
Recovering Windows Secrets and EFS Certificates Offline

Elie Burzstein
Stanford University

Jean Michel Picod
EADS

Abstract

In this paper we present the result of our reverse-
engineering of DPAPI, the Windows API for safe data
storage on disk. Understanding DPAPI was the major
roadblock preventing alternative systems such as Linux
from reading Windows Encrypting File System (EFS)
files. Our analysis of DPAPI reveals how an attacker
can leverage DPAPI design choices to gain a nearly silent
backdoor. We also found a way to recover all previous
passwords used by any user on a system. We implement
DPAPI data decryption and previous password extraction
in a free tool called DPAPIck. Finally, we propose a back-
wards compatible scheme that addresses the issue of pre-
vious password recovery.

1 Introduction

DPAPI (Data Protection Application Programming Inter-
face) is the cryptographic programming interface offered
by Microsoft since Windows 2000 for safe storage of
sensitive data on disk. In a nutshell, DPAPI is a crypto-
graphic scheme that provides a transparent way to encrypt
data with a key derived in a secure manner from the user
password. Many popular applications such as GTalk,
Windows Mail, Internet Explorer and system components
such as Encrypting File System (EFS) rely on DPAPI
to securely store their data on disk. Surprisingly, this
key component of Windows security has very sparse
documentation, covering only its public interface and
giving no details of its internal structure. The documen-
tation instead states that the DPAPI “blob” that holds the
encrypted data is “an opaque structure” [8]. Because of
this lack of documentation and the extreme complexity
of DPAPI’s internal structure, reverse-engineering DPAPI
and building a portable implementation has been a long
lasting challenge, on-going for almost 10 years. Many
such attempts were made by various open-source teams
hoping to provide full Windows emulation and full NTFS
support. However, no team has been able to complete
a fully working implementation. For example, in 2005,

Kees Cook from the Wine project wrote about the DPAPI
blob : “The encryption is symmetric, but the method is
unknown. However, since it is keyed to the machine and
the user, it is unlikely that the values would be portable”
in one of the Wine header files.

There are at least three main reasons why DPAPI
needs to be reverse-engineered and re-implemented:
First DPAPI is used to encrypt sensitive information.
Therefore, until DPAPI is completely understood, there is
no hope for a full implementation of the NTFS file system
because EFS private keys cannot be decrypted. Without
a re-implementation, emulators like Wine will not be
able to fully support Windows core applications such as
Internet Explorer, because they cannot access protected
data such as stored passwords. Secondly, without a
proper re-implementation, it is impossible to migrate
offline data stored under EFS from one disk to another,
since the files cannot be decrypted. Accordingly, it is im-
possible to build efficient Windows offline forensic tools
because they do not have access to EFS files and sensitive
information. Finally, DPAPI is extensively used by many
popular applications as a cryptographic blackbox for
data-protection, thus making its security a legitimate
concern. Without being fully reverse engineered, and in
the absence of source code, it is impossible to vouch for
DPAPI’s security. As this paper shows, auditing DPAPI
yields surprising results.

In this paper, we present what is to the best of our
knowledge the result of the first complete reverse engi-
neering and audit of DPAPI 1. We also provide the first
tool that is able to decrypt DPAPI secrets offline in a
generic manner [5]. Other researchers, such as Nir Sofer,
offer tools that only decrypt application specific secrets
[11]. Moreover, we confirmed during our tests that these
tools do not fully handle offline recovery because they do
not have a complete understanding of how DPAPI works.
Therefore, our results will also make these tools better.

1We did present the preliminary results of this work, without the im-
proved DPAPI scheme, at BlackHat DC 2010

1

More precisely, by reverse-engineering DPAPI, we
were able to accomplish three breakthroughs: First, we
were able to decrypt DPAPI data offline. This allows us
to create the long-awaited tool that can perform forensics
on DPAPI data and provide a way to migrate EFS en-
crypted files. This breakthrough will also positively im-
pact the open source community, as being able to decrypt
and access EFS certificates will open the door to a full
implementation of NTFS on non-Windows systems. Sec-
ond, we found a way to exploit a lack of verification in
DPAPI design that allows attackers to replace the master
key with a key of their choice and put a process in place
that prevents this key from expiring. This allows attackers
to backdoor DPAPI in an nearly silent way that guarantees
their ability to decrypt EFS files and DPAPI secrets, even
if the user changes passwords or patches the system. The
method only requires tampering with DPAPI timestamps.
Finally, we were able to exploit DPAPI design choices
to recover the hashes of all previous passwords used by
any users on the system. To demonstrate the feasibility of
our recovery method, we implemented the recovery of the
hashes in our tool, DPAPIck, and the hash cracking in our
password cracker, called Nightingale.

To address the recovery of previous user passwords
issue, we also propose a backwards compatible improved
password encryption scheme that does not rely on previ-
ous passwords.

2 Background
Microsoft has added numerous mechanisms to Windows
to protect user data over the years. Figure 1 depicts a high
level overview of the relationships between the key secu-
rity mechanisms that interact with DPAPI.

This diagram emphasizes the complex inter-relation be-
tween these mechanisms, with DPAPI playing a central
role as the API responsible for tying the encryption key to
the user password. The following three mechanisms are
linked to DPAPI:

• Crypto API: The Windows crypto API provides an im-
plementation of the main cryptographic algorithms, in-
cluding SHA1, 3DES and AES. DPAPI uses this API
as its default cryptographic provider.

• EFS:The Encrypting File System (EFS) is a “filter” that
provides filesystem-level encryption on Windows that
was introduced in version 3.0 of NTFS. It is used to
encrypt specific files, not the entire volume like Bit-
Locker (see below). The private key needed to decrypt

Application

DPAPI
cryptoAPI
crypt32.dll

Local Security
Authority
cryptoAPI
crypt32.dll

DPAPI
data blob

Master key

EFS
Encrypted file

EFS

EFS
user private

keySAM
(registery)

Kernel Land

User Land

Figure 1: Relationships between Windows security mech-
anisms

EFS files is encrypted on the disk through DPAPI. Be-
ing able to decrypt DPAPI data offline will therefore
allow alternative OSes such as Linux and also forensic
tools to read encrypted files.

• Security Accounts Manager: The Security Accounts
Manager (SAM) is the Windows password database. It
is stored as a registry file and contains LM or NTLM
hashes of user passwords.

For completeness, we also describe the two following
data security mechanisms even though they do not interact
with DPAPI, since they are also used to protect files:

• BitLocker: BitLocker Drive Encryption is a full-disk
encryption feature included in some editions of Win-
dows Vista, Windows 7, and Windows Server 2008. By
default, it uses 128-bit AES encryption in CBC mode.
It relies on a Trusted Platform Module (TPM) to store
its keys.

• CardSpace: Windows CardSpace, also known at In-
foCard, is Microsoft’s client software for the Identity
Metasystem. It aims at securely storing users’ digital
identities with a consistent UI.

3 DPAPI overview

In this section we provide an overview of how DPAPI
works. We detail the main DPAPI structures and their
uses. We also explore the relations that exist between the
three different types of keys used by DPAPI. In addition,

2

we show how to decrypt DPAPI-protected data and also
the changes to DPAPI across versions of Windows.

3.1 DPAPI functions
DPAPI exposes two main functions [8] to applica-
tions, CryptProtectData() and CryptUnprotectData().
CryptProtectData() takes the supplied data, encrypts
them and returns a DPAPI blob. Conversely, CryptUn-
protectData() decrypts a DPAPI blob and return the data
in the clear. The documentation refers to the DPAPI blob
as an “opaque protected data blob” and therefore does
not explain its structure or how the data are encrypted.
This lack of information has persisted since the release
of Windows 2000/XP and prevented the development of
offline forensic tools and the recovery of EFS encrypted
files.

To get a sense of what DPAPI does, we will examine the
parameters supplied to the functions exposed by DPAPI.
Since these two functions are very similar, we will only
discuss the parameters for CryptUnprotectData(), as it is
enough to illustrate what is supplied by the user:

BOOL WINAPI C r y p t U n p r o t e c t D a t a (
DATA BLOB ∗ pDataIn ,
LPCWSTR ∗ ppszDataDesc r ,
DATA BLOB ∗ p O p t i o n a l E n t r o p y ,
PVOID pvReserved ,
CRYPTPROTECT PROMPTSTRUCT
∗ p P r o m p t S t r u c t ,
DWORD dwFlags ,
DATA BLOB ∗pDataOut)

• pDataIn: is a pointer to a data blob that contains the
encrypted data.

• ppszDataDescr: is an optional description that will be
stored along with the encrypted data in the data blob, as
we will see below.

• pOptionalEntropy: is optional entropy provided by
the application that will be added to the key derivation
as explained in Sec 4. By default, DPAPI already uses
different entropy for each blob, so in practice adding
additional entropy does not improve encryption secu-
rity. According to the documentation, its purpose is to
allow applications relying on DPAPI to mitigate the risk
of having their secrets stolen by another application. In
our test, we found that only GTalk used the conditional
entropy, with its value is stored in a registry key and
therefore not a real hurdle for the attacker.

• pvReserved: Unused currently.

• pPromptStruct: Used to prompt a window to the user
that requests an additional password for the user. This
password will be used to derive the DPAPI blob key if
it exists. To the best of our knowledge, no application
use this feature.

• dwFlags: Various flags that provide the ability to test
the validity of the key and reset it.

• pDataOut: is a pointer to the data blob that contains
the data in the clear.

From this function call, it is very difficult to tell how
DPAPI operates, aside from the implication that DPAPI
must use the user login password to encrypt the data be-
cause DPAPI function calls do not require a key. We now
examine the complex derivation scheme that DPAPI uses
to tie the user login password to the data blob and then
take a look at DPAPI data structures and the decryption
process.

3.2 Derivation scheme
Figure 2 depicts how DPAPI uses a derivation scheme
with three types of keys to tie the user password to the
encrypted data.

Pre KeyUser
Password

Master-
key

Blob
key

Blob
key

Blob
key

Sensitive
data

Sensitive
data

Sensitive
data

Figure 2: Derivation scheme overview

As depicted in the figure 2, DPAPI uses the following
three kinds of keys to tie the user password to the user
sensitive data:

• The Pre key: This key is used to decrypt the master-
key and is derived from the user password. This level of
encryption serves two purposes: first it allows users to
change their passwords without having to change all the

3

DPAPI keys. Second, it allows Windows to renew the
master key without forcing users to change their pass-
words.

• The Master key: This is a 512-bit random key used to
derive all of the DPAPI Blob keys. This key is renewed
every three months by Windows. This renewal process
is passive and only occurs when DPAPI is called. This
passive process means that every master-key ever cre-
ated needs to be kept, because DPAPI has no way to tell
if a master-key is still used by a blob. Accordingly, all
the master keys are stored in the user keyring and a way
to select the current master key has been implemented
by Microsoft. We discuss how this master key selection
process can be exploited to backdoor DPAPI in section
5.

• The Blob key : This key is directly used to encrypt and
decrypt the data. This level of encryption exists to allow
each program to add an additional password and/or a
second salt, like Google does for GTalk. As explained
previously, this information is passed as a parameter to
DPAPI functions and therefore is not stored on disk.
Instead, it must be stored in the data blob itself.

As one may observe, the entire cryptographic scheme
depends on the Pre key, derived from the user password.
This makes it challenging to migrate user access to en-
crypted files across a password change. To address this
issue, the straightforward solution would be to re-encrypt
all the master keys with the new password. However,
Microsoft chose a different approach that consists of re-
encrypting only the last key(s). We believe that the ratio-
nale behind this decision is to ensure that users do not wait
too long after changeing their passwords, as re-encrypting
all master key may result in unacceptable wait times. Our
benchmark with DPAPIck, presented in Sec. 7, supports
this hypothesis. The decision to re-encrypt only a few
master keys requires that all previous password hashes
be stored. Otherwise, users will not be able to access
their data encrypted with a master key that was not re-
encrypted with their new password. Storing all the pre-
vious password hashes is the only option because, as ex-
plained earlier, Windows has no way to tell if a given mas-
ter key is still used by a DPAPI blob. As undesirable as
this scheme seems, we observed it in action in Windows:
all the previous password hashes are stored in a file called
CREDHIST which is located in the user key-ring direc-
tory. We discuss how we leveraged this design to recover
all of the previous password hashes belonging to a user in
section 5 and describe our implementation in section 7.

3.3 DPAPI Key structures
DPAPI uses two main data structures: the data blob and
the master key blob. In this section we take a closer look
at the key fields present in these structures. The reader
interested in a more complete description of DPAPI data-
structures and algorithms can find it in our technical report
[2].

3.3.1 The Data Blob Structure

The Data Blob is the opaque structure used by DPAPI to
store the encrypted version of sensitive user-data and the
meta-data required to decrypt them. The main elements
contained in this structure are :

s t r u c t d p a p i b l o b t {
DWORD c b P r o v i d e r s ;
GUID ∗ a r r P r o v i d e r s ;
DWORD cbKeys ;
GUID ∗ a r r K e y s ;
DWORD p p s z D a t a D e s c r S i z e ;
WCHAR ∗ ppszDa taDesc r ;
DWORD i d C i p h e r A l g o ;
DWORD idHashAlgo ;
BYTE ∗ p b S a l t ;
BYTE ∗pbEncData ;
BYTE ∗pbHMAC;
} ;

• cbProviders is the number of cryptographic providers.
During our tests, we only found blobs with a single
cryptographic provider.

• arrProviders is the array of the cryptographic
providers’ GUID. This is used to tell DPAPI which
cryptographic provider to use for the cryptographic
functions. We believe this mechanism is used to pro-
vide a way for organization to supply their own cryp-
tographic primitive and be able to use alternative ci-
phers, e.g. “Blowfish” instead of AES, to encrypt data.
It might also be useful to deal with cryptographic regu-
lation.

• arrKeys is the array of master key ID used to encrypt
the data. In theory it seems possible to have multiple
master keys that can encrypt the data. This mechanism
is likely used either for the active domain backup key
system or for the compatibility key. We were unfor-
tunately unable to test these hypotheses, because, as
explained below, we could not force the compatibility
mode.

• ppszDataDescr contains the optional description string
that can be supplied by the developer when calling

4

CryptProtectData() (Sec. 3.1). If the developer sup-
plied NULL then DPAPI stores an empty UTF-16LE
encoded string, ie. ppszDataDescr = L"" and
ppszDataDescrSize = 2.

• idCipherAlgo is the ID of the algorithm used to en-
crypt the data. The complete list of IDs is avail-
able from Microsoft MSDN here [7]. IDs starting
with 0x88 are for hash functions. For example the
ID 0x880e is used to denote the SHA512 algorithm
(CALG SHA 512). IDs starting with 0x66 are for
block ciphers. For example the ID 0x6610 is used
for AES 256bit (CALG AES 256).

• idHashAlgo is the ID of the hash algorithm used to
derive the blob key.

• pbSalt is the salt used to derive the key.

• pbEncData is the encrypted data.

• pbHMAC is the HMAC used to ensure the integrity
of the entire blob. Note that there is a second HMAC
encrypted with the key to ensure that the key was not
tampered with.

3.3.2 The Master Key Structure Blob

The Master Key Blob is the opaque structure used by
DPAPI to store the user’s long term master-key along
with the meta-data required to decrypt it. Windows
renews it every three months. We were unable to find
where this limit is stored, as explained in Sec. 5, but we
can confirm that this limit is enforced. The master key
file contains five distinct structures.

The master key structure starts with a header used to
identify the master-key. This header contains the follow-
ing two fields:

s t r u c t m a s t e r k e y f i l e h e a d e r s {
DWORD dwMagic ;
WCHAR szKeyGUID [3 6] ;

}

In our testing, we only found dwMagic DWORD con-
taining the value 2, which led us to develop two possi-
ble explanations. The first is that dwMagic is a type of
DPAPI version, with Windows XP, Vista and 7 using the
value of 2 and Windows 2000, which was the first edi-
tion of Windows implementing DPAPI, using the value 1.
Alternatively, dwMagic may be used to differentiate the
usage of particular the Master Key blobs by DPAPI ver-
sus other mechanisms, e.g. Protect Storage, which also

use the identical data-structure. Under the second hypoth-
esis, the dwMagic value of 2 denotes DPAPI usage, while
the value of 1 denotes the Protect Storage system.

szKeyGUID is a UTF-16LE string representing the
master key ID.

The Keys Info structure contains a set of four fields
that allow the file parser to determine how big subsequent
structures are.

s t r u c t m a s t e r k e y f i l e i n f o s s {
DWORD dwUnknown ;
DWORD64 cbMasterKey ;
DWORD64 cbMysteryKey ;
DWORD64 dwHMACLen ;

} ;

• dwUnknown: We currently have not determined the
purpose of this field.

• cbMasterKey: This field contains the size of the Mas-
ter key structure.

• cbMysteryKey: This field contains the size of the Mys-
tery key structure.

• dwHMACLen: This field is the HMAC length. When
the HMAC-SHA1 algorithm is used, its value is 0x014.

After these fixed length structures, there are two succes-
sive variable length structures used to store an encrypted
key along with the parameters required to decrypt it. The
first structure is used to store the master key itself, and the
second is used to store what we call the “Mystery key”.
This mystery key is the most intriguing structure that we
came across while reversing DPAPI. In regular encryp-
tion/decryption operation, this key plays no role; we did
not observe a case where it was used. A possible expla-
nation behind the existence of this key is backward com-
patibility with Windows 2000, as the key size (256 bits) is
consistent with a RC4 key size.

These two keys are stored in the following structure:

s t r u c t m a s t e r k e y b l o c k s {
DWORD dwMagic ;
BYTE p b S a l t [1 6] ;
DWORD c b I t e r a t i o n ;
DWORD idMACAlgo ;
DWORD i d C i p h e r A l g o ;
BYTE pbCipheredKey [] ;
} ;

• dwMagic: This is once again a field that contains an
apparently fixed value. Again, it may be a versioning
or usage-determination mechanism.

5

• pbSalt: This is the salt used to encrypt the key.

• cbIteration: This is the number of hash rounds needed
to derive the key. See table 1 for the value specific to
each Windows version. For the second key, the Mys-
tery key, the number of rounds is 1 on XP and Vista.

• idMACAlgo: This is the ID of the HMAC algorithm
used.

• idCipherAlgo: This is the ID of the algorithm used to
encrypt the key.

• pbCipheredKey: This is the encrypted key along with
its HMAC.

The master key file ends with the following footer
structure, used to identify the user-login password with
which the master key is encrypted:

s t r u c t m a s t e r k e y f i l e f o o t e r s {
DWORD dwMagic ;
BYTE c r e d H i s t [1 6] ;
} ;

• dwMagic: This fixed value field appears again.

• credHist: This is the GUID of the password used when
this blob was encrypted. This GUID corresponds to
the GUID found in the CREDHIST file (See section
6). When a blob is encrypted by the SYSTEM account,
the GUID value is 0x00 because the SYSTEM account
does not have a password.

3.4 Implementation By Windows Versions

At each revision of Windows, Microsoft made some sub-
stantial changes to how DPAPI works. These changes
are summarized in table 1. Windows 7 brought a lot of
changes in terms of algorithms. Moreover, according to
our tests, the number of rounds required to derive the Pre
key on Windows 7 seems to change from one computer
to another. However, this does not create a security issue,
because it is faster to brute force the user password hash
encrypted in NTLM or LANMAN than to brute force the
master key.

Windows XP and Vista use the strongest version of
3DES that requires three keys. This choice has a direct
impact on encryption/decryption performance, because it
forces Windows to execute the PBKDF2 derivation twice,
since the PBKDF2 function outputs 20 bytes of data per
call and Windows needs 32 bytes (8 bytes for each 3DES
key plus 8 bytes for the initialization vector).

4 Decrypting a DPAPI blob

Data Blob
Master key

blob Master Key GUID

PBKDF2 SHA1(user password)

User

SHA1(Previous password)

Pre key

Encrypted

Clear text

 Symmetric
cipher

decryption

Encryption Cipher + encrypted key

key

Master key

SHA-1

Salt + optional entropy

Strong password

CREDHIST

Password GUID

Salt + nb iterations

Figure 3: DPAPI blob decryption overview

Now that we have laid out how DPAPI works, we
will describe step-by-step how Windows extracts/com-
putes every piece of information that is needed to de-
crypt a DPAPI blob from the user password SHA1 and
the DPAPI blob content itself. The decryption of DPAPI
Blob content takes five steps, as shown in figure 3.

1. Extract the Master key GUID from the Data Blob
structure.

2. Use the Master key GUID to find the correct mas-
ter key file and extract the Salt and the number of
iterations used by the PBKDF2 function. If the blob
was encrypted with one of the user’s previous pass-
words, then CREDHIST needs to be decrypted and
the correct SHA1 needs to be extracted from it.

3. Use the correct SHA1 with the Salt and the number
of iterations to compute the Pre key that has been
used to encrypt the master key.

4. Use the Pre key to decrypt the Master key. The
pre-key is used as a seed for the PBKDF2 function
to compute the 40 bytes need by 3DES. To achieve
this, the PBKDF2 function is called twice.

6

XP Vista 7
PKCS#5 PBKDF2 rounds 4000 24000 V ariable
Symmetric algorithm 3DES-CBC 3DES-CBC AES256-CBC
HMAC algorithm HMAC-SHA1 HMAC-SHA1 HMAC-SHA512

Table 1: Implementation Changes in DPAPI by Windows version

5. Compute the blob-key using PBKDF2 once again.
Here, Microsoft uses a slightly modified version of
HMAC, as the conditional entropy and the optional
password are not part of the message hashed with
the inner padding. Instead, they are appended after
the inner hash when the outer hash is performed.

5 Backdooring DPAPI

Every time DPAPI encrypts data, it looks for the current
master key GUID in a file named Preferred and checks if
the key need to be renewed. If the key does not need to be
renewed, then DPAPI simply uses it. Otherwise, DPAPI
creates a new key, updates the preferred file, and uses the
newly created key. The Preferred file contains only two
fields: the GUID of the master key and a timestamp that
DPAPI uses to determine when to renew the key.

This timestamp field is not protected by any HMAC
mechanism and therefore can be changed arbitrarily. At-
tacker can leverage this lack of verification to extend the
life of a key indefinitely and therefore ensure that they
will be able to decrypt DPAPI blob indefinitely once they
decrypt the current key. While this technique does not
give the attackers more privileges than they already have,
it allows them to sustain access to the computer secret in
a stealthy way. As mentioned earlier, Windows enforces
that the maximum lifetime of a key at three months. We
were unable to determine whether this parameter is stored
somewhere or if it is a hard-coded constant. Therefore,
to extend the lifetime of the key, the attacker must peri-
odically update the timestamp. This can be achieved in
at least three ways that do not trigger anti-virus software:
the attacker can add a program that will be launched by
one of the Windows startup mechanisms, add a service, or
simply use the task scheduler.

6 Recovering Previous Passwords

As explained in Sec 3, DPAPI needs to store the hashes
of all the users previous passwords to guarantee that a
user will be able to access all the data ever encrypted with

Initial Password
structure ...

Current password (n)

Password n - 3
structure

Decrypt

Password n - 2
structure

Password n - 1
structure

Decrypt Decrypt Decrypt

CREDHIST File

Figure 4: CREDHIST file structure overview

DPAPI. These previous hashes are stored in the CRED-
HIST file. Figure 4 presents an overview of the CRED-
HIST file structure. Every time the user changes his pass-
word the previous SHA1 hash is encrypted with the new
one and added at the end of the CREDHIST file. The en-
cryption algorithm used for the CREDHIST is similar to
the one used to encrypt data blob. While the CREHIST
entry structure is very similar to the blob structure (See
Appendix A), two things are worth mentioning about this
structure. First, the user SID, computer SID and account
SID are present in the CREDHIST file because they are
required when decrypting a blob. These fields are present
to enable a global CREDHIST file on the domain con-
troller. Also, the passwordID field is present here and also
in the master key structure, which allows the master key
to be linked a given password. From an attacker’s per-
spective, it worth noting that all the users previous SHA1
hashes are available at the same time and that they are not
salted. This allows an attacker to crack them in parallel
and use rainbow tables to speed up the recovery.

7 DPAPIck
In order to validate that our theoretical understanding of
DPAPI was correct, we implemented a free off-line de-
cryption tool called DPAPIck in C++/C# that is available
for download from www.dpapick.com. DPAPIck al-
lows users to decrypt the master key and the data blob
off-line and to recover the hashes of previous passwords
from the CREDHIST files. In addition to DPAPIck, we
also implemented the cracking of the previous passwords

7

www.dpapick.com

hashes extracted from the CREDHIST in our open source
GPU based password cracker Nightingale. We needed to
provide such an implementation, as standard SHA1 crack-
ers do not work on the CREDHIST since the password
are encoded in UTF-16LE before being hashed. Cur-
rently, Nightingale is able to do about 99M computation
per Tesla 1070C GPU

8 Improving DPAPI scheme

Master key
1 ...

Current Master-key n

Master key
 n - 3

Decrypt

Master Key
 n - 2

Master-key
n - 1

Decrypt Decrypt Decrypt

MASTERHIST File

Figure 5: DPAPI improved scheme

While the CREDHIST mechanism should be elimi-
nated to stop its password leaks, we believe that the
straightforward solution of re-encrypting all master keys
at every password change is not a good option. Therefore
we developed a new scheme to accomplish this goal, with
the goal of backwards compatibility so Microsoft can de-
ploy it as a patch. We also wanted to have a re-encryption
process that requires a constant time without decreasing
DPAPI security. These requirements rule out numerous
options such as changing the key less often, keeping track
of which keys are still used, or assigning a fixed location
to store DPAPI data.

While these requirements seem very strong, we came
up the simple scheme depicted in figure 5 that provides
an interesting trade-off. The key idea behind our scheme
is that instead of using the current password hash to en-
crypt previous hashes, DPAPI should use the current key
to encrypt the previous master keys. This scheme pro-
vides a constant re-encryption time as it only requires the
re-encryption of the last key with the user password hash.
It is also backwards compatible. However, the backwards
compatibility and constant re-encryption time come with
a price: if one application wants to decrypt a blob that was
encrypted with a very old master key, the decryption pro-
cess will be very long. However, this latency can be made
to occur only once, since the blob may be re-encrypted
with the new master-key.

We believe that this tradeoff is acceptable because the
more an application is used, the more its blobs are up-
dated with a recent key. When we presented our finding

to Microsoft along with this new scheme, they told us that
it was interesting and they might consider it, subject to
other constraints they must take into account. We spec-
ulate that part of the reason why they may not adopt our
solution lies in the fact that Windows security policy con-
tains an option to prevent users from reusing a previous
password. This means, of course, that Windows must still
store previous user passwords. To deal with this issue, we
believe that Microsoft should remove the CREDHIST file
by using our scheme, modify the security policy exclude
the last n passwords, and encrypt the storage of these n
passwords in a way that make them very hard to crack,
for instance by by storing a hash that uses PBKDF2.

9 Related Work
Slowing down hash functions, like DPAPI does, is a stan-
dard defense. Many password management proposals dis-
cuss how to slow hash functions for slowing down dictio-
nary attacks [3, 4]. These methods are based on the as-
sumption that the attacker has limited computing power.
Several recent papers propose models for how humans
generate passwords [12]. These results apply their mod-
els to speeding dictionary attacks. These methods can be
used to crack user previous passwords faster. Rainbow ta-
bles [9], implemented in standard tools [10], can be also
used to improve the cracking speed. PBKDF2 (Password-
Based Key Derivation Function) is a key derivation func-
tion that is part of RSA Laboratories’ Public-Key Cryp-
tography Standards (PKCS) series, specifically PKCS #5
v2.0 [6]. Finally, others have proposed methods to mi-
grate EFS files offline [1], which we feel are tedious
and error-prone. We feel that DPAPIck is in improvement
upon previous methods in this regard.

10 Conclusion
In this paper, we have presented what is, to the best of
our knowledge, the result of the first complete reverse-
engineering and audit of DPAPI. We also presented the
first tool, DPAPIck, that is able to decrypt DPAPI secrets
offline in a generic manner. We were able to leverage our
knowledge of DPAPI design to find a way to backdoor
DPAPI and demonstrate a very significant attack: recov-
ering all previous passwords for any user.

References
[1] Recoverying efs files offlines. http:

//www.beginningtoseethelight.org/

8

http://www.beginningtoseethelight.org/efsrecovery/
http://www.beginningtoseethelight.org/efsrecovery/

efsrecovery/. 8

[2] Elie Bursztein and Jean-Michel Picod. Dpapi:
Inner working technical report http://www.
dpapick.com. Technical report, Nightingale
team, 2019. 4

[3] David Feldmeier and Philip Karn. UNIX password
security – 10 years later. In Proceedings of Crypto
1989, pages 44–63, 1989. 8

[4] J. Alex Halderman, Brent Waters, and Edward W.
Felten. A convenient method for securely managing
passwords. In WWW ’05: Proceedings of the 14th
international conference on World Wide Web, pages
471–479. ACM, 2005. 8

[5] Elie Bursztein Jean-Michel Picod. Dpapick:
Windows offline forensic tool. http://www.
dpapick.com/, 2010. 1

[6] B. Kaliski. Pkcs #5: Password-based cryptogra-
phy specification. RFC: http://tools.ietf.
org/html/rfc2898, 2000. 8

[7] Microsoft. Algorithm id table. http:
//msdn.microsoft.com/en-us/
library/aa375549%28VS.85%29.aspx. 5

[8] Microsoft. Windows data protection. MSDN
http://msdn.microsoft.com/en-us/
library/ms995355.aspx, 2001. 1, 3

[9] P. Oechslin. Making a faster cryptanalytic time-
memory trade-off. In Proceedings of CRYPTO 2003,
pages 617–630, 2003. 8

[10] Openwall Project. John the ripper password cracker,
2005. http://www.openwall.com/john. 8

[11] Nir Sofer. Nir sofer password recovery tools.
http://www.nirsoft.net/, 2010. 1

[12] Matt Weir, Sudhir Aggarwal, Bill Glodek, and Breno
de Medeiros. Password cracking using probabilistic
context-free grammars. In proceedings of IEEE Se-
curity and Privacy, 2009. 8

A CREDHIST Structure

The CREDHIST structure looks like this :

s t r u c t c r e d h i s t e n t r y s {
DWORD dwMagic1 ; / / 0 x00000001
DWORD idHashAlgo ;
DWORD dwRounds ; / / 0x00000AF0
DWORD dwCipherAlgo ; / / 0 x00006603
BYTE bSID [1 2] ;
DWORD dwComputerSID [3] ;
DWORD dwAccountID ;
BYTE bData [2 8] ;
BYTE bPasswordID [1 6]
} ;

Where

• idHashAlgo: is hash function ID.

• dwRounds: similarly to the master key structure, this
is the number of PBKDF2 rounds needed to derive the
key.

• dwCipherAlgo: is the cipher algorithm ID.

• dwDataLength: is the length of the encrypted data.

• dwMACLength: is the length of the HMAC.

• bSID: it seems to be the user SID in a strange format.

• dwComputerSID: is the computer SID.

• dwAccountID: is the account ID.

• bData: contains the encrypted password and the hmac.

• bPasswordID: is the password ID that is also founded
in the master key.

9

http://www.beginningtoseethelight.org/efsrecovery/
http://www.dpapick.com
http://www.dpapick.com
http://www.dpapick.com/
http://www.dpapick.com/
http://tools.ietf.org/html/rfc2898
http://tools.ietf.org/html/rfc2898
http://msdn.microsoft.com/en-us/library/aa375549%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa375549%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa375549%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms995355.aspx
http://msdn.microsoft.com/en-us/library/ms995355.aspx
http://www.openwall.com/john
http://www.nirsoft.net/

	1 Introduction
	2 Background
	3 DPAPI overview
	3.1 DPAPI functions
	3.2 Derivation scheme
	3.3 DPAPI Key structures
	3.3.1 The Data Blob Structure
	3.3.2 The Master Key Structure Blob

	3.4 Implementation By Windows Versions

	4 Decrypting a DPAPI blob
	5 Backdooring DPAPI
	6 Recovering Previous Passwords
	7 DPAPIck
	8 Improving DPAPI scheme
	9 Related Work
	10 Conclusion
	A CREDHIST Structure

