
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6–11, 1999

The Vinum Volume Manager

Greg Lehey
Nan Yang Computer Services Ltd.

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

The Vinum Volume Manager

Greg Lehey
Nan Yang Computer Services Ltd.

grog@lemis.com

ABSTRACT

The Vinum Volume Manager is a block device driver which implements virtual disk drives. It isolates
disk hardware from the block device interface and maps data in ways which result in an increase in flex-
ibility, performance and reliability compared to the traditional slice view of disk storage. Vinum imple-
ments the RAID-0, RAID-1 and RAID-5 models, both individually and in combination.

Introduction

Disk hardware is evolving rapidly, and the current UNIX
disk abstraction is inadequate for a number of modern
applications. In particular, file systems must be stored
on a single disk partition, and there is no kernel support
for redundant data storage. In addition, the direct rela-
tionship between disk volumes and their location on disk
make it generally impossible to enlarge a disk volume
once it has been created. Performance can often be lim-
ited by the maximum data rate which can be achieved
with the disk hardware.

The largest modern disks store only about 50 GB, but
large installations, in particular web sites, routinely have
more than a terabyte of disk storage, and it is not uncom-
mon to see disk storage of several hundred gigabytes
ev en on PCs. Storage-intensive applications such as In-
ternet World-Wide Web and FTP servers have accelerat-
ed the demand for high-volume, reliable storage systems
which deliver high performance in a heavily concurrent
environment.

The problems

Various solutions to these problems have been proposed
and implemented:

Disks are too small

The ufs file system can theoretically span more than a
petabyte (250 or 1015 bytes) of storage, but no current
disk drive comes close to this size. Although the size
problem is not as acute as it was ten years ago, there is a

simple solution: the disk driver can create an abstract de-
vice which stores its data on a number of disks. A
number of such implementations exist, though none ap-
pear to have become mainstream.

Access bottlenecks

Modern systems frequently need to access data in a
highly concurrent manner. For example, the FTP server
wcarchive.cdrom.com maintains up to 3,600 concurrent
FTP sessions and has a 100 Mbit/s connection to the
outside world, corresponding to about 12 MB/s.

Current disk drives can transfer data sequentially at up
to 30 MB/s, but this value is of little importance in an
environment where many independent processes access
a drive, where they may achieve only a fraction of these
values. In such cases it’s more interesting to view the
problem from the viewpoint of the disk subsystem: the
important parameter is the load that a transfer places on
the subsystem, in other words the time for which a
transfer occupies the drives inv olved in the transfer.

In any disk transfer, the drive must first position the
heads, wait for the first sector to pass under the read
head, and then perform the transfer. These actions can
be considered to be atomic: it doesn’t make any sense
to interrupt them.

Consider a typical transfer of about 10 kB: the current
generation of high-performance disks can position the
heads in an average of 6 ms. The fastest drives spin at
10,000 rpm, so the average rotational latency (half a
revolution) is 3 ms. At 30 MB/s, the transfer itself
takes about 350 µs, almost nothing compared to the po-
sitioning time. In such a case, the effective transfer rate
drops to a little over 1 MB/s and is clearly highly de-
pendent on the transfer size.

The traditional and obvious solution to this bottleneck
is ‘‘more spindles’’: rather than using one large disk, it
uses several smaller disks with the same aggregate stor-
age space. Each disk is capable of positioning and
transferring independently, so the effective throughput
increases by a factor close to the number of disks used.

The exact throughput improvement is, of course, small-
er than the number of disks involved: although each
drive is capable of transferring in parallel, there is no
way to ensure that the requests are evenly distributed
across the drives. Inevitably the load on one drive will
be higher than on another.

The evenness of the load on the disks is strongly depen-
dent on the way the data is shared across the drives. In
the following discussion, it’s convenient to think of the
disk storage as a large number of data sectors which are
addressable by number, rather like the pages in a book.
The most obvious method is to divide the virtual disk
into groups of consecutive sectors the size of the indi-
vidual physical disks and store them in this manner,
rather like taking a large book and tearing it into small-
er sections. This method is called concatenation and
has the advantage that the disks do not need to have any
specific size relationships. It works well when the ac-
cess to the virtual disk is spread evenly about its ad-
dress space. When access is concentrated on a smaller
area, the improvement is less marked. Figure 1 illus-
trates the sequence in which storage units are allocated
in a concatenated organization.

0
1
2
3
4
5

6
7
8
9

10
11

12
13
14
15
16
17

Disk 1 Disk 2 Disk 3 Disk 4

Figure 1: Concatenated organization

An alternative mapping is to divide the address space
into smaller, even-sized components and store them
sequentially on different devices. For example, the first
256 sectors may be stored on the first disk, the next 256
sectors on the next disk and so on. After filling the last
disk, the process repeats until the disks are full. This
mapping is called striping or RAID-0, though the latter
term is somewhat misleading: it provides no
redundancy. Striping requires somewhat more effort to
locate the data, and it can cause additional I/O load
where a transfer is spread over multiple disks, but it can

also provide a more constant load across the disks.
Figure 2 illustrates the sequence in which storage units
are allocated in a striped organization.

0
4
8
12
16
20

1
5
9
13
17
21

2
6
10
14
18
22

3
7
11
15
19
23

Disk 1 Disk 2 Disk 3 Disk 4

Figure 2: Striped organization

Data integrity

The final problem with current disks is that they are
unreliable. Although disk drive reliability has increased
tremendously over the last few years, of all the core
components of a server they are still the most likely to
fail. When they do, the results can be catastrophic:
replacing a failed disk drive and restoring data to it can
take days.

The traditional way to approach this problem has been
mirroring, keeping two copies of the data on different
physical hardware. Since the advent of the RAID
levels, this technique has also been called RAID level 1
or RAID-1. Any write to the volume writes to both
locations; a read can be satisfied from either, so if one
drive fails, the data is still available on the other drive.

Mirroring has two problems:

• The price. It requires twice as much disk storage as
a non-redundant solution.

• The performance impact. Writes must be
performed to both drives, so they take up twice the
bandwidth of a non-mirrored volume. Reads do not
suffer from a performance penalty: it even looks as
if they are faster. This issue will be discussed in the
‘‘Performance issues’’ section.

An alternative solution is parity, implemented in the
RAID levels 2, 3, 4 and 5. Of these, RAID-5 is the
most interesting. As implemented in Vinum, it is a
variant on a striped organization which dedicates one
block of each stripe to parity of the other blocks. In
RAID-5, the location of this parity block changes from
one stripe to the next. Figure 3 shows the RAID-5
organization. The numbers in the data blocks indicate
the relative block numbers.

0
3
6

Parity
12
15

1
4

Parity
9
13
16

2
Parity
7
10
14

Parity

Parity
5
8
11

Parity
17

Disk 1 Disk 2 Disk 3 Disk 4

Figure 3: RAID-5 organization

Compared to mirroring, RAID-5 has the advantage of
requiring significantly less storage space. Read access
is similar to that of striped organizations, but write
access is significantly slower, approximately 25% of the
read performance. If one drive fails, the array can
continue to operate in degraded mode: a read from one
of the remaining accessible drives continues normally,
but a read from the failed drive is recalculated from the
corresponding block from all the remaining drives.

Current implementations

The problems of size, performance and reliability have
solutions that are only partially compatible. In
particular, redundant data storage and performance
improvements require different solutions and affect
each other negatively.

The current trend is to realize such systems in disk
array hardware, which looks to the host system like a
very large disk. Disk arrays have a number of
advantages:

• They are portable. Since they hav e a standard
interface, usually SCSI, but increasingly also IDE,
they can be installed on almost any system without
kernel modifications.

• They hav e the potential to offer impressive
performance: they offload the calculations (in
particular, the parity calculations for RAID-5) to the
array, and in the case of replicated data, the
aggregate transfer rate to the array is less than it
would be to local disks. Striping (‘‘RAID-0’’) and
RAID-5 organizations also spread the load more
ev enly over the physical disks, thus improving
performance. Nevertheless, an array is typically
connected via a single SCSI connection, which can
be a bottleneck, and some implementations show
surprisingly poor performance which cannot be
explained by the hardware configuration. Installing
a disk array does not guarantee better performance.

• They are reliable. A good disk array offers a large
number of features designed to enhance reliability,
including enhanced cooling, hot-plugging (the
ability to replace a drive while the array is running)
and automatic failure recovery.

On the other hand, disk arrays are relatively expensive
and not particularly flexible. An alternative is a
software-based volume manager which performs
similar functions in software. A number of these
systems exist, notably the VERITAS® volume manager
[Veritas], Solaris DiskSuite [Solstice], IBM’s Logical
Volume Facility [IBM] and SCO’s Virtual Disk
Manager [SCO]. An implementation of RAID
software is also available for Linux [Linux].

Vinum

Vinum is an open source [OpenSource] volume
manager implemented under FreeBSD [FreeBSD]. It
was inspired by the VERITAS® volume manager and
implements many of the concepts of VERITAS®. Its
key features are:

• Vinum implements RAID-0 (striping), RAID-1
(mirroring) and RAID-5 (rotated block-interleaved
parity). In RAID-5, a group of disks are protected
against the failure of any one disk by an additional
disk with block checksums of the other disks.1

• Drive layouts can be combined to increase
robustness, including striped mirrors (so-called
‘‘RAID-10’’).

• Vinum implements only those features which
appear useful. Some commercial volume managers
appear to have been implemented with the goal of
maximizing the size of the spec sheet. Vinum does
not implement ‘‘ballast’’ features such as RAID-4.
It would have been trivial to do so, but the only
effect would have been to further confuse an
already confusing topic.

• Volume managers initially emphasized reliability
and performance rather than ease of use. The
results are frequently down time due to
misconfiguration, with consequent reluctance on the
part of operational personnel to attempt to use the
more unusual features of the product. Vinum
attempts to provide an easier-to-use non-GUI
interface.

1. The RAID-5 functionality is currently available under license from
Cybernet, Inc. [Cybernet]. It will be released as open source at a
later date.

How Vinum addresses the Three Problems

As mentioned above, Vinum addresses three main
deficiencies of traditional disk hardware. This section
examines them in more detail.

Vinum objects

In order to address these problems, vinum implements a
four-level hierarchy of objects:

• The most visible object is the virtual disk, called a
volume. Volumes have essentially the same
properties as a UNIX disk drive, though there are
some minor differences. They hav e no size
limitations.

• Volumes are composed of plexes, each of which
represent the total address space of a volume. This
level in the hierarchy thus provides redundancy.

• Since Vinum exists within the UNIX disk storage
framework, it would be possible to use UNIX
partitions as the building block for multi-disk
plexes, but in fact this turns out to be too inflexible:
UNIX disks can have only a limited number of
partitions. Instead, Vinum subdivides a single
UNIX partition (the drive) into contiguous areas
called subdisks, which it uses as building blocks for
plexes.

• Subdisks reside on Vinum drives, currently UNIX
partitions. Vinum drives can contain any number of
subdisks. With the exception of a small area at the
beginning of the drive, which is used for storing
configuration and state information, the entire drive
is available for data storage.

The following sections describe the way these objects
provide the functionality required of Vinum.

Volume size considerations

Plexes can include multiple subdisks spread over all
drives in the Vinum configuration. As a result, the size
of an individual drive does not limit the size of a plex,
and thus of a volume.

Redundant data storage

Vinum provides both mirroring and RAID-5. It
implements mirroring by attaching multiple plexes to a
volume. Each plex is a representation of the data in a
volume. A volume may contain between one and eight
plexes.

Although a plex represents the complete data of a
volume, it is possible for parts of the representation to
be physically missing, either by design (by not defining
a subdisk for parts of the plex) or by accident (as a
result of the failure of a drive). As long as at least one
plex can provide the data for the complete address
range of the volume, the volume is fully functional.

From an implementation standpoint, it is not practical
to represent a RAID-5 organization as a collection of
plexes. This issue is discussed below.

Performance issues

By spreading data across multiple disks, Vinum can
deliver much higher performance than a single disk.
This issue will be discussed in more detail below.

RAID-5

Conceptually, RAID-5 is used for redundancy, but in
fact the implementation is a kind of striping. This
poses problems for the implementation of Vinum:
should it be a kind of plex or a kind of volume? It
would have been possible to implement it either way,
but it proved to be simpler to implement RAID-5 as a
plex type. This means that there are two different ways
of ensuring data redundancy: either have more than one
plex in a volume, or have a single RAID-5 plex. These
methods can be combined.

Which plex organization?

Vinum implements only that subset of RAID
organizations which make sense in the framework of
the implementation. It would have been possible to
implement all RAID levels, but there was no reason to
do so. Each of the chosen organizations has unique
advantages:

• Concatenated plexes are the most flexible: they can
contain any number of subdisks, and the subdisks
may be of different length. The plex may be
extended by adding additional subdisks. They
require less CPU time than striped or RAID-5
plexes, though the difference in CPU overhead from
striped plexes is not measurable. On the other
hand, they are most susceptible to ‘‘hot spots’’,
where one disk is very active and others are idle.

• The greatest advantage of striped (RAID-0) plexes
is that they reduce hot spots: by choosing an
optimum sized stripe (empirically determined to be
in the order of 256 kB), the load on the component

drives can be made more even. The disadvantages
of this approach are (fractionally) more complex
code and restrictions on subdisks: they must be all
the same size, and extending a plex by adding new
subdisks is so complicated that Vinum currently
does not implement it. Vinum imposes an
additional, trivial restriction: a striped plex must
have at least two subdisks, since otherwise it is
indistinguishable from a concatenated plex.

• RAID-5 plexes are effectively an extension of
striped plexes. Compared to striped plexes, they
offer the advantage of fault tolerance, but the
disadvantages of higher storage cost and
significantly higher overhead, particularly for
writes. The code is an order of magnitude more
complex than for concatenated and striped plexes.
Like striped plexes, RAID-5 plexes must have
equal-sized subdisks and cannot be extended.
Vinum enforces a minimum of three subdisks for a
RAID-5 plex, since any smaller number would not
make any sense.

These are not the only possible organizations. In
addition, the following could have been implemented:

• RAID-4, which differs from RAID-5 only by the
fact that all parity data is stored on a specific disk.
This simplifies the algorithms somewhat at the
expense of drive utilization: the activity on the
parity disk is a direct function of the read to write
ratio. Since Vinum implements RAID-5, RAID-4’s
only advantage is nullified.

• RAID-3, effectively an implementation of RAID-4
with a stripe size of one byte. Each transfer
requires reading each disk (with the exception of
the parity disk for reads). Without spindle
synchronization (where the corresponding sectors
pass the heads of each drive at the same time),
RAID-3 would be very inefficient. In a multiple-
access system, it also causes high latency.

An argument for RAID-3 does exist where a single
process requires very high data rates. With spindle
synchronization, this would be a potentially useful
addition to Vinum.

• RAID-2, which uses two subdisks to store a
Hamming code, and which otherwise resembles
RAID-3. Compared to RAID-3, it offers a lower
data density, higher CPU usage and no
compensating advantages.

In addition, RAID-5 can be interpreted in two different

ways: the data can be striped, as in the Vinum
implementation, or it can be written serially, exhausting
the address space of one subdisk before starting on the
other, effectively a modified concatenated organization.
There is no recognizable advantage to this approach,
since it does not provide any of the other advantages of
concatenation.

Some examples

Vinum maintains a configuration database which
describes the objects known to an individual system.
Initially, the user creates the configuration database
from one or more configuration files with the aid of the
vinum(8) utility program. Vinum stores a copy of its
configuration database on each drive under its control.
This database is updated on each state change, so that a
restart accurately restores the state of each Vinum
object.

The configuration file

The configuration file describes individual Vinum
objects. The definition of a simple volume might be:

drive a device /dev/da3h
volume myvol

plex org concat
sd length 512m drive a

This file describes a four Vinum objects:

• The drive line describes a disk partition (drive)
and its location relative to the underlying hardware.
It is given the symbolic name a. This separation of
the symbolic names from the device names allows
disks to be moved from one location to another
without confusion.

• The volume line describes a volume. The only
required attribute is the name, in this case myvol.

• The plex line defines a plex. The only required
parameter is the organization, in this case concat.
No name is necessary: the system automatically
generates a name from the volume name by adding
the suffix .px, where x is the number of the plex in
the volume. Thus this plex will be called myvol.p0.

• The sd line describes a subdisk. The minimum
specifications are the name of a drive on which to
store it, and the length of the subdisk. As with
plexes, no name is necessary: the system
automatically assigns names derived from the plex
name by adding the suffix .sx, where x is the

number of the subdisk in the plex. Thus Vinum
gives this subdisk the name myvol.p0.s0

This particular volume has no specific advantage over a
conventional disk partition. It contains a single plex, so
it is not redundant. The plex contains a single subdisk,
so there is no difference in storage allocation from a
conventional disk partition. The following sections
illustrate various more interesting configurations.

Increased resilience: mirroring

The resilience of a volume can be increased either by
mirroring or by using RAID-5 plexes. When laying out
a mirrored volume, it is important to ensure that the
subdisks of each plex are on different drives, so that a
drive failure will not take down both plexes. The
following configuration mirrors a volume:

drive b device /dev/da4h
volume mirror
plex org concat
sd length 512m drive a

plex org concat
sd length 512m drive b

In this example, it was not necessary to specify a
definition of drive a again, since Vinum keeps track of
all objects in its configuration database.

In this example, each plex contains the full 512 MB of
address space. As in the previous example, each plex
contains only a single subdisk.

Optimizing performance

The mirrored volume in the previous example is more
resistant to failure than an unmirrored volume, but its
performance is less: each write to the volume requires a
write to both drives, using up a greater proportion of the
total disk bandwidth. Performance considerations
demand a different approach: instead of mirroring, the
data is striped across as many disk drives as possible.
The following configuration shows a volume with a
plex striped across four disk drives:

drive c device /dev/da5h
drive d device /dev/da6h
volume stripe
plex org striped 512k
sd length 128m drive a
sd length 128m drive b
sd length 128m drive c
sd length 128m drive d

As before, it is not necessary to define the drives which
are already known to Vinum.

Increased resilience: RAID-5

The alternative approach to resilience is RAID-5. A
RAID-5 configuration might look like:

drive e device /dev/da6h
volume raid5

plex org raid5 512k
sd length 128m drive a
sd length 128m drive b
sd length 128m drive c
sd length 128m drive d
sd length 128m drive e

Although this plex has five subdisks, its size is the same
as the plexes in the other examples, since the equivalent
of one subdisk is used to store parity information.

On creation, RAID-5 plexes are in the init state: before
they can be used, the parity data must be created.
Vinum currently initializes RAID-5 plexes by writing
binary zeros to all subdisks, though a probable future
alternative is to rebuild the parity blocks, which allows
better recovery of crashed plexes.

Resilience and performance

With sufficient hardware, it is possible to build volumes
which show both increased resilience and increased
performance compared to standard UNIX partitions.
Mirrored disks will always give better performance than
RAID-5, so a typical configuration file might be:

volume raid10
plex org striped 512k

sd length 102480k drive a
sd length 102480k drive b
sd length 102480k drive c
sd length 102480k drive d
sd length 102480k drive e

plex org striped 512k
sd length 102480k drive c
sd length 102480k drive d
sd length 102480k drive e
sd length 102480k drive a
sd length 102480k drive b

The subdisks of the second plex are offset by two drives
from those of the first plex: this helps ensure that writes
do not go to the same subdisks even if a transfer goes
over two drives.

Creating file systems

Volumes appear to the system to be identical to disks,
with one exception. Unlike UNIX drives, Vinum does
not partition volumes, which thus do not contain a
partition table. This has required modification to some

disk utilities, notably newfs , which previously tried to
interpret the last letter of a Vinum volume name as a
partition identifier. For example, a disk drive may have
a name like /dev/wd0a or /dev/da2h. These names
represent the first partition (a) on the first (0) IDE disk
(wd) and the eighth partition (h) on the third (2) SCSI
disk (da) respectively. By contrast, a Vinum volume
might be called /dev/vinum/concat, a name which has
no relationship with a partition name.

Normally, newfs(8) interprets the name of the disk and
complains if it cannot understand it. For example:

newfs /dev/vinum/concat
newfs: /dev/vinum/concat: can’t figure out
file system partition

In order to create a file system on this volume, use the
-v option to newfs(8) :

newfs -v /dev/vinum/concat

Startup

Vinum stores configuration information on the disk
slices in essentially the same form as in the
configuration files. When reading from the
configuration database, Vinum recognizes a number of
keywords relating to object state which are not allowed
in the configuration files. Vinum does not store
information about drives in the configuration
information: it finds the drives by scanning the
configured disk drives for partitions with a Vinum label.
This enables Vinum to identify drives correctly even if
they hav e been assigned different UNIX drive IDs.

At system startup, Vinum reads the configuration
database from one of the Vinum drives. Under normal
circumstances, each drive contains an identical copy of
the configuration database, so it does not matter which
drive is read. After a crash, however, Vinum must
determine which drive was updated most recently and
read the configuration from this drive.

Performance issues

At present only superficial performance measurements
have been made. They show that the performance is
very close to what could be expected from the
underlying disk driver performing the same operations
as Vinum performs: in other words, the overhead of
Vinum itself is negligible. This does not mean that

Vinum has perfect performance: the choice of requests
has a strong impact on the overall subsystem
performance, and there are some known areas which
could be improved upon. In addition, the user can
influence performance by the design of the volumes.

The following sections examine some factors which
influence performance.

Note: The performance measurements in this section
were done on some very old pre-SCSI-1 disk drives.
The absolute performance is correspondingly poor. The
intention of the following graphs is to show relative
performance, not absolute performance. Other tests
indicate that the performance relationships also apply to
modern high-end hardware.

The influence of stripe size

In striped and RAID-5 plexes, the stripe size has a
significant influence on performance. In all plex
structures with more than one subdisk, the possibility
exists that a single transfer to or from a volume will be
remapped into more than one physical I/O request.
This is never desirable, since the average latency for
multiple transfers is always larger than the average
latency for single transfers to the same kind of disk
hardware. Spindle synchronization does not help here,
since there is no deterministic relationship between the
positions of the data blocks on the different disks.
Within the bounds of the current BSD I/O architecture
(maximum transfer size 128 kB) and current disk
hardware, this increase in latency can easily offset any
speed increase in the transfer.

In the case of a concatenated plex, this remapping
occurs only when a request overlaps a subdisk
boundary, which is seldom enough to be negligible. In
a striped or RAID-5 plex, however, the probability is an
inverse function of the stripe size. For this reason, a
stripe size of 256 kB appears to be optimum: it is small
enough to create a relatively random mapping of file
system hot spots to individual disks, and large enough
to ensure than 99% of all transfers involve only a single
data subdisk. Figure 4 shows the effect of stripe size on
read and write performance, obtained with rawio
[rawio]. This measurement used eight concurrent
processes to access volumes with striped plexes with
different stripe sizes. The graph shows the
disadvantage of small stripe sizes, which can cause a
significant performance degradation even compared to a
single disk.

The influence of RAID-1 mirroring

Mirroring has different effects on read and write
throughput. A write to a mirrored volume causes writes
to each plex, so write performance is less than for a
non-mirrored volume. A read from a mirrored volume,
however, reads from only one plex, so read performance
can improve.

There are two different scenarios for these performance
changes, depending on the layout of the subdisks
comprising the volume. Two basic possiblities exist for
a mirrored, striped plex.

One disk per subdisk
The optimum layout, both for reliability and for
performance, is to have each subdisk on a separate disk.
An example might be the following configuration,
similar to the sample ‘‘RAID-10’’ configuration seen
above.

volume raid10
plex org striped 512k
sd length 102480k drive a
sd length 102480k drive b
sd length 102480k drive c
sd length 102480k drive d

plex org striped 512k
sd length 102480k drive e
sd length 102480k drive f
sd length 102480k drive g
sd length 102480k drive h

In this case, the volume is spread over a total of eight
disks. This has the following effects:

• Read access: by default, read accesses will alternate
across the two plexes, giving a performance
improvement close to 100%.

• Write access: writes must be performed to both
disks, doubling the bandwidth requirement. Since
the available bandwidth is also double, there should
be little difference in througput.

At present, due to lack of hardware, no tests have been
made of this configuration.

Both plexes on the same disks
An alternative layout is to spread the subdisks of each
plex over the same disks:

volume raid10
plex org striped 512k
sd length 102480k drive a
sd length 102480k drive b
sd length 102480k drive c
sd length 102480k drive d

plex org striped 512k

sd length 102480k drive c
sd length 102480k drive d
sd length 102480k drive a
sd length 102480k drive b

In this configuration, the subdisks covering a specific
plex address space have been placed on different drives,
thus improving both performance and resilience This
configuration has the following properties:

• Read access: by default, read accesses will alternate
across the two plexes. Since there is no increase in
bandwidth, there will be little difference in
performance through the second plex.

• Write access: writes must be performed to both
disks, doubling the bandwidth requirement. In this
case, the bandwidth has not increase, so write
throughput will decrease by approximately 50%.

Figure 4 also shows the effect of mirroring in this
manner. The results are very close to the theoretical
predictions.

The influence of request size

As seen above, the throughput of a disk subsystem is
the sum of the latency (the time taken to position the
disk hardware over the correct part of the disk) and the
time to transfer the data to or from the disk. Since
latency is independent of transfer size and much larger
than the transfer time for typical transfers, overall
throughput is strongly dependent on the size of the
transfer, as Figure 5 shows. Unfortunately, there is little
that can be done to influence the transfer size. In
FreeBSD, it tends to be closer to 10 kB than to 30 kB.

The influence of concurrency

Vinum aims to give best performance for a large
number of concurrent processes performing random
access on a volume. Figure 6 shows the relationship
between number of processes and throughput for a raw
disk volume and a Vinum volume striped over four such
disks with between one and 128 concurrent processes
with an average transfer size of 16 kB. The actual
transfers varied between 512 bytes and 32 kB, which
roughly corresponds to ufs usage.

This graph clearly shows the differing effects of
multiple concurrent processes on the Vinum volume
and the relative lack of effect on a single disk. The
single disk is saturated even with one process, while
Vinum shows a continual throughput improvement with
up to 128 processes, by which time it has practically
leveled off.

The influence of request structure

For concatenated and striped plexes, Vinum creates
request structures which map directly to the user-level
request buffers. The only additional overhead is the
allocation of the request structure, and the possibility of
improvement is correspondingly small.

With RAID-5 plexes, the picture is very different. The
strategic choices described above work well when the
total request size is less than the stripe width. By
contrast, it does not perform optimally when a request
is larger than the size of all blocks in a stripe. The
requests map to contiguous space on the disk but non-
contiguous space in the user buffer. An optimal
implementation would perform one I/O request per
drive and map to the user buffer in software. By
contrast, Vinum performs separate I/O requests for each
stripe.

In practice, this inefficiency should not cause any
problems: as discussed above, the optimum stripe size
is larger than the maximum transfer size, so this
situation arises only when an inappropriately small
stripe size is chosen.

Figure 7 shows the RAID-5 tradeoffs:

• The RAID-5 write throughput is approximately half
of the RAID-1 throughput in figure 4, and one-
quarter of the write throughput of a striped plex.

• The read throughput is similar to that of striped
volume of the same size.

Although the random access performance increases
continually with increasing stripe size, the sequential
access performance peaks at about 20 kB for writes and
35 kB for reads. This effect has not yet been
adequately explained, but may be due to the nature of
the test (8 concurrent processes writing the same data at
the same time).

Av ailability

Vinum is available without RAID-5 functionality under
a Berkeley-style copyright as part of the FreeBSD 3.1
distribution. It is also available at [vinum]. The
RAID-5 functionality is available under licence from
Cybernet, Inc. [Cybernet], and is included in their
NetMAX Internet connection package.

Future directions

The current version of Vinum implements the core
functionality. A number of additional features are
under consideration:

• Hot spare capability: on the failure of a disk drive,
the volume manager automatically recovers the data
to another drive.

• Logging changes to a degraded volume.
Rebuilding a plex usually requires copying the
entire volume. In a volume with a high read to
write ratio, if a disk goes down temporarily and
then becomes accessible again (for example, as the
result of controller failure), most of the data is
already correct and does not need to be copied.
Logging pinpoints which blocks require copying in
order to bring the stale plex up to date.

• Snapshots of a volume. It is often useful to freeze
the state of a volume, for example for backup
purposes. A backup of a large volume can take
several hours. It can be inconvenient or impossible
to prohibit updates during this time. A snapshot
solves this problem by maintaining before images, a
copy of the old contents of the modified data
blocks. Access to the plex reads the blocks from
the snapshot plex if it contains the data, and from
another plex if it does not.

Implementing snapshots in Vinum alone would
solve only part of the problem: there must also be a
way to ensure that the data on the file system is
consistent from a user standpoint when the snapshot
is taken. This task involves such components as file
systems and databases and is thus outside the scope
of Vinum.

• A SNMP interface for central management of
Vinum systems.

• A GUI interface is currently not planned, though it
is relatively simple to program, since no kernel
code is needed. As the number of failures testify, a
good GUI interface is apparently very difficult to
write, and it tends to gloss over important
administrative aspects, so it’s not clear that the
advantages justify the effort. On the other hand, a
graphical output of the configuration could be of
advantage.

• An extensible ufs. It is possible to extend the size
of some modern file systems after they hav e been
created. Although ufs (the UNIX File System,
previously called the Berkeley Fast File System)
was not designed for such extension, it is trivial to
implement extensibility. This feature would allow a
user to add space to a file system which is
approaching capacity by first adding subdisks to the
plexes and then extending the file system.

• Remote data replication is of interest either for
backup purposes or for read-only access at a remote
site. From a conceptual viewpoint, it could be
achieved by interfacing to a network driver instead
of a local disk driver.

• Extending striped and RAID-5 plexes is a slow
complicated operation, but it is feasible.

References

[CMD] CMD Technology, Inc June 1993, The Need For
RAID, An Introduction.
http://www.fdma.com/info/raidinto.html

[Cybernet] The NetMAX Station,
http://www.cybernet.com/netmax/index.html. The first
product using the Vinum Volume Manager.

[FreeBSD] FreeBSD home page,
http://www.FreeBSD.org/

[IBM] AIX Version 4.3 System Management Guide:
Operating System and Devices, Logical Volume Storage
Overview
http://www.austin.ibm.com/doc_link/en_US/a_doc_lib/
aixbman/baseadmn/lvm_overview.htm

[Linux] Logical Volume Manager for Linux ,
http://linux.msede.com/lvm/.

[McKusick] Marshall Kirk McKusick, Keith Bostic,
Michael J. Karels, John S. Quarterman. The Design
and Implementation of the 4.4BSD Operating System,
Addison Wesley, 1996.

[OpenSource] The Open Source Page,
http://www.opensource.org/

[rawio] A raw disk I/O benchmark.
ftp://ftp.lemis.com/pub/rawio.tar.gz

[SCO] SCO Virtual Disk Manager,
http://www.sco.com/products/layered/ras/virtual.html.

[Solstice] http://www.sun.com/solstice/em-

products/system/disksuite.html

[veritas] The VERITAS® Volume manager,
http://www.veritas.com/product-info/vm/index.htm .

[vinum] Greg Lehey, The Vinum Volume Manager,
http://www.lemis.com/vinum.html. An extended version
of this paper.

[Wong] Brian Wong, RAID: What does it mean to me?,
SunWorld Online, September 1995.
http://www.sunworld.com/sunworldonline/swol-09-
1995/swol-09-raid5.html

Illustrations

0

200

400

600

800

1000

1200

1400

1 10 100 1000
Stripe size (kB)

ki
lo

by
te

s/
se

co
nd

Vinum random write, one plex
Vinum random read, one plex
Vinum random read, two plexes
Vinum random write, two plexes
Raw disk random read
Raw disk random write

Figure 4: The influence of stripe size and mirroring

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

10 100Average transfer size (kB)

ki
lo

by
te

s/
se

co
nd

Vinum random read
Vinum random write
Raw disk random read
Raw disk random write

Figure 5: Throughput as function of transfer size

1000

2000

3000

4000

5000

6000

7000

8000

1 10 100
Number of processes

ki
lo

by
te

s/
se

co
nd

Vinum random read, avg. 32 sectors
Vinum random write, avg. 32 sectors

Raw disk random read, avg. 32 sectors
Raw disk random write, avg. 32 sectors

Figure 6: Concurrent random access

0

200

400

600

800

1000

1200

1400

1600

1800

1 10 100 1000

Stripe size (kB)

ki
lo

by
te

s/
se

co
nd

RAID-5 sequential read
RAID-5 random read

RAID-5 sequential write
RAID-5 random write

Figure 7: RAID-5 performance against stripe size

