
Resource Provisioning of Web Applications in Heterogeneous Clouds

Jiang Dejun

VU University Amsterdam

Tsinghua University Beijing

Guillaume Pierre

VU University Amsterdam

Chi-Hung Chi

Tsinghua University Beijing

Abstract

Cloud computing platforms provide very little guar-

antees regarding the performance of seemingly iden-

tical virtual machine instances. Such instances have

been shown to exhibit significantly different performance

from each other. This heterogeneity creates two chal-

lenges when hosting multi-tier Web applications in the

Cloud. First, different machine instances have different

processing capacity so balancing equal amounts of load

to different instances leads to poor performance. Second,

when an application must be reprovisioned, depending

on the performance characteristics of the new machine

instance it may be more beneficial to add the instance to

one tier or another. This paper shows how we can effi-

ciently benchmark the individual performance profile of

each individual virtual machine instance when we obtain

it from the Cloud. These performance profiles allow us

to balance the request load more efficiently than standard

load balancers, leading to better performance at lower

costs. The performance profiles also allow us to pre-

dict the performance that the overall application would

have if the new machine instance would be added to any

of the application tiers, and therefore to decide how to

make best use of newly acquired machine instances. We

demonstrate the effectiveness of our techniques by provi-

sioning the TPC-W e-commerce benchmark in the Ama-

zon EC2 platform.

1 Introduction

Cloud computing is an attractive platform to host Web

applications. Besides the advantages of outsourcing ma-

chine ownership and system management, Clouds offer

the possibility to dynamically provision resources ac-

cording to an application’s workload — and to pay only

for the resources that are actually being used. Given a

service-level objective (SLO) which states the response

time guarantees an application provider wants to main-

tain, dynamic resource provisioning continuously adjusts

the number of computing resources used to host the ap-

plication. Additional capacity can be added dynamically

when the load of user requests increases, and later re-

leased when the extra power is no longer necessary.

Resource provisioning for Web applications in the

Cloud faces two important challenges. First, Web appli-

cations are not monolithic. At the very least a Web appli-

cation is composed of application servers and database

servers, which both can benefit from dynamic resource

provisioning. However, the effect of reprovisioning an

extra machine varies from tier to tier. When adding or

removing capacity, one needs to decide which tier must

be (de-)provisioned such that the performance remains

within the SLO at the lowest cost. Second, computing

resources in the Cloud are not homogeneous. This is

obvious when considering the many different instance

types in a platform such as Amazon’s EC2 [1]. However,

even an application which would decide to use a single

instance type would not experience homogeneous per-

formance. Figure 1(a) illustrates the performance of 30

’identical’ EC2 instances when running the same appli-

cation server or database server workloads [2]. Clearly,

some instances are more suitable than others for effi-

ciently running CPU-intensive application servers, but

are less suitable for I/O intensive workloads. Other in-

stances have faster I/O but slower CPU, and may be bet-

ter used as database servers. Finally, we have fast ma-

chines which can be used for either of both, and slow ma-

chines which should either be given a modest task such

as load balancing or de-provisioned altogether. On the

other hand, Figure 1(b) shows the response time of indi-

vidual instance running application server workload on

EC2 over a period of 24-hours, measured at a 1-minute

granularity [2]. Performance spikes occasionally occur

with an average duration of 1 to 3 minutes, but overall

the performance of individual instances is consistent over

time. The performance spikes of an individual instance

are presumably caused by the launch/shutdown opera-

tions of the other virtual instances on the same physical

machine. The same experiments run in the Rackspace

Cloud show similar behavior. Similar observations are

also reported for different application fields and perfor-

mance metrics [8].

Efficient dynamic resource provisioning in these con-

ditions is very difficult. To provision a Web application

dynamically and efficiently, we need to predict the per-

formance the application would have if it was given a

new machine, such that one can choose the minimum

number of machines required to maintain the SLO. How-

ever, because of resource heterogeneity it is impossible

to predict the performance profile of a new machine in-

stance at the time we request it from the Cloud. We there-

fore cannot accurately predict the performance the appli-

cation would have if it was using this new machine in one

of its tiers. It is therefore necessary to profile the perfor-

mance of the new machine before deciding how we can

make the best use of it.

One simple profiling method would consist of sequen-

tially adding the new machine instance to each tier of the

application and measure the performance gain it can pro-

vide on each tier. However, this approach is extremely

inefficient and time-consuming as profiling requires lots

of time. For instance, adding a machine instance to a

database tier may cost tens of minutes or more, which is

not acceptable for dynamic resource provisioning.

In this paper we show how one can efficiently pro-

file new machines using real application workloads to

achieve accurate performance prediction in the hetero-

geneous Cloud. By studying the correlation of demands

that different tiers put on the same machine, we can de-

rive the performance that a given tier would have on a

new machine instance, without needing to actually run

this tier on this machine instance. This per-tier, per-

instance performance prediction is crucial to take two

important decisions. First, it allows us to balance the

request load between multiple heterogeneous instances

running the same tier so as to use each machine instance

according to its capabilities. Second, when the applica-

tion needs to expand its capacity it allows us to correctly

select which tier of the application should be reprovi-

sioned with a newly obtained instance.

We evaluate our provisioning algorithm in the Ama-

zon EC2 platform. We first demonstrate the impor-

tance of adaptive load balancing in Cloud to achieve ho-

mogeneous performance from heterogeneous instances.

We then use our performance prediction algorithm to

drive the dynamic resource provisioning of the TPC-W

e-commerce benchmark. We show that our system effec-

tively provisions TPC-W in the heterogeneous Cloud and

achieve higher throughput compared with current provi-

sion techniques.

 0

 30

 60

 90

 120

 150

 0 200 400 600 800 1000

R
e
s
p
o
n
s
e
 t
im

e
 o

f
I/
O

−
in

te
n
s
iv

e

a
p
p
lic

a
ti
o
n
 (

m
s
)

Response time of CPU−intensive application (ms)

Slow CPU

Slow I/O

Slow CPU

Fast I/O
Fast I/O

Fast CPU

Fast CPU
Slow I/O

(a) EC2 Cloud performance heterogeneity

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Time (min)

Average response time per minute

(b) Consistent performance of individual instance over time

Figure 1: Heterogeneous Cloud performance

The rest of this paper is organized as follows: Sec-

tion 2 introduces research efforts related to our work.

Section 3 shows an example of scaling application on

EC2 to highlight the motivation of our work. Section 4

presents the design of our resource provisioning sys-

tem. Section 5 evaluates our system using both single-

tier and multi-tier Web applications. Finally, Section 6

concludes.

2 Related work

A number of research efforts address dynamic resource

provisioning of Web applications and model the inter-

actions between tiers of a multi-tier Web application

through analytical queueing models [9, 12, 13]. These

algorithms can drive the decision to reprovision one tier

rather than another for best performance. They also

incorporate the effect of provisioning techniques such

as caching and master-slave database replication into

their provisioning models. We previously extended these

works for the dynamic resource provisioning of multi-

service Web applications, where Web applications are

not only constructed as a sequence of tiers but can also

consist of multiple services interacting with each other

in a directed acyclic graph [3]. These works however as-

sume that the underlying provisioning machines are ho-

mogeneous. This is a reasonable assumption in medium-

scale environments such as cluster computers. However,

in Cloud computing platforms resources are heteroge-

neous so these systems do not apply.

A few research works address the problem of provi-

sioning Web applications in heterogeneous resource en-

vironments. Stewart et al. predict the performance of

Internet Services across various server platforms with

different hardware capacities such as processor speeds

and processor cache sizes [10]. Similarly, Marin et al.

use detailed hardware models to predict the performance

of scientific applications across heterogeneous architec-

tures [6]. These approaches rely on detailed hardware

metrics to parametrize the performance model. However,

in the Cloud such low-level metrics are hidden by the vir-

tualization layer. In addition, Cloud hardware resources

are typically shared by virtual instances, which makes

it much harder for hardware-based performance models

to capture the performance features of consolidated vir-

tual instances. These works therefore cannot be easily

extended to predict Web application performance in the

Cloud.

JustRunIt is a sandbox environment for profiling

new machines in heterogeneous environments using real

workloads and real system states [14]. When one needs

to decide on the usage of new machines, this work clones

an online system to new machines, and duplicate online

workload to them. This approach can effectively cap-

ture performance characteristics of new virtual instances

in the Cloud. However, it requires to clone online envi-

ronment to new instances at each adaptation, which can

be very time-consuming. On the other hand, our work

can predict the performance of new instances for running

Web applications without actually executing the applica-

tion on new instances.

Elnikety et al. address the problem of predicting repli-

cated database performance using standalone database

profiling [4]. This work inspired us to realize perfor-

mance prediction through online profiling techniques.

However, it addresses a different problem than ours: here

the problem is to predict the performance of different

database replication techniques rather than accounting

for the performance heterogeneity of the database servers

themselves. Our work focuses on the latter.

Finally, instead of predicting performance, Kaly-

vianaki et al. use control theory to allocate CPU re-

sources to multi-tier Web applications hosting across var-

ious virtual instances in a virtualized data center [5].

This work mainly focuses on the problem of hardware

resource assignment for composing different virtual in-

stances with different capabilities. It does not address

performance impact of resource heterogeneity caused by

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

Request rate (req/s)

SLO

Figure 2: Web application performance heterogeneity

under Auto-Scale on EC2

the virtualization. Nathuji et al. also focus on providing

Quality-of-Service guarantees to applications running in

the Cloud [7]. However, this work aims at dynamically

adapting the hardware resource allocation among con-

solidated virtual instances to mitigate performance inter-

ference of different applications, rather than making the

best possible use of heterogeneous machine instances.

3 Motivating example

The performance heterogeneity of Cloud resources de-

picted in Figure 1 has strong consequences on Web ap-

plication hosting. Figure 2 shows the response time of

a single-tier CPU-intensive Web application deployed

on four ’identical’ virtual instances in the Amazon

EC2 Cloud, using Amazon’s own Elastic Load Balancer

(which addresses equal numbers of requests to all in-

stances). As we can see, the four instances exhibit signif-

icantly different performance. The response time of the

first instance exceeds 300 ms around 17 req/s while the

fastest instances can sustain up to 28 req/s before violat-

ing the same SLO. As a result, it becomes necessary to

re-provision the application at 17 req/s, while the same

virtual instances could sustain a much higher workload

if they were load balanced according to their individual

capabilities.

As we shall see in the next sections, the problem be-

comes more difficult when considering multi-tier Web

applications. When re-provisioning a multi-tier Web ap-

plication, one must decide which tier a new virtual in-

stance should be added to, such that the overall appli-

cation performance is maximized. However, this choice

largely depends on the individual performance of the new

virtual instance: an instance with fast I/O is more likely

than another to be useful as a database replica, while an

instance with fast CPU may be better used as an extra

application server.

4 Dynamic resource provisioning

Dynamic resource provisioning for web applications in

the Cloud requires one to predict the performance that

heterogeneous machine instances would have when exe-

cuting a variety of tiers which all have different demands

for the machine instances. This performance prediction

allows us to choose which tier(s) should ideally benefit

from this instance for optimal performance gains of this

entire application.

4.1 Solution outline

We address the problem in four steps. First, when us-

ing multiple heterogeneous machines to run a single tier,

one must carefully balance the load between them to use

each machine according to its capacity such that each

provisioned instance features with equal response time.

We discuss Web application hosting techniques and load

balancing in section 4.2.

Second, we need to measure the individual perfor-

mance profile of new machine instances for running spe-

cific application tiers. Benchmarking a machine instance

for one tier does not generate a single measurement

value, but an estimation of the response time as a func-

tion of the request rate. Profiling a tier in a machine re-

quires some care when the tier is already used in pro-

duction: we need to measure the response time of the

tier under a number of specific request rates, but at the

same time we must be careful so that the instance does

not violate the application’s SLO. We discuss profiling

techniques in section 4.3.

Third, every time the application needs to provision

a new machine instance, it is very inefficient to succes-

sively profile each of the application tiers on the new in-

stance. Instead, we calibrate the respective hardware de-

mands of different tiers of the Web application using a

single ’calibration’ machine instance. We also include

two synthetic reference applications in the calibration.

After this step, each new instance is benchmarked us-

ing the reference applications only. Thanks to the initial

calibration, we can predict the performance that this par-

ticular machine instance would have if it was executing

any tier of the real Web application. We discuss perfor-

mance prediction in section 4.4.

Finally, knowing the performance that a new machine

instance would have if we added it to any tier of the ap-

plication, we can choose the tier where it would gener-

ate the greatest performance improvement for the over-

all application. We choose the targeted tier by modeling

the whole Web application as a queueing network where

each tier acts as a separate queue. We discuss the queue-

ing model for provisioning tiers in section 4.5.

������� �

���������

��

����

	�	�
	���

�����������

	�

������

�������� 	

��������������������

����������������

������

Figure 3: Web application hosting in the Cloud

4.2 Web application hosting

Figure 3 shows the typical hosting architecture of a sin-

gle tier of the Web application. The provisioned virtual

instances m1, m2 and m3 host either the replicated ap-

plication code if this is an application server tier, or a

database replica if this is a database tier. As the per-

formance of provisioned instances largely differs from

each other, it would be a bad idea to address the same

request rate to all instances. A much better option is

to carefully control the respective load of each instance

such that they all exhibit the same response time. In this

scenario, fast machine instances get to process more re-

quests than slower ones.

We control the workload by deploying a custom load

balancer in front of the provisioned instances. To guaran-

tee backend instances to serve with equal response time,

the load balancer calculates the weighted workload dis-

tribution according to their performance profiles by solv-

ing the following set of equations:

λ = λ1 + · · ·+ λn

r = perf (instance1, λ1)
. . .

r = perf (instancen, λn)

(1)

where λ is the total request rate seen by the load

balancer, λ1, . . . , λn are the request rates addressed to

each provisioned instance respectively and r is the uni-

form response time of all provisioned instances. The

perf () functions are typically defined as a set of mea-

sured points, with linear interpolation between each con-

secutive pair of points.

This set of n+1 equations can be easily solved to find

the values of r, λ1, . . . , λn. The load balancer uses these

values as weights of its weighted Round-Robin strategy.

When adding a new instance mnew into this tier, the

load balancer thus needs to know the performance profile

of this new instance such that it can balance the workload

accordingly. This is the goal of instance profiling that we

discuss in next.

4.3 Online profiling

Coming up with a machine instance’s own performance

profile when provisioning a given tier can be done in two

different ways: either we measure the actual profile using

real request traffic, or we derive the profile from other

measured profiles. This section discusses the former.

Profiling a machine instance with a given tier work-

load consists in deploying the tier service on the machine

instance, then addressing traffic with various load inten-

sities to measure the corresponding response times.

We approximate the actual profile of a new instance

by measuring performance at carefully selected work-

load intensities, and using linear interpolation between

each consecutive pair of measured points. The output of

the online profiling of a new instance is therefore a set

of n linear functions which cover consecutive workload

ranges as follows:

ri = ai × λi + bi (1 ≤ i ≤ n) (2)

where n is the total number of the consecutive work-

load ranges, and r, λ, a and b respectively represent av-

erage response time, request rate and linear parameters

within the workload range i.

Generating a performance profile for a synthetic ap-

plication is relatively easy: one only needs to deploy

the synthetic application on the tested machine, and use

a separate machine instance to generate a standardized

workload and measure the tested instance’s performance

profile.

Generating a similar performance profile for a real tier

of the Web application is harder. We want to address

traffic that is as realistic as possible to increase the ac-

curacy of the performance profile. Metrics which make

a traffic workload realistic include the respective propor-

tions of simple and complex requests, read/write ratio,

popularity distribution of different data items, and so on.

All these properties have a significant impact on perfor-

mance. Instead of trying to synthesize a realistic work-

load, we prefer to provision the new instance in the tier to

profile, and address real live traffic to it (which is realistic

by definition).

Profiling a machine instance using live traffic however

requires caution. First, we must make sure that profil-

ing this instance will not create an SLO violation for the

end users whose requests are processed by the profiled

machine instance. For instance, one could simply re-

place one of the current instances used in the tier with

the instance to profile. However, if the new instance is

slower than the previous one, the application may vio-

late its SLO. Second, we want to test specific workload

intensities regardless of the actual workload received by

the tier at the time of the profiling. Profiling a live tier

therefore requires careful load balancing where we con-

trol the request rate addressed to the profiled instance.

We first need a rough estimation of the variety of per-

formance profiles from one instance to another. Such

variety is specific to one Cloud provider, as it largely

depends on the consolidation strategies and virtualized

performance isolation that the Cloud implements. We

calculate the performance variety rate N as follows.

N =
Tmax

Tmin

(3)

where Tmax and Tmin respectively represent the

throughput of the fastest and slowest instances in the

Cloud when running a given Web application. We set

a SLO defining the maximum response time to this Web

application. We measure the throughput of this Web ap-

plication when it violates the SLO. The tested applica-

tion exhibits either CPU-intensive or I/O-intensive work-

load for estimating the CPU and IO performance variety

separately. For instance, in Amazon EC2 Cloud we ob-

served NCPU ≈ 4 for CPU-intensive tiers such as appli-

cation servers and NI/O ≈ 2 for I/O-intensive tiers such

as database servers [2]. Similarly, in Rackspace we ob-

served NCPU ≈ 1.5 and NI/O ≈ 4. In a new Cloud plat-

form, one would need to sample a sufficient number of

instances to evaluate these numbers.

Second, we carefully choose different workload in-

tensities to address to the new machine. One needs to

choose the key performance points (λ, r) that represent

significant features of the performance profile. For in-

stance, the performance profile of a new instance un-

der low workload can be approximated as a constant

value regardless of the load. We ideally want a number

of points varying from underload to overload situations,

preferably at the inflection points and close to the SLO.

The accuracy of the approximated curve increases with

the number of measured points. However, this also in-

creases the profiling time.

Figure 4 illustrates our strategy to select the request

rate for profiling the new instance. We first address the

new instance with request rate λ1 = λmax
N

, where λmax is

the current request rate of the fastest instance currently

used in this tier. Assuming our estimation of perfor-

mance variety N is correct, the profiled instance cannot

violate the SLO even if it happens to be very slow. This

gives us the first performance point (λ1, r1) as illustrated

in Figure 4(a)

Using this first measurement, we can use queueing

theory to generate a first estimate of the entire perfor-

mance profile of this instance. If we model the tier as

an M/M/n queue, then the instance’s service time can be

computed as:

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

λ1=2req/s, r1=70ms

(a) First measurement point selected such that

the instance will not violate its SLO

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

λ1=2req/s, r1=70ms

Expected performance profile

(b) First estimation of the instance’s profile

thanks to queueing theory

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

λ1=2req/s, r1=70ms

λ2=9.7req/s, r2=138ms

r2expected=160ms

Expected performance profile
SLO

0.8*SLO

(c) Selection of a second measurement point

close to the SLO

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

λ1=2req/s, r1=70ms

λ2=9.7req/s, r2=138ms

Expected performance profile
Fitted performance profile

SLO
0.8*SLO

(d) Fit performance profile of the new instance

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

λ1=2req/s, r1=70ms

λ2=9.7req/s, r2=138ms

λ3=4.3req/s, r3=78ms

Expected performance profile
Fitted performance profile

SLO
0.8*SLO

(e) Correction of the performance profile of the

new instance

Figure 4: Online profiling process

s =
r1

1 + λ1×r1
n

(4)

where n is the number of CPU cores of this machine

(as announced by the Cloud provider). The service time

is the response time of the instance under low workload

where the effects of request concurrency are negligible.

It indicates the capability of the instance to serve incom-

ing requests. We can then use this service time to derive

a first performance profile of the new instance as follows:

r(λ) =
s

1− λ×s
n

(5)

Figure 4(b) shows the first performance profile of the

new instance derived based on the calculated service

time. One should however note that this profile built out

of a single performance value is very approximate. For

a more precise profile, one needs to measure more data

points.

Using this profile, we can now calculate a second

workload intensity which should bring the instance close

to the SLO. We select an expected response time r2, then

derive the workload intensity which should produce this

response time.

r
expected
2

= 0.8× SLO (6)

λ2 =
n× (rexpected

2
− s)

r
expected
2

× s
(7)

Here we set the target response time to 80% of the

SLO to avoid violating the SLO of the profiled instance

even though the initial performance profile will feature

relatively large error margins. We can then address this

workload intensity to the new instance and measure its

real performance value (λ2, r2). As shown in Figure 4(c),

the real performance of the second point is somewhat dif-

ferent from the expected 80% of the SLO.

We apply linear regression between the two measured

points (λ1, r1), (λ2, r2) and get the fitted performance

profile of the new instance as shown in Figure 4(d). We

then let the load balancer calculate the weighted work-

load distribution between the provisioned instance and

the new one.

By addressing the weighted workload intensities to the

two instances, we can measure the real response time of

the new instance. However, as shown in Figure 4(e), the

real performance of the new instance differs slightly from

the expected one in Figure 4(d) due to the approximation

error of its initial profile. We then correct the perfor-

mance profile of the new instance by interpolating the

third performance point(λ3, r3). We show that the above

strategy is effective to profile heterogeneous virtual ma-

chines and provision single services in Section 5.

Although expressing performance profiles as a func-

tion of request rate is useful for load balancing, for per-

formance prediction we need to express performance

profiles as a function of CPU utilization (for application

server tiers) or I/O utilization (for database server tiers).

When profiling a machine instance, we also measure the

relevant metrics of resource utilization, and use the ex-

act same technique to build performance profiles that are

suitable for performance prediction.

4.4 Performance prediction

To efficiently select the tier in which a new instance will

be most valuable to the application as a whole, we first

need to know the performance profile of this instance

when running each of the application’s tiers. A naive ap-

proach would be to successively measure this profile with

each tier one by one before taking a decision. However,

this strategy would be too slow to be of any practical use.

Indeed, profiling a new machine with a real application

tier requires to first replicate the hosted service to the new

machine. For instance, when profiling a new machine

for a database tier, one needs to first replicate the entire

database to the new machine before starting the profiling

process. Replicating a medium-sized database can easily

take tens of minutes, and this duration increases linearly

with the database size. We therefore need to be able to

quickly predict the performance profiles, without need-

ing to actually replicate the database.

We found that the most characteristic feature of a vir-

tual instance to predict the performance profile of a given

tier in this instance is its resource utilization. Although

the absolute response time of two different tiers in the

same machine under the same CPU or I/O utilization are

not identical, they are highly correlated.

We illustrate this in Figure 5. Each point in this graph

represents the response times of two different applica-

tion server tiers running in the same machine instance,

and having the same CPU utilization (respectively 15%,

25%, 65% and 80%). The request rates necessary to

reach a given CPU utilization varies from one applica-

tion to the next. We however observe that the points form

an almost perfect straight line. This allows us to derive

new performance profiles from already known ones. The

same observation is also true for database server tiers,

taking the disk I/O bandwidth consumption as the re-

source utilization metric.

Given the response time and resource utilization of

one tier in a given machine instance, we can infer the

response time of the second tier in the same machine in-

stance under the same resource utilization. Figure 6 illus-

trates the input and output of this prediction: we predict

the performance of tier 1 and tier 2 on a new machine by

 40

 50

 60

 70

 80

 90

 100

 110

 110 115 120 125 130 135 140R
e
fe

re
n
c
e
 a

p
p
lic

a
ti
o
n
 r

e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

Tier service response time (ms)

CPU utilization = 15%

CPU utilization = 25%

CPU utilization = 65%

CPU utilization = 80%

Correlation of two performance profiles

Figure 5: Performance correlation between reference ap-

plication and tier service

Input:

perf (machinecalibration, appref) = f(load)

perf (machinecalibration, apptier1) = f(load)
perf (machinecalibration, apptier2) = f(load)
perf (machinenew, appref) = f(load)

Output:

perf (machinenew, apptier1) = f(load)
perf (machinenew, apptier2) = f(load)

Figure 6: Input and output of the performance profile

prediction

correlating their performance and the reference applica-

tion performance on a calibration machine.

First, we need to measure the application-specific de-

mands of each tier of the application. This has to be done

only once per application. This profiling should be done

on a single calibration machine, which can be any partic-

ular virtual instance in the Cloud. To predict the perfor-

mance of any particular tier on a new instance quickly,

we also benchmark the calibration machine using two

synthetic reference applications which respectively ex-

hibit CPU-intensive features characteristic of applica-

tion servers, and I/O-intensive features characteristic of

database servers. The Ref CPU application receives cus-

tomer names and generates detailed personal information

through CPU-intensive XML transformation. The Ref I/O

application searches for items related to a customer’s pre-

viously ordered items from a large set of items. The op-

erations of the reference applications introduce typical

CPU-intensive and disk I/O-intensive workloads. The

reference applications can be deployed very quickly on

any new machine instance, for example by including it

to the operating system image loaded by the virtual ma-

chine instances. We use Ref CPU as a reference point

to predict the performance profiles of application server

tiers, and Ref I/O as a reference point to predict the per-

formance profiles of database tiers.

Profiling the same calibration machine instance with

one of the Web application’s tiers and the corresponding

reference application allows us to learn the relationship

between the demands that these two applications put on

the hardware:

perf (apptier, utilization) = α×perf (appref , utilization)+β

The same relationship between the response times of

the two applications, captured by the values of α and

β, remains true on other machine instances. Knowing

the performance profile of the reference application on a

newly obtained virtual machine instance from the cloud,

we can thus derive the predicted performance profile of

tier1 on the new instance, even though we never even

installed this particular tier on this particular instance.

4.5 Resource provisioning

When provisioning a multi-tier Web application, upon

a violation of the service-level objective, one needs to

decide which tier to re-provision within the whole ap-

plication. Once a new instance is acquired and profiled,

one needs to perform a simple what-if analysis to predict

the performance improvement that the whole application

would observe if this instance was added in one of the

tiers. For simplicity, in this paper we apply our Cloud

instance profiling methods to simple two-tier Web ap-

plications only. Other performance models of composite

Web applications can be used to extend this work to more

complex setups [3, 13].

The response time of a two-tier Web application can

be computed as follows.

Rapp = R1 +N1,2 ×R2 (8)

where Rapp is the response time of the whole applica-

tion, R1, R2 are response time of the application server

tier and the database tier respectively, N1,2 is the request

ratio that equals to the request number seen by the sec-

ond (database) tier caused by one request from the first

(application server) tier.

Given the performance profiles of the new instance

for each of the application’s tiers, we can issue a simple

“what-if” analysis: we first use the performance profiles

to compute the new application performance if the new

instance was added to the first tier, then if it was added

to the second tier. The best usage of the new instance

is defined as the one which maximizes the application’s

performance.

5 Experimental evaluation

In this section we evaluate the effectiveness and effi-

ciency of our resource provisioning algorithm for provi-

sioning Web applications on the Amazon EC2 platform.

5.1 Experiment setup

The bulk of our system implementation lies in our cus-

tom layer-4 load balancer. In addition to distributing re-

quests to backend servers, the load balancer also profiles

new machines when we obtain them from the cloud. By

deploying the load balancer in front of the tiers of Web

applications, our system can provision Web applications

over heterogeneous instances in the Cloud.

We evaluate our resource provisioning algorithm us-

ing three Web applications. The first two are the refer-

ence applications Ref CPU and Ref I/O. The last one is the

TPC-W Web application benchmark. This benchmark

is structured as a two-tiered application which models

an online bookshop like Amazon.com [11]. We run all

our experiments in Amazon EC2 platform using small

instances.

5.2 Importance of adaptive load balancing

We first demonstrate the importance of adaptive load bal-

ancing in Cloud using Ref CPU and Ref I/O. We deploy

each application on a single machine instance, and in-

crease the workload gradually. We set the SLO of the re-

sponse time of Ref CPU and Ref I/O to 300 ms and 500 ms

respectively. We run each experiment using two differ-

ent setups. First, we use Amazon’s Elastic Load Bal-

ancer to distribute the traffic between the instances, and

Amazon’s AutoScale to provision new virtual machine

instances when the SLO is violated. Second, we run the

same experiment using the exact same instances with our

system. Both applications are single-tiered, so here we

exercise only the capability of load balancing to adapt to

heterogeneous resources.

Figure 7 shows the response time per machine instance

running the Ref CPU application. When using the Elastic

Load Balancer (ELB), at 5 req/s the system violates the

SLO and therefore provisions a new instance. By coin-

cidence, the second instance has a performance profile

very close to the first one so they exhibit extremely sim-

ilar performance. However, after the second and third

adaptation we see that different instances exhibit differ-

ent performance. On the other hand, our system balances

the workload such that all instances always exhibit the

same performance. This has important consequences in

terms of resource usage: when using ELB, the one of

the application instances violates its SLO at 20.7 req/s,

triggering a request for a fourth instance. When using

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

Request rate (req/s)

1st adaptation 2nd adaptation 3rd adaptation

workload=20.7req/s

SLO

(a) Using Amazon’s Elastic Load Balancer

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

1st adaptation 2nd adaptation 3rd adaptation

workload=22.7req/s

SLO

(b) Using our system

Figure 7: Provisioning Ref CPU under increasing work-

load

our system, the third instance (a very fast one) is given a

higher workload than the others so the system requires a

fourth instance only above 22.7 req/s.

Figure 8 shows similar results for the Ref I/O applica-

tion. Here as well, our system balances traffic between

instances such that they exhibit identical performance,

whereas ELB creates significant performance differences

between the instances. Our system can sustain up to

9 req/s when using three instances, while ELB can sus-

tain only 7 req/s.

These results show that one should employ adaptive

load balancing to correctly assign weights to forwarding

instances when distributing traffics in Cloud. By doing

so, one can achieve homogeneous performance from het-

erogeneous instances and make more efficient usage of

these instances.

5.3 Effectiveness of Performance Predic-

tion and Resource Provisioning

We now demonstrate the effectiveness of our system to

provision multi-tier Web applications. In this scenario,

in addition to using our load balancer, we also need to

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

Request rate (req/s)

1st adaptation 2nd adaptation

SLO

(a) Using Amazon’s Elastic Load Balancer

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

1st adaptation 2nd adaptation

SLO

(b) Using our system

Figure 8: Provisioning Ref I/O under increasing workload

predict the performance that each new machine would

have if it was added to the application server or database

server tiers to decide which tier a new instance should be

assigned to. The Amazon cloud does not have standard

automatic mechanisms for driving such choices so we

do not compare our approach with Amazon’s resource

provisioning service.

We use our system to provision the TPC-W e-

commerce benchmark using the “shopping mix” work-

load. This standard workload generates 80% of read-

only interactions, and 20% of read-write interactions.

We set the SLO of the response time of TPC-W to be

500 ms. We increase the workload by creating corre-

sponding numbers of Emulated Browsers (EBs). Each

EB simulates a single user who browses the application.

Whenever an EB leaves the application, a new EB is au-

tomatically create to maintain a constant load.

When the overall response time of the application vio-

lates the SLO, we request a new instance from the Cloud

and profile it using the reference application. Thanks to

the performance correlations between the tiers of TPC-

W and the reference application, we use the performance

profile of the new instance to predict the performance

of any tier of TPC-W if it was using the new instance.

Table 1: Prediction accuracy during the first experiment run
Adapt at 90 EBs Adapt at 160 EBs Adapt at 210 EBs Adapt at 270 EBs

Real Predicted Error Real Predicted Error Real Predicted Error Real Predicted Error

Provision the AS tier 554.6 ms 596.7 ms +7.6% 578.3 ms 625.1 ms +8.1% 458.3 ms 490.1 ms +6.9% 232.5 ms 248.3 ms +6.8%

Provision the DB tier 165.4 ms 188.1 ms +13.7% 189.7 ms 203.4 ms +7.2% 156.2 ms 166.4 ms +6.5% 313.4 ms 329.1 ms +5.0%

Table 2: Prediction accuracy during the second experiment run
Adapt at 60 EBs Adapt at 130 EBs Adapt at 220 EBs Adapt at 300 EBs

Real Predicted Error Real Predicted Error Real Predicted Error Real Predicted Error

Provision the AS tier 511.7 ms 567.3 ms +10.9% 427.9 ms 453.7 ms +6.0% 177.5 ms 192.3 ms +6.9% 541.9 ms 579.2 ms +6.9%

Provision the DB tier 152.4 ms 168.2 ms +10.4% 218.2 ms 230.7 ms +5.7% 281.4 ms 302.7 ms +7.6% 151.2 ms 163.2 ms +7.9%

Finally, we compare the performance gains if the new

instance was assigned to different tiers of TPC-W and

select the tier which gives most performance benefit. We

run the entire experiment twice: our provisioning system

takes different decisions depending on the characteristics

of the machine instances it gets from the Cloud.

Figures 9(a) illustrates the response time of TPC-W

in the first run of the experiment. The application vio-

lates its SLO around a workload of 90 EBs. We request a

new instance from the Cloud, profile it, and predict that

it would be most useful if it was assigned to the database

tier. When we push the workload further, it adds another

database server at 160 EBs, then yet another database

server at 210 EBs, then finally an application server at

270 EBs.

Figure 9(b) shows that, if we run the exact same ex-

periment a second time, the machine instances we ob-

tain from the Cloud have different performances. This

leads the resource provisioning to take different deci-

sions. It adds two database servers respectively at 60 and

130 EBs, then an application server at 220 EBs, then an-

other database server at 300 EBs.

We can see here that SLO violations occur at differ-

ent workloads, depending on the performance of the ma-

chine instances running the application. We also see that

our resource provisioning effectively distinguishes dif-

ferent performance profiles, and takes provisioning deci-

sions accordingly. In particular, at the third adaptation,

the first run decides to use the new machine instance as

a database server while the second run decides to use its

own new machine instance as an application server.

At each adaptation point, the resource provisioning

system issues two predictions: it predicts what the new

response time of the overall application would be if we

assigned the new machine instance to be an application

server or a database server. At each adaptation point we

also tested the accuracy of these two predictions by de-

ploying each of the two tiers in the new instances and

measuring the actual application performance. Tables 1

and 2 show the measured and predicted response times of

the whole application at each adaptation point. We can

see that all predictions remain within 14% of the mea-

sured response times. This level of accuracy is sufficient

to take correct provisioning decisions: in this set of ex-

periments, the provisioning always identifies the best use

it can make of the new machine instance it received (writ-

ten in bold text in the table).

5.4 Comparison with other provision tech-

niques

So far we showed the effectiveness of our system to pro-

visioning TPC-W on EC2 by assigning heterogeneous

instances to the tier where it gives maximum perfor-

mance gain. We now demonstrate that our system can

improve the throughput of TPC-W running on EC2 com-

pared with two other provisioning techniques: “Homo-

geneous Provisioning” and “Worst-case Provisioning”.

“Homogeneous Provisioning” provisions instances as-

suming that the performance of these instances is ho-

mogeneous. “Homogeneous Provisioning” first profiles

the performance of the first two virtual instances hosting

TPC-W. At each adaptation, “Homogeneous Provision-

ing” predicts the performance gains of new instances at

each tier using the initial performance profiles, and as-

signs a new instance to the tier which receives maxi-

mum performance gain. “Homogeneous Provisioning”

dispatches requests between instances using the round-

robin policy. “Worst-case Provisioning” employs our al-

gorithm to first figure out the tier to which a new instance

should be assigned. However, “Worst-case Provisioning”

systematically adopts the worst possible option. For in-

stance, “Worst-case Provisioning” assigns a new instance

to the application server tier if our system decides to as-

sign this instance to the database tier. “Worst-case Provi-

sioning” employs the same load balancing in our system.

For comparison, we name our system as “Adaptive Pro-

visioning”.

We first use the three techniques to provision TPC-

W on EC2 with increasing workload separately. We set

the SLO to 500 ms and measure the maximum through-

put that a system configuration can sustain before violat-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

EBs

Add a DB
 at 90EBs

Add a DB
 at 160EBs

Add a DB
 at 210EBs

Add an App
 at 270EBs

SLO

(a) First group

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

EBs

Add a DB
 at 60EBs

Add a DB
 at 130EBs

Add an App
 at 220EBs

Add a DB
 at 300EBs

SLO

(b) Second group

Figure 9: Provisioning TPC-W under increasing work-

load

ing the SLO. We also record the instance configurations

at each adaptation. Figure 10(a) shows the throughputs

achieved by each provisioning technique during a single

run of the system under increasing workload and the cor-

responding instance configurations at each adaptation.

The three provisioning systems use the exact same in-

stances in the same order so their respective performance

can be compared.

“Worst-case Provisioning” decides to provision the ap-

plication server tier at each adaptation and finally sup-

ports around 150 EBs with 5 instances. “Homogeneous

Provisioning” and “Adaptive Provisioning” both decide

to provision new instances to the database server tier at

the first and second adaptation. However, they achieve

different throughput at the first two adaptations. The

throughput difference is caused by the different load bal-

ancing capability of adapting to heterogeneous instances

used in each provision technique. At the third adaptation,

“Adaptive Provisioning” decides to assign the new in-

stance to the application server tier while “Homogeneous

Provisioning” decides to assign the same new instance

to the database server tier. After the third adaptation,

“Adaptive Provisioning” supports around 420 EBs while

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

T
h
ro

u
g
h
p
u
t

(n
u
m

b
e
r

o
f

E
B

s
)

Number of instances

1AS+1DB 2AS+1DB

1AS+2DB

1AS+2DB

3AS+1DB

1AS+3DB

1AS+3DB

2AS+3DB

1AS+4DB

4AS+1DB

20% throughput gain

Adaptive Provisioning
Homogeneous Provisioning

Worst-case Provisioning

(a) Throughput comparison of single round

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6

T
h
ro

u
g
h
p
u
t
(n

u
m

b
e
r

o
f

E
B

s
)

Number of instances

Adaptive Provisioning
Homogeneous Provisioning

Worst-case Provisioning

(b) Statistical comparison of throughput over multiple rounds

Figure 10: Throughput comparison of three provisioning

techniques

“Homogeneous Provisioning” supports around 350 EBs.

This represents a 20% gain in throughput.

We then run the same experiment 5 rounds, each with

a different set of EC2 small instances. Within each

round, we measure the throughput achieved by each pro-

visioning technique using a certain number of instances.

The throughputs achieved in different rounds are differ-

ent due to the performance heterogeneity of small in-

stances. Figure 10(b) shows the average and standard

deviation of the throughput achieved by each provision-

ing technique across multiple rounds. As previously,

the “Worst-case Provisioning” behaves as the statistical

lower bound of the achievable throughput of TPC-W on

EC2. When taking the first adaptation, “Adaptive Provi-

sioning” and “Homogeneous Provisioning” behave simi-

lar in terms of achieved throughput. However, when tak-

ing more adaptations, “Adaptive Provisioning” supports

17% higher throughput than “Homogeneous Provision-

ing”. This demonstrates that our system makes more

efficient use of heterogeneous instances in Cloud and

achieves higher throughput using the same resources.

6 Conclusion

Cloud computing provides Web application providers

with an attracting paradigm to dynamically vary the

number of resources used by their application accord-

ing to the current workload. However, Cloud computing

platforms also have important limitations. In particular,

dynamic resource provisioning is made difficult by the

fact that each virtual instance has its own individual per-

formance characteristics. Standard resource provision-

ing techniques provided by Cloud platforms do not take

this performance heterogeneity into account, and there-

fore end up wasting resources.

We demonstrated in this paper that taking performance

heterogeneity into account in a resource provisioning

system can be practical and bring significant resource

savings. One must first capture the performance relation-

ships between different tiers of an application. When the

application’s workload makes it necessary to provision

a new instance, we can efficiently capture its own per-

formance profile, and use this information to drive the

resource provisioning decisions: first, it allows us to de-

cide to which tier this new machine instance should be

assigned. Second, it allows us to adjust load balancing

to make better use of the processing resources of each

machine instance.

We hope that these results will allow the creation

of new Cloud products such as automated performance

monitoring and prediction as a service, and performance-

aware load balancers. Providing Cloud users with such

tools would allow them to make more efficient use of

Cloud resources, and would thereby further increase the

attractiveness of Cloud technologies for Web application

providers.

7 Acknowledgments

Chi-Hung Chi is supported by the National Natural Sci-

ence Foundation of China, Project Number 61033006.

References

[1] Amazon EC2: Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2/.

[2] DEJUN, J., PIERRE, G., AND CHI-HUNG, C. EC2 performance

analysis for resource provisioning of service-oriented applica-

tions. In Proceedings of the 3rd Workshop on Non-Functional

Properties and SLA Management in Service-Oriented Computing

(Nov. 2009). LNCS 6275.

[3] DEJUN, J., PIERRE, G., AND CHI-HUNG, C. Autonomous re-

source provisioning for multi-service web applications. In Pro-

ceedings of the 19th Intl. World Wide Web Conference (Apr.

2010).

[4] ELNIKETY, S., DROPSHO, S., CECCHET, E., AND

ZWAENEPOEL, W. Predicting replicated database scalabil-

ity from standalone database profiling. In Proceedings of the 4th

EuroSys Conference (Apr. 2009).

[5] KALYVIANAKI, E., CHARALAMBOUS, T., AND HAND, S. Self-

adaptive and self-configured cpu resource provisioning for virtu-

alized servers using Kalman filters. In Proceedings of the ICAC

Conference (June 2009).

[6] MARIN, G., AND MELLOR-CRUMMEY, J. Cross-architecture

performance predictions for scientific applications using parame-

terized models. In Proceedings of the SIGMETRICS Conference

(June 2004).

[7] NATHUJI, R., KANSAL, A., AND GHAFFARKHAH, A. Q-

Clouds: Managing performance interference effects for QoS-

aware clouds. In Proceedings of the 5th EuroSys conference (Apr.

2010).

[8] OSTERMANN, S., IOSUP, A., YIGITBASI, N., PRODAN, R.,

FAHRINGER, T., AND EPEMA, D. A performance analysis of

EC2 cloud computing services for scientific computing. In Pro-

ceedings of the CloudComp conference (Oct. 2010).

[9] SIVASUBRAMANIAN, S. Scalable hosting of web applications.

PhD thesis, Vrije Universiteit Amsterdam, the Netherlands, Apr.

2007.

[10] STEWART, C., KELLY, T., ZHANG, A., AND SHEN, K. A dol-

lar from 15 cents: Cross-platform management for internet ser-

vices. In Proceedings of the USENIX Annual Technical Confer-

ence (June 2008).

[11] TPC-W: A transactional web e-commerce benchmark.

http://www.tpc.org/tpcw.

[12] URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M.,

AND TANTAWI, A. An analytical model for multi-tier internet

services and its applications. In Proceedings of the SIGMETRICS

Conference (June 2005).

[13] URGAONKAR, B., PRASHANT, S., ABHISHEK, C., PAWAN, G.,

AND TIMOTHY, W. Agile dynamic provisioning of multi-tier

internet applications. ACM Transaction on Autonomous Adaptive

System (Mar. 2008).

[14] ZHENG, W., BIANCHINI, R., JANAKIRAMAN, G. J., SANTOS,

J. R., AND TURNER, Y. JustRunIt: Experiment-based manage-

ment of virtualized data centers. In Proceedings of the USENIX

Annual Technical Conference (June 2009).

