that size class). Both allocators divide the heap
into miniheaps, each with their own local inUse fields and allocation bitmaps. The numbers inside the allocation
spaces represent the allocation sequence (e.g., “1” is the first allocation for a given size), and are shown here only for
illustration.

6 DieHarder: Design and Analysis
In this section, we present the design of DieHarder, a
memory allocator designed with security as a primary
design goal. As its name implies, DieHarder is based on
DieHard, a fully randomized heap allocator designed to
improve the resilience of programs to memory errors [8].
While DieHard was designed to increase reliability, it
does so by fully randomizing both the placement and
reuse of heap objects. This randomization makes alloca-
tor behavior highly unpredictable, a primary goal for our
secure allocator. We first describe the DieHard allocator
and analyze its strengths and weaknesses with respect to
our attack models. We then present DieHarder, our se-
cure allocator which modifies DieHard to correct those
weaknesses.

6.1 DieHard Overview
Figure 3(a) presents an overview of DieHard’s heap or-
ganization. DieHard consists of two features: a bitmap-
based, fully-randomized memory allocator and a repli-
cated execution framework; we discuss only the for-
mer [8].

The version of DieHard upon which DieHarder is
based (version 1.1) adaptively sizes its heap to be some
multiple M larger than the maximum needed by the ap-
plication (for example, M could be 2) [9]. DieHard al-
locates memory from increasingly large chunks called
miniheaps. Each miniheap contains objects of exactly
one size. DieHard allocates new miniheaps to ensure
that, for each size, the ratio of allocated objects to total
objects is never more than 1/M . Each new miniheap is
twice as large, and thus holds twice as many objects, as
the previous largest miniheap.

Allocation randomly probes a miniheap’s bitmap for
the given size class for a 0 bit, indicating a free object

available for reclamation, and sets it to 1. Freeing a
valid object resets the appropriate bit. Both malloc
and free take O(1) expected time. DieHard’s use of
randomization across an over-provisioned heap makes it
likely that buffer overflows will land on free space, and
unlikely that a recently-freed object will be reused soon.

6.2 DieHard Analysis
Like OpenBSD, DieHard randomizes the placement of
allocated objects and the length of time before freed ob-
jects are recycled. However, unlike OpenBSD’s lim-
ited randomization, DieHard randomizes placement and
reuse to the largest practical extent. We show how these
two randomization techniques greatly improve protec-
tion against attacks by decreasing predictability.

Randomized Placement When choosing where to al-
locate a new object, DieHard chooses uniformly from
every free chunk of the proper size. Furthermore,
DieHard’s overprovisioning ensures O(N) free chunks,
where N is the number of allocated objects. DieHard
thus provides O(logN) bits of entropy for the posi-
tion of allocated objects, significantly improving on
OpenBSD’s 4 bits.

This entropy decreases the probability that overflow
attacks will succeed. The probability depends upon the
limitations of the specific application error. For exam-
ple, small overflows (at most the size of a single chunk)
require that the source object be allocated contiguously
with the target chunk.

Theorem 1 The probability of a small overflow over-
writing a specific vulnerable target under DieHard is
O(1/N), where N is the number of allocated heap ob-
jects when the later of the source or target chunk was
allocated.



Due to overprovisioning (by a factor of M ) there are
at least MN free heap chunks to choose for each allo-
cation. Each of these slots is equally likely to be cho-
sen. The probability of the chunks being allocated con-
tiguously is thus at most 2/MN , assuming free chunks
on both sides of the first-allocated chunk (otherwise, the
probability is lower).

The probability of a k-chunk overflow overwriting
one of V vulnerable objects generalizes this result. To
derive the result, we consider the k object slots follow-
ing the source object. The first object in V , v0 has a
(MN − k)/MN chance of being outside these k slots,
since there are MN possible positions. Each succes-
sive vi has a (MN − k − i)/MN chance, since each
v0...vi−1 consumes one possible position. Multiplying
these probabilities gives

(MN − k)!
MN · (MN − k − |V | − 1)!

,

the probability of all vulnerable objects residing outside
the overwritten region. Thus the overwrite succeeds with
probability

1− (MN − k)!
MN · (MN − k − |V | − 1)!

.

If |V | << N , each factor is approximately (MN −
k)/MN , making the probability of a successful attack

1−
(
(MN − k)
MN

)|V |
.

Randomized Reuse DieHard chooses the location of
newly-allocated chunks randomly across all free chunks
of the proper size. Because of its overprovisioning (M -
factor), the number of free chunks is always proportional
to N , the number of allocated objects. Thus the prob-
ability of returning the most-recently-freed chunk is at
most 1/MN . This bound holds even if we continuously
allocate without freeing, since the allocator maintains its
M overprovisioning factor. In other words, the alloca-
tor is sampling with replacement. Thus, like OpenBSD,
t follows a geometric distribution with p = 1/MN .
Unlike OpenBSD, which has low fixed reuse entropy,
DieHard provides O(logN) bits, making reuse much
less predictable.

6.3 DieHarder Design and Implementa-
tion

As shown in the previous section, DieHard provides
greater security guarantees than other general-purpose
allocators. However, DieHard was designed to increase
reliability against memory errors rather than to increase
security. Several features of DieHard enable the pro-
gram to continue running after experiencing memory er-
rors, rather than thwarting potential attackers. In this

section, we describe DieHarder’s changes to the original
DieHard allocator that substantially enhance its protec-
tion against heap-based attacks.

Sparse Page Layout
DieHard’s first weakness is its use of large, contiguous
regions of memory. Allocating such regions is more effi-
cient than sparse pages, requiring fewer system calls and
smaller page tables. This heap layout results in large re-
gions without guard pages, allowing single overflows to
overwrite large numbers of heap chunks.

In contrast, OpenBSD’s allocator uses a sparse page
layout, where small objects are allocated within pages
spread sparsely across the address space. This approach
relies on OpenBSD’s ASLR to allocate randomly-placed
pages via mmap. On 64-bit systems, ASLR makes it
highly unlikely that two pages will be adjacent in mem-
ory. As a result, a single overflow cannot span a page
boundary without hitting unmapped memory and crash-
ing the program.

DieHarder extends DieHard to use sparse page allo-
cation. Figure 3(b) presents DieHarder’s architecture,
which adds an extra level of indirection to its miniheaps.
Like OpenBSD, DieHarder randomly allocates individ-
ual pages from a large section of address space. Die-
Harder treats these pages like DieHard, carving them
up into size-segregated chunks tracked by an allocation
bitmap. Object allocation uses the same algorithm as
DieHard, appropriately modified to handle sparse pages.

Object deallocation is more complex. DieHard finds
the correct metadata using a straightforward search, ex-
ploiting its heap layout to require expected constant
time. With sparse pages, however, using DieHard’s ap-
proach would require O(N) time. DieHarder instead
uses a dynamic hash table to store references to page
metadata, ensuring constant-time free operations.

Address Space Sizing
To achieve full randomization under operating systems
with limited ASLR entropy, DieHarder explicitly ran-
domizes the addresses of small object pages. It does so
by mapping a large, fixed-size region of virtual address
space and then sparsely using individual pages. This im-
plementation wastes a large amount of virtual memory
but uses physical memory efficiently, since most virtual
pages are not backed by physical page frames.

While the size of the virtual region does not affect the
amount of physical memory used by application data, it
does affect the size of the process’s page tables. The
x86-64 uses a 4-level page table. Contiguous alloca-
tions of up to 1 GB (218 pages) require only 1 or 2
entries in the top three levels of the table, consuming
approximately 512 pages or 2 MB of memory for the
page table itself. In contrast, sparsely allocating 1 GB
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Figure 4: Runtime overhead of the different allocators, normalized to their runtime using OpenBSD’s allocator.
In exchange for a substantial increase in entropy, DieHarder imposes on average a 20% performance penalty vs.
OpenBSD for CPU-intensive benchmarks, though it has no performance impact on Firefox (see § 7).

of pages within the full 48-bit address space requires
mostly-complete middle levels of the table. Each 512-
entry second-level page-middle directory (PMD) spans 1
GB, and the expected number of pages contained within
each 1 GB region is 1. The resulting page table would
thus require on the order of 2 · 218 page table entries
(PTEs) and PMDs, for a staggering 2 GB page table.

Even if physical memory is not an issue, these sparse
page tables can drastically decrease cache efficiency
when the application’s working set exceeds the TLB
reach. When each PMD and PTE is sparse, the cache
lines containing the actual entries have only 1/8 utiliza-
tion (8 of 64 bytes). Combined with needing a line for
each PMD and PTE, the effective cache footprint for
page tables grows by 16× under a sparse layout.

To combat this effect, we restrict DieHarder’s ran-
domization to a much smaller virtual address range.

Destroy-on-free

DieHarder, like many debugging allocators, adopts
OpenBSD’s policy of filling freed objects with random
data. While this policy empirically helps find memory
errors, within the context of DieHarder, it is required to
limit the effectiveness of certain attack strategies.

Unlike allocators with deterministic reuse, repeated
malloc and free operations in DieHarder return dif-
ferent chunks of memory. If freed objects were left in-
tact, even an attacker with limited control of heap op-
erations (e.g., only able to hold only one object live at
a time) could fill an arbitrary fraction of the heap with
attacker-controlled data by exploiting random place-
ment. In the same scenario, overwriting the contents of
freed objects ensures only one chunk at a time contains
attacker-controlled data.

6.3.1 DieHarder Analysis
Using a sparse page heap layout provides greater pro-
tection against heap overflow attacks and heap spraying.
Unlike DieHard, DieHarder does not allocate small ob-
jects on contiguous pages.

Overflows
The sparse layout provides two major protections
against overflow attacks. First, because pages are ran-
domly distributed across a large address space, the prob-
ability of allocating two contiguous pages is low. This
distribution has the effect of protecting each page by
guard pages on both sides, with high probability. Over-
flows past the end of a page will hit the guard page, caus-
ing the attack to fail.

The chance of hitting a guard page depends on H , the
number of allocated pages and S, the size in pages of
DieHarder’s allocated virtual address space. The chance
of having a guard page after any allocated page is (S −
H)/S. This probability increases with S; however, large
values of S can degrade performance, as discussed in
Section 6.3.

Combined with randomized object placement, the
memory immediately after every allocated object has a
significant probability of being unmapped. The worst
case for DieHarder is 16-byte objects, since there are
256 16-byte chunks per page. The probability of a 1-
byte overflow crashing immediately is at least

(S −H)

S
· 1

256
.

The first term represents the probability of the following
page being unmapped, and the second term the proba-
bility of the overflowed object residing in the last slot on
the page.



Heap Spraying
DieHarder’s sparse layout protects against heap spraying
attacks by providing more entropy in object addresses.
DieHarder’s fully-randomized allocation eliminates de-
pendence between the addresses of objects on different
pages. The number of objects that are easily guessable
given a valid object address is limited to the number
that reside on a single page, which is further reduced
by DieHarder’s overprovisioning factor (inherited from
DieHard).

7 DieHarder Evaluation
We measure the runtime overhead of DieHarder com-
pared to four existing allocators, GNU libc (based
on DLmalloc 2.7), DLmalloc 2.8.4, DieHard, and
OpenBSD. We enabled DLmalloc 2.8’s object footers
that improve its resilience against invalid frees. We use
the adaptive version of DieHard [9]. To isolate allocator
effects, we ported OpenBSD’s allocator to Linux. We
run DieHarder using a 4 GB virtual address space for
randomizing small object pages. We discuss the impact
of this design parameter in Section 6.3.

Our experimental machine is a single-socket, quad-
core Intel Xeon E5520 (Nehalem) running at 2.27GHz
with 4 GB of physical memory. We first evalu-
ate the CPU overhead of various allocators using the
SPECint2006 benchmark suite. Unlike its predecessor
(SPECint2000), this suite places more stress on the al-
locator, containing a number of benchmarks with high
allocation rates and large heap memory footprints.

Figure 4 shows the runtime of the benchmark suite
using each allocator, normalized to its runtime under
OpenBSD’s allocator. DieHarder’s overhead varies from
-7% to 117%, with a geometric mean performance im-
pact of 20%. Most benchmarks exhibit very little over-
head (less than 2%). The benchmarks that suffer the
most, perlbench, omnetpp, and xalancbmk, sig-
nificantly stress the allocator due to their unusually high
allocation rates.

Firefox In addition to the SPECint2006 suite, we eval-
uated the performance of the Firefox browser using both
DieHarder (4 GB virtual address space) and GNU libc.
In order to precisely measure Firefox’s performance, we
used the Selenium browser automation tool to automat-
ically load a sequence of 20 different web pages. We
used an offline proxy, wwwoffle, to minimize the effect
of network latency and ensure identical behavior across
all experiments. We repeated this experiment 15 times
for each allocator.

The results show no statistically significant difference
in performance between allocators at the 5% level. The
mean runtimes for GNU libc and DieHarder, respec-
tively, were 44.2 and 41.6 seconds, with standard devia-

tions of 7.13 and 6.12. This result qualitatively confirms
that DieHarder is practical for use.

8 Related Work
8.1 Memory allocator security
Most previous work to increase the security of memory
allocators has focused on securing heap metadata and
the use of randomization to increase non-determinism.

One approach is to secure the metadata via encryp-
tion: Robertson describes the use of XOR-encoded heap
metadata [31], a countermeasure that was incorporated
(in slightly modified form) by Lea into DLmalloc ver-
sion 2.8 (a later version than the basis of GNU libc’s
allocator). Younan et al. instead present a modified
version of the Lea allocator that fully segregates meta-
data, but which implements no other security enhance-
ments [38]. Kharbutli et al. describe an approach to
securing heap metadata that places it in a separate pro-
cess [17]. Isolation of heap metadata helps prevent cer-
tain attacks but, for example, does not mitigate attacks
against the heap data itself. Like DieHard, DieHarder
completely segregates heap metadata, and its random-
ized placement of heap metadata in a sparse address
space effectively protects the metadata.

Several uses of randomization have been proposed to
increase the non-determinism of object placement and
reuse, including locating the heap at a random base
address [10, 26], adding random padding to allocated
objects [11], and shuffling recently-freed objects [17].
None of these generate as much entropy as DieHarder.

8.2 Object-per-page allocators
Several memory allocators have been proposed that
use one page for each object (PageHeap [21], Electric
Fence [27], and Archipelago). The first two were de-
signed specifically for debugging and are not suitable for
deployment. Archipelago provides higher performance
and significantly reduces space overhead, but its over-
head still makes it prohibitive for use in many situations.

8.3 Other countermeasures
We briefly describe other countermeasures not men-
tioned in Section 5 that are orthogonal and complemen-
tary to DieHarder.

One noteworthy countermeasure by Ratanaworabhan
et al. called Nozzle addresses heap spraying attacks
aimed at preventing code injection attacks [30]. Noz-
zle operates by scanning the heap looking for valid x86
code sequences—a large number of such sequences in-
dicates that a spray attack is in progress, and can be used
to trigger program termination.

Libraries like LibSafe and HeapShield can pre-
vent overflows that stem from misuse of C APIs like



strcpy [5, 7]. HeapShield itself was integrated into
DieHard [9] and can be integrated into DieHarder, al-
though we do not evaluate its impact here.

Finally, compilers can prevent buffer overflows
(though not dangling pointer errors) by implementing
bounds checks [23, 3, 2]. Limitations of these tech-
niques include their restriction to C, the need to recom-
pile all code (including libraries), and in most cases,
a substantial performance penalty. WIT [2] works for
both C and C++ and protects against overwrites (but not
out-of-bound reads) with low overhead. Baggy Bounds
Checking [3] relies on the same insight exploited by
HeapShield, namely that bounds checks can be imple-
mented efficiently for BiBOP-style allocators, and thus
could easily be modified to use DieHarder as its alloca-
tion substrate.

9 Conclusion
We present an extensive analysis of the impact of mem-
ory allocator design decisions on their vulnerability to
attack. Guided by this analysis, we design a new al-
locator, DieHarder, that provides the highest level of
security from heap-based memory attacks. It reduces
the risk of heap buffer overflow attacks by fully isolat-
ing heap metadata from application data, by interspers-
ing protected guard pages throughout the heap, and by
fully randomizing object placement. It limits dangling-
pointer based exploits by destroying freed data and de-
stroys the contents of freed objects, and by fully ran-
domizing object reuse. We show analytically that, com-
pared to past allocators, DieHarder’s design decisions
greatly complicate the task of the attacker both by lim-
iting exposure to some attacks and by dramatically in-
creasing entropy over past memory allocators. Our em-
pirical evaluation shows that DieHarder imposes mod-
est runtime overhead—on average, running 20% slower
than OpenBSD across a suite of CPU-intensive bench-
marks, and performing as well as the Linux allocator on
the Firefox web browser.
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